首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Tea saponin (TS), a kind of green biosurfactant produced by plants, was added into the Cd–pyrene co-contaminated soils to evaluate its influence on phytoremediation of Cd and pyrene by Lolium multiflorum. The results showed that the accumulation of pyrene in L. multiflorum was significantly promoted by the TS. Compared with no TS treatments (PL and ML), the aboveground concentrations of pyrene in TS treatments (PLT and MLT) increased by 135 and 30%, respectively, and the underground concentrations of pyrene in TS treatments (PLT and MLT) increased by 40 and 25%. The concentrations of Cd in the aboveground and underground parts in single contaminated treatments were all significantly more than those in co-contaminated treatments, while the situation of pyrene was quite the reverse. Besides, the addition of TS enhanced activities of dehydrogenase and polyphenol oxidase in soils and increased the biomass of L. multiflorum. The micromorphology of L. multiflorum was not affected by TS. The study suggests that the use of L. multiflorum with TS is an alternative technology for remediation of Cd–pyrene co-contaminated soils.  相似文献   

3.
4.
In this study, the effects of cadmium (Cd) stress on the activities of disaccharidases (sucrase, lactase, and maltase), amylase, trypsin, pepsase, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) content in the alimentary system of freshwater crabs Sinopotamon henanense were studied. Results showed that the enzyme activities in the stomach, intestine, and hepatopancreas changed with Cd concentration. In terms of digestive enzymes, Cd exposure had an inhibitory effect on the activities of the disaccharidases, amylase, and pepsase (only in the stomach). Significant induction of trypsin activity by Cd at a lower concentration was observed, but as Cd concentration increased, trypsin activity decreased. Maltase activity showed a slight recovery after inhibition by Cd. The activities of SOD and CAT increased initially and decreased subsequently. Cd significantly inhibited the activity of GPx. MDA content increased with increasing concentration of Cd. These results showed that acute Cd exposure led to harmful effects on the alimentary system of crabs, which are likely linked to Cd induced oxidative stress.  相似文献   

5.
Cadmium (Cd) has known to produce many adverse effects on organs including placenta. Many essential transporters are involved in Cd transport pathways such as DMT-1, ZIP as well as L-VDCC. Fourteen pregnant women participated and were divided into two groups: high and low Cd-exposed (H-Cd, L-Cd) groups on the basis of their residential areas, Cd concentrations in the blood (B-Cd), urine (U-Cd), and placenta (P-Cd). The results showed that the B-Cd and U-Cd were significantly increased in H-Cd group (p < 0.05). Interestingly, the P-Cd in H-Cd group was elevated (p < 0.05) and positively related to their B-Cd and U-Cd values (p < 0.05). However, the mean cord blood Cd (C-Cd) concentration in H-Cd group was not significantly increased about 2.5-fold when comparing to L-Cd group. To determine the Cd accumulation in placental tissues, metallothionein-1A (MT-1A) and metallothionein-2A (MT-2A) expressions were used as biomarkers. The results revealed that mean MT-1A and MT-2A mRNAs and MT-1/2 proteins were up-regulated in H-Cd group (p < 0.05). In addition, the Ca channel alpha 1C (CACNA1C) mRNA and protein expressions were noticeably elevated in H-Cd group (p < 0.05). From these findings, we suggested that CACNA1C might be implicated in Cd transport in human placenta.  相似文献   

6.
The role of exogenous spermine (0.25 mM Spm, a type of polyamine (PA) in reducing Cd uptake and alleviating Cd toxicity (containing 1 and 1.5 mM CdCl2 in the growing media) effects was studied in the mung bean (Vigna radiata L. cv. BARI Mung-2) plant. Exogenously applied Spm reduced Cd content, accumulation, and translocation in different plant parts. Increasing phytochelatin content, exogenous Spm reduced Cd accumulation and translocation. Spm application reduced the Cd-induced oxidative damage which was reflected from the reduction of H2O2 content, O2 ?– generation rate, lipoxygenase (LOX) activity, and lipid peroxidation level and also reflected from the reduction of spots of H2O2 and O2 ?– from mung bean leaves (compared to control treatment). Spm pretreatment increased non-enzymatic antioxidant contents (ascorbate, AsA, and glutathione, GSH) and activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) which reduced oxidative stress. The cytotoxicity of methylglyoxal (MG) is also reduced by exogenous Spm because it enhanced glyoxalase system enzymes and components. Through osmoregulation, Spm maintained a better water status of Cd-affected mung bean seedlings. Spm prevented the chl damage and increased its content. Exogenous Spm also modulated the endogenous free PAs level which might have the roles in improving physiological processes including antioxidant capacity, osmoregulation, and Cd and MG detoxification capacity. The overall Spm-induced tolerance of mung bean seedlings to Cd toxicity was reflected through improved growth of mung bean seedlings.  相似文献   

7.
This study focuses on the extent of zinc (Zn), copper (Cu), cadmium (Cd), cobalt (Co), manganese (Mn), lead (Pb), mercury (Hg), and arsenic (As) bioaccumulation in edible muscles of Caspian kutum (Rutilus frisii kutum), in both male and female sexes at Noor and Babolsar coastal regions from the southern basin of Caspian Sea. These values were compared with the WHO and the UNFAO safety standards regarding the amount of the abovementioned heavy metals in fish tissues (mg/kg ww). Results showed that the accumulation of these elements (except for Zn) was not significantly different between sexes of male and female in Babolsar coastal regions (P?>?0.05). In the other hand, accumulation of Hg and As at edible muscles of Caspian kutum has significant difference between two sexes of male and female in Noor coastal regions (P?<?0.05), the female had higher concentration than the male. Furthermore, it was not significantly correlated with sex and rivers in length and weight of fish (R 2?<?0.50; P?>?0.05). Based on the results, the concentration of heavy metals in the studied fish tissues proved to be significantly lower than international standards (P?<?0.05), so its consumption is not a threat to the health of consumers.  相似文献   

8.
Phytoextraction is a phytoremediation technique used for remediating polluted soils and it greatly relies on the plants’ capacities to accumulate contaminants. Turnip is a high cadmium (Cd)-accumulating plant. We compared the Cd tolerance, growth, and Cd accumulation characteristics of two turnip landraces with three additional commonly known high Cd-accumulating species to systematically estimate its Cd phytoremediation potential. Results showed that the turnips could tolerate relatively lower Cd concentrations than other plants. Growth characteristics analyses indicated that the turnips initially grew rapidly and then gradually slowed down, and their photosynthetic parameters indicated that biomass accumulation was easily affected by light. However, the Cd uptake and translocation capacities of the two turnip landraces were higher than those of Phytolacca americana Linn. and Bidens pilosa Linn. but close to that of Brassica napus Linn.. Ultimately, large amounts of Cd accumulated in turnips during early growth and slightly increased as the fleshy roots increased in size. Based on these findings, the present turnip landraces have potential for soil remediation, but additional research is needed before these landraces can be practically used. Moreover, turnips are good candidates for studying the molecular mechanism of high Cd accumulation in plants.  相似文献   

9.
Concentrations of heavy metals (Cu, Ni, Zn, Cd and Pb) were measured in sediments, water and liver and kidney tissues of three Indian major carps (Labeo rohita, Catla catla and Cirrhinus cirrhosus), belonging to two different weight groups (250 and 500 g), collected from ponds at two different sites (Nalban bheri and Diamond Harbour). The tissues were analysed for the levels of different antioxidant defence systems such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GRd), glutathione S-transferase (GST), glutathione (GSH) and malondialdehyde (MDA). Concentrations of all the metals were significantly higher (P < 0.05) in sediment, water and the tissues from Nalban bheri compared to those in Diamond Harbour. Metal concentrations were the lowest in C. cirrhosus, which increased with an increase in fish weight, and the liver accumulated higher amount of metals than the kidney. Activities of all enzymatic and non-enzymatic antioxidant parameters except GPx and GRd were significantly higher (P < 0.05) in the tissues from Nalban bheri than those in Diamond Harbour. Significant multicollinearity was found in the values of SOD, CAT, GST, GRd, GPx and MDA with Pb, Cu and Ni in all three fish species at Nalban and with Cd in L. rohita and C. catla. Principal component analysis results revealed that stress response in a polluted site was directly regulated by an amalgamation of GSH profile and the levels of MDA in a synchronized manner. The study indicated a tissue-specific and species-specific difference for heavy metal-induced oxidative stress response in fish and a correlation between different heavy metals and individual oxidative stress markers.  相似文献   

10.
The effect of citric acid (CA), acetic acid (Ac), and ethylene diamine tetraacetic acid (EDTA) on the photosynthetic and antioxidant properties and the accumulation of some heavy metals (HMs) of Melilotus officinalis seedling growing in Cu mine tailings for 25 days were studied. Results showed that the formation of photosynthesizing cells of M. officinalis was inhibited by EDTA at 2 mmol/kg. Photosynthetic pigment contents under EDTA of 2 mmol/kg were reduced by 26, 40, and 19 %, respectively, compared to the control. The proline contents in aboveground and underground parts increased as the level of EDTA was enhanced. CA and Ac enhanced the activities of superoxide dismutase (SOD) and peroxidase (POD) in the aboveground parts and EDTA inhibited the activity of POD in the underground parts. The addition of CA promoted significantly the growth of M. officinalis, while the biomass decreased significantly under 2 mmol/kg EDTA. Cu contents in the aboveground parts treated with 0.5 and 2.0 mmol/kg EDTA reached 175.50 and 265.17 μg/g dry weight, respectively. Ac and EDTA treatments promoted Cd to translocate from root to aboveground parts. The result indicated that M. officinalis was a tolerant species of Cu tailing and can be used to remediate Cu contaminated environment, and rationally utilization of organic acids, especially EDTA, in the phytoremediation can improve the growth and metals accumulation of M. officinalis.  相似文献   

11.
Wetland plants are biological filters that play an important role in maintaining aquatic ecosystem and can take up toxic metals from sediments and water. The present study investigated the seasonal variation in the accumulation potential of heavy metals by Cyperus articulatus in contaminated watercourses. Forty quadrats, distributed equally in 8 sites (six contaminated sites along Ismailia canal and two uncontaminated sites along the River Nile), were selected seasonally for sediment, water, and plant investigations. Autumn was the flourishing season of C. articulatus with the highest shoot density, length, and diameter as well as aboveground biomass, while summer showed the least growth performance. The photosynthetic pigments were markedly reduced under contamination stress. C. articulatus plants accumulated concentrations of most heavy metals, except Pb, in their roots higher than the shoots. The plant tissues accumulated the highest concentrations of Fe, Cd, Ni, and Zn during autumn, while Cu and Mn during spring, and Cr and Co during winter. It was found that Cd, Cu, Ni, Zn, Pb, and Co had seasonal bioaccumulation factor (BF) > 1 with the highest BF for Cd, Ni, and Zn during autumn, Co, Cu, and Pb in winter, spring, and summer, respectively. The translocation factor of most heavy metals, except Pb in spring, was <1 indicating potential phytostabilization of these metals. In conclusion, autumn is an ideal season for harvesting C. articulatus in order to monitor pollution in contaminated wetlands.  相似文献   

12.
This study was performed to determine the concentrations of some trace metals (Cd, Cu, Pb, Ni, Zn, and Fe) in Holothuria tubuosa (Gmelin, 1788) belonging to Echinoderm species and in sediments that they live at three different stations (Gelibolu, Umur Bey/Lapseki, and Dardanos) on Dardanelles Strait between April 2013 and March 2014. The mean trace metal concentrations determined in H. tubulosa and sediment were as follows: Cd 0.18 mg/kg, Cu 2.43 mg/kg, Pb 2.09 mg/kg, Ni 14.58 mg/kg, Zn 16.86 mg/kg, and Fe 73.46 mg/kg and Cd 0.70 mg/kg, Cu 5.03 mg/kg, Pb 14.57 mg/kg, Ni 27.15 mg/kg, Zn 54.52 mg/kg, and Fe 3779.9 mg/kg, respectively. It was detected that the statistical difference between trace metals determined seasonally in muscle tissue of H. tubulosa was significant (p?>?0.05). As a result of the study, it was detected that H. tubulosa is a bioindicator species in determining Ni trace metal in sediment. The results were compared to the limit values of National and International Food Safety, and it was detected that Cd and Ni concentrations measured in sediment were above LEL of Ni and Cd concentrations according to Sediment Quality Guidelines.  相似文献   

13.
14.
This study focused on the expression analysis of antioxidant defense genes in Brassica oleracea and in Trifolium repens. Plants were exposed for 3, 10, and 56 days in microcosms to a field-collected suburban soil spiked by low concentrations of cadmium and/or lead. In both species, metal accumulations and expression levels of genes encoding proteins involved and/or related to antioxidant defense systems (glutathione transferases, peroxidases, catalases, metallothioneins) were quantified in leaves in order to better understand the detoxification processes involved following exposure to metals. It appeared that strongest gene expression variations in T. repens were observed when plants are exposed to Cd (metallothionein and ascorbate peroxidase upregulations) whereas strongest variations in B. oleracea were observed in case of Cd/Pb co-exposures (metallothionein, glutathione transferase, and peroxidase upregulations). Results also suggest that there is a benefit to use complementary species in order to better apprehend the biological effects in ecotoxicology.  相似文献   

15.
The expansion of invasive Japanese knotweed s.l. is of particular concern because of its aptitudes to rapidly colonize diverse environments, especially anthropized habitats generally characterized by their pollution with heavy metals. Whether the presence of heavy metals impacts the performance traits of this plant is a central question to better understand its invasive properties, though no controlled approach to assess these effects was yet reported. In this aim, we undertook greenhouse experiments where rhizome fragments of Japanese knotweed s.l. (Fallopia japonica and Fallopia × bohemica) were grown during 1 and 3 months, in a soil pot artificially polluted or not with heavy metals added in mixture (Cd, Cr, Pb, Zn). Our results showed that (i) the presence of heavy metals delayed rhizome regeneration and induced lowered plant part weights but did not affect plant height after 3 months; (ii) the effect of metals on the metabolic profiles of belowground part extracts was only detectable after 1 month and not after 3 months of growth, though it was possible to highlight the effect of metals independently of time and genotype for root extracts, and torosachrysone seemed to be the most induced compound; and (iii) the hybrid genotype tested was able to accumulate relatively high concentrations of metals, over or close to the highest reported ones for this plant for Cr, Cd and Zn, whereas Pb was not accumulated. These findings evidence that the presence of heavy metals in soil has a low impact on Fallopia sp. overall performance traits during rhizome regeneration, and has a rather stimulating effect on plant growth depending on pollution level.  相似文献   

16.
A field survey was conducted to evaluate soil metal pollution and endogenous trans-zeatin content in the leaves of plants growing at six sites in a metal-polluted area located in Gejiu, Yunnan, China. Five plant species were collected, and the physicochemical properties and concentrations of five metals in the soil were analyzed. The trans-zeatin content in plant leaves was measured by high-performance liquid chromatography. Based on the Nemerow pollution index, the six sites were classified into four levels of pollution (i.e., low, medium, high, and severely high). The degree of soil metal pollution was cadmium (Cd) > arsenic (As) > lead (Pb) > zinc (Zn) > copper (Cu). The leaf trans-zeatin content in Pteris vittata (an arsenic hyperaccumulator) increased significantly by 98.6 % in soil with a severely high level of pollution compared with soil at a low level of pollution. However, in non-hyperaccumulators Bidens pilosa var. radiata and Ageratina adenophora, a significant decrease in leaf trans-zeatin content of 35.6 and 87.6 %, respectively, was observed. The leaf trans-zeatin content in Artemisia argyi also decreased significantly by 73.6 % in high metal-polluted soil compared with that in medium metal-polluted soil. Furthermore, significant correlations were observed between leaf trans-zeatin content in Pteris vittata and As, Pb, and Cd concentrations in the soil; however, either no correlation or a negative one was observed in the other plant species. Therefore, a high content of trans-zeatin in the leaves of Pteris vittata may play an important role in its normal growth and tolerance to metals.  相似文献   

17.
Efficient and sustainable management of rapidly mounting environmental issues has been the focus of current intensive research. The present study aimed to investigate the impact of plant phenological development stage variation on mercury (Hg) tolerance, accumulation, and allocation in two salt marsh macrophytes Triglochin maritima and Scirpus maritimus prevalent in historically Hg-contaminated Ria de Aveiro coastal lagoon (Portugal). Both plant samples and the sediments vegetated by monospecific stands of T. maritima and S. maritimus were collected from reference (R) and sites with moderate (M) and high (H) Hg contamination in Laranjo bay within Ria de Aveiro lagoon. Hg tolerance, uptake, and allocation in T. maritima and S. maritimus, physico-chemical traits (pH, redox potential, and organic matter content) and Hg concentrations in sediments vegetated by these species were impacted differentially by phenological development stages variation irrespective of the Hg contamination level. In T. maritima, Hg concentration increased with increase in Hg contamination gradient where root displayed significantly higher Hg followed by rhizome and leaf maximally at H. However, in S. maritimus, the highest Hg concentration was perceptible in rhizome followed by root maximally at M. Between the two studied plant species, S. maritimus displayed higher Hg tolerance index (depicted by higher plant dry mass allocated to reproductive stage) and higher available Hg at M (during all growth stages) and H (during senescent stage) when compared to T. maritimus. Both plant species proved to be Hg excluder (low root/rhizome–leaf Hg translocation). Additionally, T. maritima also acted as Hg stabilizer while, S. maritimus as Hg accumulator. It can be inferred from the study that (a) the plant phenological development stage variations significantly influenced plant Hg sensitivity by impacting sediment chemistry, plant growth (in terms of plant dry mass), Hg accumulation, and its subsequent allocation capacity, contingent to Hg contamination gradient; (b) S. maritimus accumulated higher Hg but restricted its translocation to above-ground part using exclusion process at both M and H due to its accelerated growth during Hg-tolerant reproductive/metabolically active phenological development stage greater than its counterpart T. maritima; and (c) the studied salt marsh plants although hailed from the same C3 and monocot group did not necessarily display similar phenotypic plasticity and behavior towards Hg-contaminated scenario during their life cycle.  相似文献   

18.
Microbe-assisted phytoremediation provides an effective approach to clean up heavy metal-contaminated soils. However, severe drought may affect the function of microbes in arid/semi-arid areas. Streptomyces pactum Act12 is a drought-tolerant soil actinomycete strain isolated from an extreme environment on the Qinghai-Tibet Plateau, China. In this study, pot experiments were conducted to assess the effect of Act12 on Cd tolerance, uptake, and accumulation in amaranth (Amaranthus hypochondriacus) under water deficit. Inoculated plants had higher Cd concentrations (root 8.7–33.9 %; shoot 53.2–102.1 %) and uptake (root 19.9–95.3 %; shoot 110.6–170.1 %) than non-inoculated controls in Cd-treated soil. The translocation factor of Cd from roots to shoots was increased by 14.2–75 % in inoculated plants, while the bioconcentration factor of Cd in roots and shoots was increased by 10.2–64.4 and 53.9–114.8 %, respectively. Moreover, inoculation with Act12 increased plant height, root length, and shoot biomass of amaranth in Cd-treated soil compared to non-inoculated controls. Physiochemical analysis revealed that Act12 enhanced Cd tolerance in the plants by increasing glutathione, elevating superoxide dismutase and catalase activities, as well as reducing malondialdehyde content in the leaves. The drought-tolerant actinomycete strain Act12 can enhance the phytoremediation efficiency of amaranth for Cd-contaminated soils under water deficit, exhibiting potential for application in arid and semi-arid areas.  相似文献   

19.
Mushrooms are considered as potential bio-remediation agents in soil polluted with heavy metals, while many species which efficiently accumulate them in flesh are edible. Question is if there is any possible culinary use of edible mushrooms with high heavy metal contents? This study aimed to investigate and discuss a fate of cadmium (Cd) in common household-treated fruitbodies of common chanterelle Cantharellus cibarius. The samples of Cantharellus cibarius Fr. were collected from five spatially distanced sites in Poland in 2011–2012. We examined from 267 to 358 fruiting bodies per collection, and in total 1565 fruiting bodies were used. Cadmium in fungal materials from all treatments and processes (mushrooms dried, deep frozen, blanched and pickled) was determined using validated methods by inductively coupled plasma mass spectrometry with dynamic reaction cell. Blanching of fresh chanterelles caused decrease of Cd by around 11 ± 7 to 36 ± 7%, while blanching of deep-frozen mushrooms by around 40 ± 6%. A rate of Cd decrease in chanterelles was similar when the fruiting bodies were blanched for 5 or 15 min and when used was potable or deionized water. Pickling of blanched chanterelles with a diluted vinegar marinade had a pronounced effect on further removal of Cd. Blanched chanterelles when pickled lost an extra 37–71% of Cd. Total leaching rate of Cd from fresh or deep-frozen fruitbodies of chanterelle when blanched and further pickled was between 77 ± 7 and 91 ± 4%. Blanching and pickling highly decreased content of Cd in C. cibarius.  相似文献   

20.
Metal contamination is a recurring problem in Peru, caused mainly by mine tailings from a past active mining activity. The Ancash region has the largest number of environmental liabilities, which mobilizes high levels of metals and acid drainages into soils and freshwater sources, posing a standing risk on human and environmental health. Native plant species spontaneously growing on naturally acidified soils and acid mine tailings show a unique tolerance to high metal concentrations and are thus potential candidates for soil phytoremediation. However, little is known about their propagation capacity and metal accumulation under controlled conditions. In this study, we aimed at characterizing nine native plant species, previously identified as potential hyperaccumulators, from areas impacted by mine tailings in the Ancash region. Plants were grown on mine soils under greenhouse conditions during 5 months, after which the concentration of Cd, Cu, Ni, Pb, and Zn was analyzed in roots, shoots, and soils. The bioaccumulation (BAF) and translocation factor (TF) were calculated to determine the amount of each metal accumulated in the roots and shoots and to identify which species could be better suited for phytoremediation purposes. Soil samples contained high Cd (6.50–49.80 mg/kg), Cu (159.50–1187.00 mg/kg), Ni (3.50–8.70 mg/kg), Pb (1707.00–4243.00 mg/kg), and Zn (909.00–7100.00 mg/kg) concentrations exceeding national environmental quality standards. After exposure to mine tailings, concentrations of metals in shoots were highest in Werneria nubigena (Cd, 16.68 mg/kg; Cu, 41.36 mg/kg; Ni, 26.85 mg/kg; Zn, 1691.03 mg/kg), Pennisetum clandestinum (Pb, 236.86 mg/kg), and Medicago lupulina (Zn, 1078.10 mg/kg). Metal concentrations in the roots were highest in Juncus bufonius (Cd, 34.34 mg/kg; Cu, 251.07 mg/kg; Ni, 6.60 mg/kg; Pb, 718.44 mg/kg) and M. lupulina (Zn, 2415.73 mg/kg). The greatest BAF was calculated for W. nubigena (Cd, 1.92; Cu, 1.20; Ni, 6.50; Zn, 3.50) and J. bufonius (Ni, 3.02; Zn, 1.30); BCF for Calamagrostis recta (Cd, 1.09; Cu, 1.80; Ni, 1.09), J. bufonius (Cd, 3.91; Cu, 1.79; Ni, 18.36), and Achyrocline alata (Ni, 137; Zn, 1.85); and TF for W. nubigena (Cd, 2.36; Cu, 1.70; Ni, 2.42; Pb, 1.17; Zn, 1.43), A. alata (Cd, 1.14; Pb, 1.94), J. bufonius (Ni, 2.72; Zn, 1.63), and P. clandestinum (Zn, 1.14). Our results suggest that these plant species have a great potential for soil phytoremediation, given their capability to accumulate and transfer metals and their tolerance to highly metal-polluted environments in the Andean region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号