首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The establishment of an efficient surface water quality monitoring (WQM) network is a critical component in the assessment, restoration and protection of river water quality. A periodic evaluation of monitoring network is mandatory to ensure effective data collection and possible redesigning of existing network in a river catchment. In this study, the efficacy and appropriateness of existing water quality monitoring network in the Kabbini River basin of Kerala, India is presented. Significant multivariate statistical techniques like principal component analysis (PCA) and principal factor analysis (PFA) have been employed to evaluate the efficiency of the surface water quality monitoring network with monitoring stations as the evaluated variables for the interpretation of complex data matrix of the river basin. The main objective is to identify significant monitoring stations that must essentially be included in assessing annual and seasonal variations of river water quality. Moreover, the significance of seasonal redesign of the monitoring network was also investigated to capture valuable information on water quality from the network. Results identified few monitoring stations as insignificant in explaining the annual variance of the dataset. Moreover, the seasonal redesign of the monitoring network through a multivariate statistical framework was found to capture valuable information from the system, thus making the network more efficient. Cluster analysis (CA) classified the sampling sites into different groups based on similarity in water quality characteristics. The PCA/PFA identified significant latent factors standing for different pollution sources such as organic pollution, industrial pollution, diffuse pollution and faecal contamination. Thus, the present study illustrates that various multivariate statistical techniques can be effectively employed in sustainable management of water resources. Highlights ? The effectiveness of existing river water quality monitoring network is assessed ? Significance of seasonal redesign of the monitoring network is demonstrated ? Rationalization of water quality parameters is performed in a statistical framework  相似文献   

2.
Nilsson S  Langaas S 《Ambio》2006,35(6):304-311
We address issues connected with international river basin management and the EU Water Framework Directive (WFD). By creating a register of River Basin Districts established under the WFD, we show that the number and area of international River Basin Districts are significant. Further, we present an assessment of international cooperation and water quality in 14 international river basins in the Baltic Sea Drainage Basin. Our results indicate that the WFD is a push forward for international river basin management in the region. However the WFD in general, and the principle of river basin management in particular, may be hard to implement in river basins shared between EU Member States and countries outside the EU. According to the study, Vistula, Pregola, and Nemunas appear to be the international basins within the Baltic Sea Drainage Basin in greatest need of intensified cooperation with regard to the state of the water quality.  相似文献   

3.
We report the evaluation of changes in water quality, increasing pollution level, of a section of Suquía River basin (Córdoba, Argentina) by using Myriophyllum quitense as bioindicator in addition to the measurement of chemical parameters, combined with chemometrics (ANOVA, Cluster and Discriminant Analysis). Myriophyllum quitense was collected upstream from Córdoba city at an unpolluted site of Suquía River basin. After collection plants were transplanted to different sites with different pollution levels. Subsequent to transplantation plants were weekly collected from the original site as well as from transplantation stations. Water quality was evaluated throughout the transplantation experiment, while the use of this macrophyte as bioindicator was verified through the activation of its antioxidant defenses and biotransformation system. Myriophyllum quitense reacts to the pollution stress increasing the activity of glutathione-S-transferases (CDNB and Fluorodifen), glutathione reductase (GR) and peroxidase (POD). Elevated enzyme activities agreed to different pollution levels, especially inorganic nitrogen loads combined with elevated lead and aluminum concentrations, all of them originated by anthropogenic activities, thus presenting Myriophyllum quitense as a good biomonitor for assessment of water quality in this polluted aquatic ecosystem.  相似文献   

4.
We provide evidence of rapid, recent environmental change in two lakes in the highlands of central Mexico. Multiple sediment cores were obtained from Lago de Zirahuén (Michoacán) and Laguna de Juanacatlán (Jalisco). Analysis of diatom assemblages, magnetic susceptibility, and metal concentrations was carried out, with the chronology provided by 210Pb dating, 14C dating, and tephrochronology. There is evidence of catchment disturbance during the colonial period in both basins, but the most striking feature at both sites is the rapid change in diatom assemblages during the last 20 y, indicating the onset of eutrophication. Limnological data from Lago de Zirahuén support this interpretation, although none are available from Laguna de Juanacatlán. Paleolimnology is a powerful tool in tracking recent change, particularly in the absence of regular limnological monitoring programs. These lakes appear to be highly sensitive to changes in catchment exploitation, which must be considered in future drainage basin management.  相似文献   

5.
Provincial-level data for population, livestock, land use, economic growth, development of sewage systems, and wastewater treatment rates were used to construct a river nitrogen (N) export model in this paper. Despite uncertainties, our results indicated that river N export to coastal waters increased from 531 to 1,244 kg N km?2 year?1 in the Changjiang River basin, 107 to 223 kg N km?2 year?1 in the Huanghe River basin, and 412 to 1,219 kg N km?2 year?1 in the Zhujiang River basin from 1980 to 2010 as a result of rapid population and economic growth. Significant temporal changes in water N sources showed that as the percentage of runoff from croplands increased, contributions of natural system runoff and rural human and livestock excreta decreased in the three basins from 1980 to 2010. Moreover, the nonpoint source N decreased from 72 to 58 % in the Changjiang River basin, 80 to 67 % in the Huanghe River basin, and 69 to 51 % in the Zhujiang River basin, while the contributions of point sources increased greatly during the same period. Estimated results indicated that the N concentrations in the Changjiang, Huanghe, and Zhujiang rivers during 1980–2004 were higher than those in the St. Lawrence River in Canada and lower than those in the Thames, Donau, Rhine, Seine, and Han rivers during the same period. River N export will reduce by 58, 54, and 57 % for the Changjiang River, Huanghe River, and Zhujiang River in the control scenario in 2050 compared with the basic scenario.  相似文献   

6.
The Ely Creek watershed in Lee County, VA, USA, contains an abundance of abandoned mined land areas with acid mine drainage (AMD) that contaminate the majority of the creek and its confluence into Stone Creek. Acidic pH measurements ranged from 2.73 to 5.2 at several stations throughout the watershed. Sediments had high concentrations of iron (approximately 10,000 mg kg-1), aluminum (approximately 1,500 mg kg-1), magnesium (approximately 400 mg kg-1) and manganese (approximately 150 mg kg-1), and habitat was partially to non-supporting at half of the stations due to sedimentation. Benthic macroinvertebrate surveys at six of 20 stations sampled in the watershed yielded no macroinvertebrates, while eight others had total abundances of only one to nine organisms. Four reference stations contained > or = 100 organisms and at least 13 different taxa. Asian clam in situ toxicity testing supported field survey results. Laboratory, 10-day survival/impairment sediments tests with Daphnia magna and Chironomus tentans and 48-h water column bioassays with Ceriodaphnia dubia indicated environmental stress to a lesser degree. Ten parameters that were directly influenced by AMD through physical, chemical, ecological and toxicological endpoints were assimilated into an ecotoxicological rating (ETR) to form a score of 0-100 points for the 20 sampling stations, and the lower the score the greater the AMD stress. Twelve of the 15 sampling stations influenced by AMD received an ETR score of 13.75-57.5, which were categorized as severely stressed (i.e. comprised the < 60 percentile category) and worthy of the highest priority for future ecological restoration activities in the watershed.  相似文献   

7.
We evaluated the molecular diversity of narG gene from Suquía River sediments to assess the impact of the nitrate concentration and water quality on the composition and structure of the nitrate-reducing bacterial community. To this aim, a library of one of the six monitoring stations corresponding to the highest nitrate concentration was constructed and 118 narG clones were screened. Nucleotide sequences were associated to narG gene from alpha-, beta-, delta-, gammaproteobacteria and Thermus thermophilus. Remarkably, 18% of clones contained narG genes with less than 69% similarity to narG sequences available in databases. Thus, indicating the presence of nitrate-reducing bacteria with novel narG genes, which were quantified by real-time PCR. Results show a variable number of narG copies, ranging from less than 1.0 × 102 to 5.0 × 104 copies per ng of DNA, which were associated with a decreased water quality index monitored along the basin at different times.  相似文献   

8.
River Swarna, a small tropical river originating in Western Ghats (at an altitude of 1,160 m above mean sea level) and flowing in the southwest coast of India discharges an average of 54 m3s?1 of water into the Arabian Sea, of which significant part is being discharged during the monsoon. No studies have been made yet on the water chemistry of the Swarna River basin, even as half a million people of Udupi district use it for domestic and irrigational purposes. As large community in this region depends on the freshwater of Swarna River, there is an urgent need to study the trace element geochemistry of this west flowing river for better water management and sustainable development. The paper presents the results on the biogeochemistry of dissolved trace elements in the Swarna River for a period of 1 year. The results obtained on the trace elements show seasonal effect on the concentrations as well as behavior and thus forming two groups, discharge driven (Li, Be, Al, V, Cr, Ni, Zr, In, Pb, Bi and U) and base flow driven (groundwater input; Mn, Fe, Co, Cu, Ga, Zn, As, Se, Rb, Sr, Ag, Cd, Cs, Ba and Tl) trace elements in Swarna River. The biogeochemical processes explained through Hierarchical Cluster Analysis show complexation of Fe, Ga and Ba with dissolved organic carbon, redox control over Mn and Tl and biological control over V and Ni. Also, the water quality of Swarna River remains within the permissible limits of drinking water standards.  相似文献   

9.
Land use pattern is an effective reflection of anthropic activities, which are primarily responsible for water quality deterioration. A detailed understanding of relationship between water quality and land use is critical for effective land use management to improve water quality. Linear mixed effects and multiple regression models were applied to water quality data collected from 2003 to 2010 from 36 stations in the Huai River basin together with topography and climate data, to characterize the land use impacts on water quality and their spatial scale and seasonal dependence. The results indicated that the influence of land use categories on specific water quality parameter was multiple and varied with spatial scales and seasons. Land use exhibited strongest association with dissolved oxygen (DO) and ammonia nitrogen (NH3-N) concentrations at entire watershed scale and with total phosphorus (TP) and fluoride concentrations at finer scales. However, the spatial scale, at which land use exerted strongest influence on instream chemical oxygen demand (COD) and biochemical oxygen demand (BOD) levels, varied with seasons. In addition, land use composition was responsible for the seasonal pattern observed in contaminant concentrations. COD, NH3-N, and fluoride generally peaked during dry seasons in highly urbanized regions and during rainy seasons in less urbanized regions. High proportion of agricultural and rural areas was associated with high nutrient contamination risk during spring. The results highlight the spatial scale and seasonal dependence of land use impacts on water quality and can provide scientific basis for scale-specific land management and seasonal contamination control.  相似文献   

10.
Gao J  Liu L  Liu X  Zhou H  Huang S  Wang Z 《Chemosphere》2008,71(6):1181-1187
The chlorophenol pollutants (CPs) have been reported to occur at relatively high concentrations in some Chinese waters. To map the distribution of CPs in the surface water throughout China, samples were collected from over 600 sites in the seven major watersheds and three drainage areas. The samples were analyzed for the representative CPs including 2,4-dichlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol. In general, it was observed that 2,4-dichlorophenol and 2,4,6-trichlorophenol were more frequently detected at higher concentrations in the rivers of North China compared with those of South China. High concentration sites of 2,4-dichlorophenol and 2,4,6-trichlorophenol mainly occurred in the Yellow River, Huaihe River, and Haihe River watersheds, while pentachlorophenol contamination mainly occurred in the Yangtze River watershed. The pentachlorophenol was the most ubiquitous CPs being detected in 85.4% of samples (median=50.0ngl(-1); range <1.1-594.0ngl(-1)), 2,4-dichlorophenol was detected in 51.3% (median=5.0ngl(-1); range <1.1-19960.0ngl(-1)) and the 2,4,6-trichlorophenol was detected in 54.4% of water samples (median=2.0ngl(-1), range <1.4-28650.0ngl(-1)). The results of this investigation indicated that 2,4-dichlorophenol and 2,4,6-trichlorophenol contaminations of Yellow River, Huaihe River, and Haihe River watersheds were of particular concern, while the pentachlorophenol contamination mainly occurred in the Yangtze River watershed. These results showed that CPs contamination in the surface water of China was similar to other places of the world.  相似文献   

11.
The increasing frequency of extreme events in large rivers may affect not only their flow, but also their water quality. In the present study, spatial and temporal changes in fluvial physico-chemical variables were analyzed in a mega-river delta during two extreme hydrological years (La Niña-El Niño) and related to potential explanatory factors. Basic water variables were evaluated in situ at 13 points (distant 2–35 km from each other) in watercourses of the Delta Biosphere Reserve (890 km2) in the Lower Paraná River (Argentina) in nine surveys (October 2008–July 2010) without meteorological tides. Samples for laboratory analyses were collected from each main river. Multivariate tests by permutations were applied. The period studied was influenced by a drought, within a long period dominated by low flows combined with dry weather and wildfires, and a large (10 years of recurrence) and prolonged (7 months) flood. The hydrological phase, followed by the season and the hydrological year (according to the ENSO event) were the principal explanatory factors of the main water quality changes, whereas the drainage sub-basin and the fluvial environment (river or stream) were secondary explanatory factors. During the drought period, conductivity, turbidity, and associated variables (e.g., major ions, silicon, and iron concentrations) were maximal, whereas real color was minimal. In the overbanking flood phase, pH and dissolved oxygen concentration were minimal, whereas real color was maximal. Dissolved oxygen saturation was also low in the receding flood phase and total major ion load doubled after the arrival of the overbanking stage. The water quality of these watercourses may be affected by the combination of several influences, such as the Paraná River flow, the pulses with sediments and solutes from the Bermejo River, the export of the Delta floodplain properties mainly by the flood, the season, and the saline tributaries to the Lower Paraná River. The high influence of the hydrology of this large river on the Delta fluvial water quality emphasizes the relevance of changes in its flow regime in recent decades, such as the seasonality attenuation. Considering that the effects of extreme events differ among and within fluvial systems, specific ecohydrological evaluations and powerful appropriate statistics are key tools to gain knowledge on these systems and to provide bases for suitable management measures in a scenario of climate change and increasing human alterations and demands.  相似文献   

12.
The Pennsylvania Air Pollution Commission has developed a regulatory program based upon the control of local air pollution problems and reduction of pollutant levels in air basins. The geographical boundaries of 10 air basins have been established. The Commission’s air basin regulations will provide for the reduction of over-all pollutant levels and for emergency procedures in the event of adverse meteorological conditions. The paper discusses the format and objectives of the program.

In order to effectively enforce the air basin regulations and maintain the necessary surveillance of the state’s air quality, a "computerized real time on-line integrated air monitoring-data handling system" has been designed. The system will incorporate a network to constantly monitor the air in each air basin.The primary objectives of the system are: 1. Constant surveillance of air pollution in the air basins.

2. Provide information on air pollution potential alerts.

3. Aid in further development of air quality criteria and regulations.

The air monitoring network is estimated to include approximately 25 remote stations. Each remote will contain air pollution and meteorological sampling equipment and hardware to telemeter to a central station. The data will be transmitted over leased telephone lines. The central station in Harrisburg will contain the necessary hardware to receive and process data, calculate and display results and permit supervisory control of the network. Output options will include immediate display of edited data, command and alarm information, and presentation of statistical results.

Although the air monitoring system is one of the principle ingredients of the program, the air basin concept encompasses other component systems designed to knit together the entire air pollution control program in Pennsylvania.  相似文献   

13.
We discuss the accuracy and performance of the adaptive neuro-fuzzy inference system (ANFIS) in training and prediction of dissolved oxygen (DO) concentrations. The model was used to analyze historical data generated through continuous monitoring of water quality parameters at several stations on the Johor River to predict DO concentrations. Four water quality parameters were selected for ANFIS modeling, including temperature, pH, nitrate (NO3) concentration, and ammoniacal nitrogen concentration (NH3-NL). Sensitivity analysis was performed to evaluate the effects of the input parameters. The inputs with the greatest effect were those related to oxygen content (NO3) or oxygen demand (NH3-NL). Temperature was the parameter with the least effect, whereas pH provided the lowest contribution to the proposed model. To evaluate the performance of the model, three statistical indices were used: the coefficient of determination (R 2), the mean absolute prediction error, and the correlation coefficient. The performance of the ANFIS model was compared with an artificial neural network model. The ANFIS model was capable of providing greater accuracy, particularly in the case of extreme events.  相似文献   

14.
The aim of the present study is to estimate the export fluxes of major dissolved species at the scale of the Amazon basin, to identify the main parameters controlling their spatial distribution and to identify the role of discharge variability in the variability of the total dissolved solid (TDS) flux through the hydrological cycle. Data are compiled from the monthly hydrochemistry and daily discharge database of the “Programa Climatologico y Hidrologico de la Cuenca Amazonica de Bolivia” (PHICAB) and the HYBAM observatories from 34 stations distributed over the Amazon basin (for the 1983–1992 and 2000–2012 periods, respectively). This paper consists of a first global observation of the fluxes and temporal dynamics of each geomorphological domain of the Amazon basin. Based on mean interannual monthly flux calculations, we estimated that the Amazon basin delivered approximately 272?×?106 t year?1 (263–278) of TDS during the 2003–2012 period, which represents approximately 7 % of the continental inputs to the oceans. This flux is mainly made up by HCO3, Ca and SiO2, reflecting the preferential contributions of carbonate and silicate chemical weathering to the Amazon River Basin. The main tributaries contributing to the TDS flux are the Marañon and Ucayali Rivers (approximately 50 % of the TDS production over 14 % of the Amazon basin area) due to the weathering of carbonates and evaporites drained by their Andean tributaries. An Andes–sedimentary area–shield TDS flux (and specific flux) gradient is observed throughout the basin and is first explained by the TDS concentration contrast between these domains, rather than variability in runoff. This observation highlights that, under tropical context, the weathering flux repartition is primarily controlled by the geomorphological/geological setting and confirms that sedimentary areas are currently active in terms of the production of dissolved load. The log relationships of concentration vs discharge have been characterized over all the studied stations and for all elements. The analysis of the slope of the relationship within the selected contexts reveals that the variability in TDS flux is mainly controlled by the discharge variability throughout the hydrological year. At the outlet of the basin, a clockwise hysteresis is observed for TDS concentration and is mainly controlled by Ca and HCO3 hysteresis, highlighting the need for a sampling strategy with a monthly frequency to accurately determine the TDS fluxes of the basin. The evaporite dissolution flux tends to be constant, whereas dissolved load fluxes released from other sources (silicate weathering, carbonate weathering, biological and/or atmospheric inputs) are mainly driven by variability in discharge. These results suggest that past and further climate variability had or will have a direct impact on the variability of dissolved fluxes in the Amazon. Further studies need to be performed to better understand the processes controlling the dynamics of weathering fluxes and their applicability to present-day concentration–discharge relationships at longer timescales.  相似文献   

15.
Water quality degradation is often a severe consequence of rapid economic expansion in developing countries. Methods to assess spatial-temporal patterns and trends in water quality are essential for guiding adaptive management efforts aimed at water quality remediation. Temporal and spatial patterns of surface water quality were investigated for 54 monitoring sites in the Wen-Rui Tang River watershed of eastern China to identify such patterns in water quality occurring across a rural-suburban-urban interface. Twenty physical and chemical water quality parameters were analyzed in surface waters collected once every 4–8 weeks from 2000 to 2010. Temporal and spatial variations among water quality parameters were assessed between seasons (wet/dry) and among major land use zones (urban/suburban/rural). Factor analysis was used to identify parameters that were important in assessing seasonal and spatial variations in water quality. Results revealed that parameters related to organic pollutants (dissolved oxygen (DO), chemical oxygen demand (manganese) (CODMn), and 5-day biochemical oxygen demand (BOD5)), nutrients (ammonia nitrogen (NH4 +-N), total nitrogen (TN), total phosphorus (TP)), and salt concentration (electrical conductivity (EC)) were the most important parameters contributing to water quality variation. Collectively, they explained 70.9 % of the total variance. A trend study using the seasonal Kendall test revealed reductions in CODMn, BOD5, NH4 +-N, petrol, V-phen, and EC concentrations over the 11-year study period. Cluster analysis was employed to evaluate variation among 14 sampling sites representative of dominant land use categories and indicated three, three, and four clusters based on organic, nutrient, and salt water quality characteristics, respectively. Factors that are typically responsible for water quality degradation (including population, topography, and land use) showed no strong correlation with water quality trends implying considerable point source inputs in the watershed. The results of this study help inform ongoing water quality remediation efforts by documenting trends in water quality across various land use zones.  相似文献   

16.
The assessment of spatial and temporal variation of water quality influenced by land use is necessary to manage the environment sustainably in basin scales. Understanding the correlations between land use and different formats of nonpoint source nutrients pollutants is a priority in order to assess pollutants loading and predicting the impact on surface water quality. Forest, upland, paddy field, and pasture are the dominant land use in the study area, and their land use pattern status has direct connection with nonpoint source (NPS) pollutant loading. In this study, two land use scenarios (1995 and 2010) were used to evaluate the impact of land use changes on NPS pollutants loading in basins upstream of Three Gorges Reservoir (TGR), using a calibrated and validated version of the soil and water assessment tool (SWAT) model. The Pengxi River is one of the largest tributaries of the Yangtze River upstream of the TGR, and the study area included the basins of the Dong and Puli Rivers, two major tributaries of the Pengxi River. The results indicated that the calibrated SWAT model could successfully reproduce the loading of NPS pollutants in the basins of the Dong and Puli Rivers. During the 16-year study period, the land use changed markedly with obvious increase of water body and construction. Average distance was used to measure relative distribution patterns of land use types to basin outlets. Forest was mainly distributed in upstream areas whereas other land use types, in particular, water bodies and construction areas were mainly distributed in downstream areas. The precipitation showed a non-significant influence on NPS pollutants loading; to the contrary, interaction between precipitation and land use were significant sources of variation. The different types of land use change were sensitive to NPS pollutants as well as land use pattern. The influence of background value of soil nutrient on NPS pollutants loading was evaluated in upland and paddy field. It was found that total nitrogen (TN) and total phosphorous (TP) in upland were more sensitive to NPS pollutants loading than in paddy fields. The results of this study have implications for management of the TGR to reduce the loading of NPS pollutants into downstream water bodies.  相似文献   

17.

Purpose  

A conceptual model to assess water quality in river basins was developed here. The model was based on ecological risk assessment principles, and incorporated a novel ranking and scoring system, based on self-organizing maps, to account for the likely ecological hazards posed by the presence of chemical substances in freshwater. This approach was used to study the chemical pollution in the Ebro River basin (Spain), whose currently applied environmental indices must be revised in terms of scientific accuracy.  相似文献   

18.
Abstract

This paper presents a modeling analysis of airborne mercury (Hg) deposited on the Ochlockonee River watershed located in Georgia. Atmospheric deposition monitoring and source attribution data were used along with simulation models to calculate Hg buildup in the subwatershed soils, its subsequent runoff loading and delivery through the tributaries, and its ultimate fate in the mainstem river. The terrestrial model calculated annual watershed yields for total Hg ranging from 0.7 to 1.1 μg/m2. Results suggest that approximately two-thirds of the atmospherically deposited Hg to the watershed is returned to the atmosphere, 10% is delivered to the river, and the rest is retained in the watershed. A check of the aquatic model results against survey data showed a reasonable agreement. Comparing observed and simulated total and methylmercury concentrations gave root mean square error values of 0.26 and 0.10 ng/L, respectively, in the water column, and 5.9 and 1 ng/g, respectively, in the upper sediment layer. Sensitivity analysis results imply that mercury in the Ochlockonee River is dominated by watershed runoff inputs and not by direct atmospheric deposition, and that methylmercury concentrations in the river are determined mainly by net methylation rates in the watershed, presumably in wetted soils and in the wetlands feeding the river.  相似文献   

19.
Bring A  Destouni G 《Ambio》2011,40(4):361-369
Rapid changes to the Arctic hydrological cycle challenge both our process understanding and our ability to find appropriate adaptation strategies. We have investigated the relevance and accuracy development of climate change projections for assessment of water cycle changes in major Arctic drainage basins. Results show relatively good agreement of climate model projections with observed temperature changes, but high model inaccuracy relative to available observation data for precipitation changes. Direct observations further show systematically larger (smaller) runoff than precipitation increases (decreases). This result is partly attributable to uncertainties and systematic bias in precipitation observations, but still indicates that some of the observed increase in Arctic river runoff is due to water storage changes, for example melting permafrost and/or groundwater storage changes, within the drainage basins. Such causes of runoff change affect sea level, in addition to ocean salinity, and inland water resources, ecosystems, and infrastructure. Process-based hydrological modeling and observations, which can resolve changes in evapotranspiration, and groundwater and permafrost storage at and below river basin scales, are needed in order to accurately interpret and translate climate-driven precipitation changes to changes in freshwater cycling and runoff. In contrast to this need, our results show that the density of Arctic runoff monitoring has become increasingly biased and less relevant by decreasing most and being lowest in river basins with the largest expected climatic changes.  相似文献   

20.

Introduction

The Consolider-Ingenio 2010 project SCARCE, with the full title ??Assessing and predicting effects on water quantity and quality in Iberian Rivers caused by global change?? aims to examine and predict the relevance of global change on water availability, water quality, and ecosystem services in Mediterranean river basins of the Iberian Peninsula, as well as their socio-economic impacts. Starting in December 2009, it brought together a multidisciplinary team of 11 partner Spanish institutions, as well as the active involvement of water authorities, river basin managers, and other relevant agents as stakeholders.

Methods

The study areas are the Llobregat, Ebro, Jucar, and Guadalquivir river basins. These basins have been included in previous studies and projects, the majority of whom considered some of the aspects included in SCARCE but individually. Historical data will be used as a starting point of the project but also to obtain longer time series. The main added value of SCARCE project is the inclusion of scientific disciplines ranging from hydrology, geomorphology, ecology, chemistry, and ecotoxicology, to engineering, modeling, and economy, in an unprecedented effort in the Mediterranean area. The project performs data mining, field, and lab research as well as modeling and upscaling of the findings to apply them to the entire river basin.

Results

Scales ranging from the laboratory to river basins are addressed with the potential to help improve river basin management. The project emphasizes, thus, linking basic research and management practices in a single framework. In fact, one of the main objectives of SCARCE is to act as a bridge between the scientific and the management and to transform research results on management keys and tools for improving the River Basin Management Plans. Here, we outline the general structure of the project and the activities conducted within the ten Work Packages of SCARCE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号