首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Human populations are using oceans as their household dustbins, and microplastic is one of the components which are not only polluting shorelines but also freshwater bodies globally. Microplastics are generally referred to particles with a size lower than 5 mm. These microplastics are tiny plastic granules and used as scrubbers in cosmetics, hand cleansers, air-blasting. These contaminants are omnipresent within almost all marine environments at present. The durability of plastics makes it highly resistant to degradation and through indiscriminate disposal they enter in the aquatic environment. Today, it is an issue of increasing scientific concern because these microparticles due to their small size are easily accessible to a wide range of aquatic organisms and ultimately transferred along food web. The chronic biological effects in marine organisms results due to accumulation of microplastics in their cells and tissues. The potential hazardous effects on humans by alternate ingestion of microparticles can cause alteration in chromosomes which lead to infertility, obesity, and cancer. Because of the recent threat of microplastics to marine biota as well as on human health, it is important to control excessive use of plastic additives and to introduce certain legislations and policies to regulate the sources of plastic litter. By setup various plastic recycling process or promoting plastic awareness programmes through different social and information media, we will be able to clean our sea dustbin in future.  相似文献   

2.
Resuspended street dust is a source of inhalable particles in urban environments. Despite contaminated street dust being a possible health risk factor for local population, little is known about the contribution of atmospheric dust emissions and other factors to the content of toxic metals in street dust. The impact of smelting, traffic, and power plants on metal contaminates in street dust is the focus of street dust sampling at 46 locations in the Witbank area (Republic of South Africa). This area is characterized by numerous open-pit coal mines in the Karoo coal basin, which provides a cheap source of energy to numerous metallurgical smelters and ironworks and supplies coal to the coal-fired power plants located nearby. Street dust was collected on asphalt or concrete surfaces with hard plastic brushes, avoiding collecting of possible sand, soil, or plant particles. Chemical analysis was done on the <0.125 mm fraction using inductively coupled plasma mass spectrometry subsequent to total digestion. Exceptionally high concentrations of metals were detected with concentrations of Fe reaching 17.7 %, Cr 4.3 %, Mn 2 %, Ni 366 mg/kg, and V 4,410 mg/kg. Factor analysis indicates three sources for the pollution. Road traffic which contributes to the high concentrations of Cu, Pb, Sb, and Sn, with the highest impacts detected in the town of Witbank. The second source is associated with the metal smelting industry, contributing to Fe, Co, Mn, and V emissions. The highest factor scores were observed around four metallurgical smelter operations, located in the Ferrobank, Highveld, and Clewer industrial areas. Impact of vanadium smelter to street dust composition could still be detected some 20 km away from the sources. Exceptionally high concentrations of Cr were observed in four samples collected next to the Ferrobank industrial area, despite Cr not being loaded in factor 2. The last source of the pollution is most probably fly ash associated with the coal-fired power plants and fly ash dumps. Elements which are associated with this source are Al, Sr, and Li. This factor is abundant in the coal mining part of the study area.  相似文献   

3.

Microplastics are small-size plastic piece scales (particles <?5 mm) in sediments and waters which interact with environment and organisms by various means. Microplastics are becoming a universal ecological concern since they may be a source of hazardous chemicals to marine organisms and environments. Recent research suggests microplastics could enable the transfer of hydrophobic aquatic pollutants or chemical additives to biota. Even though microplastic presence and interactions are recently being detected in marine and freshwater systems, the fate of microplastics is still very poorly understood. This literature review is a summary of the sources and transport of microplastics, their interactions with toxic chemicals and the methodologies for chemical quantification and characterization of microplastics. The environmental outcome and impact of microplastics in wastewater treatment plants were assessed as well as the trends and update on microplastic research in the South African aquatic ecosystem.

  相似文献   

4.
Ecotoxicological effects of microplastics on biota: a review   总被引:2,自引:0,他引:2  
The ubiquitous presence of microplastics in the environment has drawn the attention of ecotoxicologists on its safety and toxicity. Sources of microplastics in the environment include disintegration of larger plastic items (secondary microplastics), personal care products like liquid soap, exfoliating scrubbers, and cleaning supplies etc. Indiscriminate usage of plastics and its poor waste disposal management pose serious concern on ecosystem quality at global level. The present review focused on the ecological impact of microplastics on biota at different trophic levels, its uptake, accumulation, and excretion etc., and its plausible mechanistic toxicity with risk assessment approaches. Existing scientific evidence shows that microplastics exposure triggers a wide variety of toxic insult from feeding disruption to reproductive performance, physical ingestion, disturbances in energy metabolism, changes in liver physiology, synergistic and/ or antagonistic action of other hydrophobic organic contaminants etc. from lower to higher trophics. Thus, microplastic accumulation and its associated adverse effects make it mandatory to go in for risk assessment and legislative action. Subsequent research priorities, agenda, and key issues to be addressed are also acknowledged in the present review.  相似文献   

5.
To better assess and understand potential health risk of urban residents exposed to urban street dust, the total concentration, sources, and distribution of 16 polycyclic aromatic hydrocarbons (PAHs) in 87 urban street dust samples from Tianjin as a Chinese megacity that has undergone rapid urbanization were investigated. In the meantime, potential sources of PAHs were identified using the principal component analysis (PCA), and the risk of residents’ exposure to PAHs via urban street dust was calculated using the Incremental Lifetime Cancer Risk (ILCR) model. The results showed that the total PAHs (∑PAHs) in urban street dust from Tianjin ranged from 538 μg kg?1 to 34.3 mg kg?1, averaging 7.99 mg kg?1. According to PCA, the two to three- and four to six-ring PAHs contributed 10.3 and 89.7 % of ∑PAHs, respectively. The ratio of the sum of major combustion specific compounds (ΣCOMB)?/?∑PAHs varied from 0.57 to 0.79, averaging 0.64. The ratio of Ant/(Ant?+?Phe) varied from 0.05 to 0.41, averaging 0.10; Fla/(Fla?+?Pyr) from 0.40 to 0.68, averaging 0.60; BaA/(BaA?+?Chry) from 0.29 to 0.51, averaging 0.38; and IcdP/(IcdP?+?BghiP) from 0.07 to 0.37, averaging 0.22. The biomass combustion, coal combustion, and traffic emission were the main sources of PAHs in urban street dust with the similar proportion. According to the ILCR model, the total cancer risk for children and adults was up to 2.55?×?10?5 and 9.33?×?10?5, respectively.  相似文献   

6.
An important issue in assessing microplastics is whether this newly emerging type of pollution affects freshwater invertebrates. This study was designed to examine the interactions between the amphipod Gammarus fossarum and two types of microplastics. To determine the ingestion and egestion of polyamide (PA) fibres (500 × 20 μm), amphipods were exposed to four concentrations (100, 540, 2680, 13,380 PA fibres cm?2 base area of glass beakers) and four exposure times (0.5, 2, 8, 32 h) as well as four post-exposure times (1, 2, 4, 16 h). We demonstrate a positive correlation between concentration and ingestion of PA fibres. Fibres were found in the gut after 0.5 h of exposure. Egestion was rapid and the digestive tract was empty 16 h after exposure ended. To investigate whether polystyrene (PS) beads (1.6 μm) can be taken up in the epithelial cells of the gut and the midgut glands, four concentrations (500, 2500, 12,500, 60,000 PS beads mL?1) were tested. Cryosections exhibited fluorescent PS beads only within the gut lumen. In a 28-day feeding experiment with both, fibres and beads, we studied the amphipod’s feeding rate, assimilation efficiency and wet weight change. The exposure to PA fibres (2680 PA fibres cm?2 base area of glass beakers) significantly reduced the assimilation efficiency of the animals. While both tested polymer types are ingested and egested, PA fibres can impair the health and ecological functions of freshwater amphipods under continuous exposure.  相似文献   

7.
The use of organophosphorus flame retardants (PFRs) as flame retardants and plasticizers has increased due to the ban on common polybrominated diphenyl ether mixtures. However, only limited information on PFR contamination is available so far from Southeast Asia. In the present study, residual levels of PFRs in house dust and exposure through dust ingestion were investigated in the Philippines. House dust samples (n?=?37) were collected from Malate (residential area) and Payatas (municipal dumping area) in the Philippines and analyzed using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. Among the targeted seven PFRs, triphenyl phosphate (TPP) was the predominant compound. Median levels of ΣPFRs in Malate (530 ng/g) were two times higher (p?<?0.05) than in Payatas (240 ng/g). The estimated daily intake of PFRs in the Philippines (of areas studied) via house dust ingestion was below the guideline values. House dust may be an important contributor in the overall exposure of humans to TPP even when considering dietary sources. To our knowledge, this is a first report on PFR contamination in house dust from developing country. PFRs were ubiquitously detected in the home environments in the Philippines. Although estimated exposure levels through dust ingestion were below the guideline, it was suggested that toddlers are at higher risk. Therefore, further investigations to understand the behavior of PFRs in house and other microenvironments and overall exposure pathways for the country’s populace to PFRs are necessary.  相似文献   

8.
聚酰胺类微塑料(PA-MPs)和磺胺类抗生素(SAs)均为新兴污染物且已广泛检出,其中聚酰胺6微塑料由常用的聚酰胺6塑料产生,磺胺噻唑(ST)是典型的SAs.由于微塑料在环境暴露中普遍易老化,因此探究了聚酰胺6微塑料在未老化、紫外老化、紫外和H2 O2老化(分别记为PA6、PA6-UV、PA6-UV+H2 O2)下对S...  相似文献   

9.

Microplastics pollution is becoming a major environmental issue, and exposure to microplastics has been associated with numerous adverse results to both the ecological system and humans. This work summarized the state-of-the-art developments in the breakdown of microplastics, including natural weathering, catalysts-assisted breakdown and biodegradation. Characterization techniques for microplastic breakdown involve scanning electron microscopy, Fourier infrared spectroscopy, X-ray photoelectron spectroscopy, etc. Bioavailability and adsorption capacity of microplastics may change after they are broken down, therefore leading to variety in microplastics toxicity. Further prospectives for should be focused on the determination and toxicity evaluation of microplastics breakdown products, as well as unraveling uncultivable microplastics degraders via cultivation-independent approaches. This work benefits researchers interested in environmental studies, particularly the removal of microplastics from environmental matrix.

  相似文献   

10.
Heavy metal concentrations (Pb, Cd, and Cu) in classroom indoor dust were measured. The health risk (non-carcinogenic) of these heavy metals in classroom indoor dust to children was assessed based on United States Environmental Protection Agency health risk model. Indoor classroom dust samples were collected from 21 locations including windows, fans, and floors at a primary school in Sri Serdang, Malaysia. Classroom dust samples were processed using aqua regia method and analyzed for Pb, Cd, and Cu concentrations. The highest average heavy metal concentrations were found in windows, followed by floor and fan. Pb concentrations ranged from 34.17 μg/g to 101.87 μg/g, Cd concentrations ranged from 1.73 μg/g to 7.5 μg/g, and Cu concentrations ranged from 20.27 μg/g to 82.13 μg/g. Ventilation and cleaning process were found as the possible factors that contributed to heavy metal concentration in window, floor, and fan. Moreover, the hazard index (HI) and hazard quotient (HQ) values for heavy metals Cd and Cu were less than one. By contrast, the HI and HQ values for Pb (maximum values) were more than one, indicating potential non-carcinogenic risk to children. Long-term persistence of leaded petrol, building materials, interior paint, school located near industrial areas and major roads, as well as vehicle emission are the factors attributed to the presence of heavy metals in classroom dust. Further research under a long-term monitoring plan and actual values in a health risk model is crucial before a final decision on heavy metal exposure and its relationship to young children health risks can be made. Nevertheless, the findings of this study provide crucial evidence to include indoor dust quality in school assessment because the environmental processes and impacts of surrounding school area have health risk implications on young children.  相似文献   

11.
Lead from historical mining and mineral processing activities may pose potential human health risks if materials with high concentrations of bioavailable lead minerals are released to the environment. Since the Joint Expert Committee on Food Additives of Food and Agriculture Organization/World Health Organization withdrew the Provisional Tolerable Weekly Intake of lead in 2011, an alternative method was required for lead exposure assessment. This study evaluated the potential lead hazard to young children (0–7 years) from a historical mining location at a semi-arid area using the U.S. EPA Integrated Exposure Uptake Biokinetic (IEUBK) Model, with selected site-specific input data. This study assessed lead exposure via the inhalation pathway for children living in a location affected by lead mining activities and with specific reference to semi-arid conditions and made comparison with the ingestion pathway by using the physiologically based extraction test for gastro-intestinal simulation. Sensitivity analysis for major IEUBK input parameters was conducted. Three groups of input parameters were classified according to the results of predicted blood concentrations. The modelled lead absorption attributed to the inhalation route was lower than 2 % (mean?±?SE, 0.9 %?±?0.1 %) of all lead intake routes and was demonstrated as a less significant exposure pathway to children’s blood, compared with ingestion. Whilst dermal exposure was negligible, diet and ingestion of soil and dust were the dominant parameters in terms of children’s blood lead prediction. The exposure assessment identified the changing role of dietary intake when house lead loadings varied. Recommendations were also made to conduct comprehensive site-specific human health risk assessment in future studies of lead exposure under a semi-arid climate.  相似文献   

12.
Abstract

Kerala, being a prominent tourist destination in the southern part of India with a coastline of 560?km, is prone to microplastic pollution. The National Oceanic and Atmospheric Administration (NOAA) of the USA defines microplastics as plastics of size < 5?mm–1?nm. To solve the problem of microplastic pollution, it is essential to track its source. As plastics are pervasive, it is challenging to track its source with a level of certainty required for implementing control strategies. Formulating and adopting suitable environmental forensic techniques to track microplastic pollution become important in this context. This study quantified the microplastic pollution of the Nattika coast, Kerala, India, and devised an environmental forensic investigation strategy for identifying the pathways and sources of microplastics. The microplastics of size 5–1?mm only were considered. The number of microplastics found in the Nattika Beach in 2017 and 2018 was 70.15 items kg?1 of sand and 120.85 items kg?1 of sand, respectively. The microplastics were subjected to analysis in FTIR and SEM as part of characterization. The forensic investigation of the pollution indicated that majority of the microplastic is sourced from the site/nearby area. The investigation could draw useful conclusions regarding the pathways of pollution. The fibrous microplastic, a significant component in the sample, was found to be sourced from the fishing net mending activities carried out close to the shore.  相似文献   

13.
Mercury (Hg) concentrations in muscles of wild alligators (Melanosuchus niger) from the Mamirauá Reservoir (a reference area in the Brazilian Amazon) and the human health risks associated with its consumption were assessed. The mean Hg concentration in alligator muscles was 0.407?±?0.114 μg/g (N?=?61). Close to 5 % of the muscle samples showed Hg levels above the World Health Organization guideline for fish consumption (0.5 μg/g). A positive and significant relationship was observed between Hg concentrations in muscle and the age of the specimens. The dose-response approach suggests that close to 27.4 years is required for half of the exposed specimens to attain 0.5 μg/g. The hazard quotient (HQ) is a risk indicator which defines the ratio of exposure level and a toxicological reference dose. HQ resulted above the unity for all the specimens when the ingestion rate for riverine communities (200 g of muscle per day) is considered, indicating the existence of hazard. When the ingestion rate for market consumers (28.57 g/day) is considered, the risks are much lower (mean HQ?=?0.55), suggesting that such group is not at risk. The establishment of local and regional ingestion rates for riverine populations and market consumers is extremely recommended.  相似文献   

14.
Although trans-Alpine highway traffic exhaust is one of the major sources of air pollution along the highway valleys of the Alpine regions, little is known about its contribution to residential exposure and impact on respiratory health. In this paper, source-specific contributions to particulate matter with an aerodynamic diameter?<?10 μm (PM10) and their spatio-temporal distribution were determined for later use in a pediatric asthma panel study in an Alpine village. PM10 sources were identified by positive matrix factorization using chemical trace elements, elemental, and organic carbon from daily PM10 filters collected between November 2007 and June 2009 at seven locations within the village. Of the nine sources identified, four were directly road traffic-related: traffic exhaust, road dust, tire and brake wear, and road salt contributing 16 %, 8 %, 1 %, and 2 % to annual PM10 concentrations, respectively. They showed a clear dependence with distance to highway. Additional contributions were identified from secondary particles (27 %), biomass burning (18 %), railway (11 %), and mineral dust including a local construction site (13 %). Comparing these source contributions with known source-specific biomarkers (e.g., levoglucosan, nitro-polycyclic aromatic hydrocarbons) showed high agreement with biomass burning, moderate with secondary particles (in winter), and lowest agreement with traffic exhaust.  相似文献   

15.
Indoor dust samples were collected from 40 homes in Kocaeli, Turkey and were analyzed simultaneously for 14 polybrominated diphenyl ethers (PBDEs) and 16 poly aromatic hydrocarbons (PAHs) isomers. The total concentrations of PBDEs (Σ14PBDEs) ranged from 29.32 to 4790 ng g?1, with a median of 316.1 ng g?1, while the total indoor dust concentrations of 16 PAHs (Σ16PAHs) extending over three to four orders of magnitude ranged from 85.91 to 40,359 ng g?1 with a median value of 2489 ng g?1. Although deca-PBDE products (BDE-209) were the principal source of PBDEs contamination in the homes (median, 138.3 ng g?1), the correlation in the homes was indicative of similar sources for both the commercial penta and deca-PBDE formulas. The PAHs diagnostic ratios indicated that the main sources of PAHs measured in the indoor samples could be coal/biomass combustion, smoking, and cooking emissions. For children and adults, the contributions to ∑14PBDEs exposure were approximately 93 and 25 % for the ingestion of indoor dust, and 7 and 75 % for dermal contact. Exposure to ∑16PAHs through dermal contact was the dominant route for both children (90.6 %) and adults (99.7 %). For both groups, exposure by way of inhalation of indoor dust contaminated with PBDEs and PAHs was negligible. The hazard index (HI) values for BDE-47, BDE-99, BDE-153, and BDE-209 were lower than the safe limit of 1, and this result suggested that none of the population groups would be likely to experience potential health risk due to exposure to PBDEs from indoor dust in the study area. Considering only ingestion + dermal contact, the carcinogenic risk levels of both B2 PAHs and BDE-209 for adults were 6.2 × 10?5 in the US EPA safe limit range while those for children were 5.6 × 10?4 and slightly higher than the US EPA safe limit range (1 × 10?6 and 1 × 10?4). Certain precautions should be considered for children.  相似文献   

16.

Objective

Concentrations of polycyclic aromatic hydrocarbons (PAHs) in street dust in the Tamale metropolis, Ghana, have been measured in this study.

Results

The concentrations of the various types of PAHs identified in street dust samples from high vehicular traffic density in the metropolis are as follows: naphthalene, 10,000 μg/kg; acenaphthylene, 13,000 μg/kg; acenaphthene, 76,000 μg/kg; fluorene, 18,900 μg/kg; phenanthrene, 40,000 μg/kg; anthracene, 21,000 μg/kg; fluoranthene, 35,200 μg/kg; pyrene, 119,000 μg/kg; benzo[a]anthracene, 17,700 μg/kg; chrysene, 10,600 μg/kg; benzo[k]fluoranthene, 18,700 μg/kg; benzo[a]pyrene, 10,900 μg/kg and benzo[g, h, i]perylene, 21,000 μg/kg. Calculation of the phenanthrene/anthracene ratio indicated that the PAHs identified in this study were from vehicular fallout as the ratio was less than 10.

Conclusion

It is clear from the results of the study that road users in the Tamale metropolis, especially hawkers, are exposed to the harmful effects of PAHs, and this suggests the need for the establishment of mitigation measures by the regulatory agencies.
  相似文献   

17.
The study aimed to monitor heavy metal (chromium, Cr; cadmium, Cd; nickel, Ni; copper, Cu; lead, Pb; iron, Fe; manganese, Mn; and zinc, Zn) footprints in biological matrices (urine, whole blood, saliva, and hair), as well as in indoor industrial dust samples, and their toxic effects on oxidative stress and health risks in exposed workers. Overall, blood, urine, and saliva samples exhibited significantly higher concentrations of toxic metals in exposed workers (Cr; blood 16.30 μg/L, urine 58.15 μg/L, saliva 5.28 μg/L) than the control samples (Cr; blood 5.48 μg/L, urine 4.47 μg/L, saliva 2.46 μg/L). Indoor industrial dust samples also reported to have elevated heavy metal concentrations, as an example, Cr quantified with concentration of 299 mg/kg of dust, i.e., more than twice the level of Cr in household dust (136 mg/kg). Superoxide dismutase (SOD) level presented significant positive correlation (p?≤?0.01) with Cr, Zn, and Cd (Cr?>?Zn?>?Cd) which is an indication of heavy metal’s associated raised oxidative stress in exposed workers. Elevated average daily intake (ADI) of heavy metals resulted in cumulative hazard quotient (HQ) range of 2.97–18.88 in workers of different surgical units; this is an alarming situation of health risk implications. Principal component analysis-multiple linear regression (PCA-MLR)-based pie charts represent that polishing and cutting sections exhibited highest metal inputs to the biological and environmental matrices than other sources. Heavy metal concentrations in biological matrices and dust samples showed a significant positive correlation between Cr in dust, urine, and saliva samples. Current study will help to generate comprehensive base line data of heavy metal status in biomatrices and dust from scientifically ignored industrial sector. Our findings can play vital role for health departments and industrial environmental management system (EMS) authorities in policy making and implementation.  相似文献   

18.

Understanding the spatial distribution patterns of microplastics (plastics?<?5 mm) contributes to the assessment of sources and sinks of pollution thus providing information for the management of biota safety and overall ecosystem functionality. We chose a semi-closed study area, Lake Bracciano (Italy), to assess the environmental variability of contamination, focusing on the water compartment and the exposure of biota, specifically fish, by analysing the ingestion of microplastics. The focus of this study is to evaluate the concentration of microplastics in water (surface and column) across the lake and the ingestion of microplastics by two fish species of economic interest: Atherina boyeri and Coregonus lavaretus, inhabiting demersal and pelagic habitats respectively. Results show a surface contamination of 392,000?±?417,000 items km?2 and a column one of 0.76?±?1.00 items m?3. Fragments were the most abundant in surface while fibres in the column. Microplastics were found in C. lavaretus specimens, corresponding to contamination frequency of 5% and concentration of 0.15 items/fish. The main polymer found in water was polyethylene (81%); of minor percentages, there were various other polymers, including polystyrene and acrylic, which were also found in fish. As scientific literature provides few research where water and fish are simultaneously sampled, this investigation wants to contribute filling this knowledge gap by investigating for the first time a volcanic lake.

  相似文献   

19.
In order to determine human exposure to the indoor toxicant, selection of dust fraction and understanding dust particle size distribution in settled indoor dust are very important. This study examined the influence of dust particle size on the concentration of polybrominated diphenyl ethers (PBDEs) congeners, assessed the distribution of dust particle size and characterized the main indoor emission sources of PBDEs. Accordingly, the concentrations of PBDE congeners determined in different indoor dust fractions were found to be relatively higher in the order of dust particle size: 45–106 μm?>?(<45 μm)?>?106–150 μm. The finding shows arbitrary selection of dust fractions for exposure determination may result in wrong conclusions. Statistically significant moderate correlation between the concentration of Σ9PBDEs and organic matter content calculated with respect to the total dust mass was also observed (r?=?0.55, p?=?0.001). On average, of total dust particle size <250 μm, 93.4 % (m/m%) of dust fractions was associated with less than 150 μm. Furthermore, of skin adherent dust fractions considered (<150 μm), 86 % (v/v%) is in the range of particle size 9.25–104.7 μm. Electronic materials treated with PBDEs were found the main emission sources of PBDE congeners in indoor environment. Based on concentrations of PBDEs determined and mass of indoor dust observed, 150 μm metallic sieve is adequate for human exposure risk assessment. However, research in this area is very limited and more research is required to generalize the fact.  相似文献   

20.
Knobeloch L  Imm P  Anderson H 《Chemosphere》2012,88(7):779-783
Perfluoroalkyl chemicals (PFCs) have been used as surfactants and stain repellants in a variety of consumer products for more than 50 years and there is growing concern regarding their persistence and toxicity. Human exposure to these chemicals is essentially universal in North America and researchers have linked them to a variety of health problems ranging from higher rates of cancer, to developmental and reproductive problems, and higher cholesterol levels. Major exposure pathways are food and water ingestion, dust ingestion via hand to mouth transfer. In an effort to assess residential exposure, the Wisconsin Department of Health Services tested vacuum cleaner contents from thirty-nine homes for 16 perflouroalkyl chemicals. PFOS, PFOA, PFHxS, PFHpA and PFNA were found in all of the vacuum dust samples and dust from eight homes contained all 16 PFCs included in our analysis. The most commonly detected compounds were perfluorooctanesulfonate (PFOS), perfluorohexanesulfonate (PFHxS) and perfluorooctanoic acid (PFOA) which together made up 70% of the total PFC residues in dust from these homes. Summed PFC concentrations in these dust samples ranged from 70 to 2513 ng/g (median 280 ng/g). Our investigation suggests that these chemicals may be ubiquitous contaminants in US homes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号