共查询到20条相似文献,搜索用时 15 毫秒
1.
All municipal solid waste (MSW) management systems—even “high quality systems” or those employing “best practices”—face multiple challenges, e.g., decreasing prices of secondary raw materials recovered by municipalities, increasing complexity of waste composition, technological lock-ins. Policy-making involves translating these challenges into goals that are generic in nature and implementing them on MSW fractions thanks to tailor-made policy tools, e.g., anticipated disposal fees. Anticipating the impacts of policies can provide valuable insights into the adequacy of policy tools with respect to economic, political, and social contexts of MSW. The goal of this paper is to construct consistent, future scenarios of Swiss waste glass-packaging disposal based on literature and stakeholder knowledge, including the allocation of waste to different disposal routes. These scenarios are future states to which the current system could transit to due to alternative policies in line with waste policy goals and varying societal constraints (e.g., commodity prices). Results of scenario construction show that policy has a limited effect on waste glass-packaging disposal because of economic constraints, preventing goals from consistently being achieved. For instance, increases in energy prices can impede a policy favoring recycling over downcycling to foam glass, an energy-saving product. The procedure applied to construct possible scenarios suits well the ambition of considering uncertain future developments affecting MSW management as it integrates qualitative and quantitative knowledge of various sources and disciplines. 相似文献
2.
Methodological aspects of life cycle assessment of integrated solid waste management systems 总被引:1,自引:0,他引:1
Environmental life cycle assessment (LCA) developed rapidly during the 1990s and has reached a certain level of harmonisation and standardisation. LCA has mainly been developed for analysing material products, but can also be applied to services, e.g. treatment of a particular amount of solid waste. This paper discusses some methodological issues which come into focus when LCAs are applied to solid waste management systems. The following five issues are discussed. (1) Upstream and downstream system boundaries: where is the ‘cradle’ and where is the ‘grave’ in the analysed system? (2) Open-loop recycling allocation: besides taking care of a certain amount of solid waste, many treatment processes also provide additional functions, e.g. energy or materials which are recycled into other products. Two important questions which arise are if an allocation between the different functions should be made (and if so how), or if system boundaries should be expanded to include several functions. (3) Multi-input allocation: in waste treatment processes, different materials and products are usually mixed. In many applications there is a need to allocate environmental interventions from the treatment processes to the different input materials. The question is how this should be done. (4) Time: emissions from landfills will continue for a long time. An important issue to resolve is the length of time emissions from the landfill should be considered. (5) Life cycle impact assessment: are there any aspects of solid waste systems (e.g. the time horizon) that may require specific attention for the impact assessment element of an LCA? Although the discussion centres around LCA it is expected that many of these issues are also relevant for other types of systems analyses. 相似文献
3.
Gholamreza Asadollahfardi Azadeh Panahandeh Ebrahim Inanlo Moghadam Shima Masoumi Mojtaba Tayebi Jebeli 《环境质量管理》2023,32(3):97-110
With the onset of social life, humans have considered waste disposal as essential, and they have been able to repel it through brick and clay channels. Checking sewage pipes for energy consumption and a longer lifetime than other sewage system components is important. Climate change and exploitation of industrial resources have made environmental impacts, which are important factors in decision making. The purpose of this study was to introduce the most suitable type of sewage pipe considering environmental protection. Therefore, we applied the environmental life cycle assessment (LCA) method, using Sima Pro 8.2.3 software for the one-kilometer length of concrete pipes (300 mm in diameter), Polyvinyl chloride (PVC), and polyethylene (PE) (315 mm in diameter). Also, the BEES method and sensitivity analysis were used to validate the results. The comparison between three types of municipal wastewater pipes indicated that PE pipes are a more environmentally friendly option than PVC, and concrete pipes in pipe recycling, reducing extraction from untapped resources, and inefficient extraction of resources. Electricity, diesel fuel, and sulfate resistance cement consumption for concrete production are the most pollution elements in the LCA of concrete pipes. Usage of PVC granular, sanitary landfill of PVC pipes, and using hydraulic drill in LCA of PVC pipes are the most elements of generating pollution. The usage of PE granules, PE pipes landfilling, hydraulic excavator, and electricity consumption in the LCA of the PE pipes are the greatest polluting parameters. 相似文献
4.
With the pavement industry adopting sustainable practices to align itself with the global notion of habitable environments, there has been growing use of life-cycle assessment (LCA). A hybrid LCA was used to analyze the environmental footprint of using a reclaimed asphalt pavement (RAP) content in asphalt binder mixtures. The analysis took into consideration the material, construction, and maintenance and rehabilitation phases of the pavement life cycle. The results showed significant reductions in energy consumption and greenhouse gas (GHG) emissions with an increase in RAP content. The contribution of the construction phase to the GHGs and energy consumption throughout pavement life cycle is minimal. Feedstock energy, though not consequential when comparing asphalt mixtures only, has a significant impact on total energy. Based on LCA analysis performed for various performance scenarios, breakeven performance levels were identified for mixtures with RAP. The study highlighted the importance of achieving equivalent field performance for mixtures with RAP and virgin mixtures. 相似文献
5.
AHP based life cycle sustainability assessment (LCSA) framework: a case study of six storey wood frame and concrete frame buildings in Vancouver 总被引:1,自引:0,他引:1
Navid Hossaini Bahareh Reza Sharmin Akhtar Kasun Hewage 《Journal of Environmental Planning and Management》2015,58(7):1217-1241
Construction and building industry is in dire need for developing sustainability assessment frameworks that can evaluate and integrate related environmental and socioeconomic impacts. This paper discusses an analytic hierarchy process (AHP) based sustainability evaluation framework for mid-rise residential buildings based on a broad range of environmental and socioeconomic criteria. A cradle to grave life cycle assessment technique was applied to identify, classify, and assess triple bottom line (TBL) sustainability performance indicators of buildings. Then, the AHP was applied to aggregate the impacts into a unified sustainability index. The framework is demonstrated through a case study to investigate two six storey structural systems (i.e. concrete and wood) in Vancouver, Canada. The results of this paper show that the environmental performance of a building in Canada, even in regions with milder weather such as Vancouver, is highly dependent on service life energy, rather than structural materials. 相似文献
6.
The objective of the study is to compare different development scenarios of a black water source-separation sanitation system (BWS) that could be environmentally and economically more viable than a conventional system (CONV). Scenarios performance is evaluated using life cycle assessment and environmental life cycle costing. System boundaries include the processes related to the collection and treatment of wastewater and organic kitchen refuse collection and the recycling of by-product (digestate/sludge and biogas) produced in the treatment step. The BWS scenario that entails a vacuum toilet flow-volume reduction to 0.5 L/flush results in significantly higher performances than the ones of CONV for the climate change and resources indicators, while involving a significantly lower performance with regards to human health and a comparable cost. The BWS scenario based on digestate mass reduction with reverse osmosis and acidification prior to its transport to farmland achieves comparable performances to the ones of CONV for all indicators. The BWS scenario with digestate treatment by means of phosphorus precipitation (struvite) and nitritation–anammox reactors gives performances that are comparable to the ones of CONV for all indicators, with the exception of climate change, for which this scenario has a significantly lower performance if the electricity is produced by hydropower. When single-pathway scenarios are combined, the multi-pathway scenarios thus created can produce results that are significantly superior to the CONV result for the climate change, resources and human health indicators although the cost remains comparable. 相似文献
7.
8.
Life cycle assessment, LCA, has become a key methodology to evaluate the environmental performance of products, services and processes and it is considered a powerful tool for decision makers. Waste treatment options are frequently evaluated using LCA methodologies in order to determine the option with the lowest environmental impact. Due to the approximate nature of LCA, where results are highly influenced by the assumptions made in the definition of the system, this methodology has certain non-negligible limitations. Because of that, the use of LCA to assess waste co-incineration in cement kilns is reviewed in this paper, with a special attention to those key inventory results highly dependent on the initial assumptions made. Therefore, the main focus of this paper is the life cycle inventory, LCI, of carbon emissions, primary energy and air emissions. When the focus is made on cement production, a tonne of cement is usually the functional unit. In this case, waste co-incineration has a non-significant role on CO2 emissions from the cement kiln and an important energy efficiency loss can be deduced from the industry performance data, which is rarely taken into account by LCA practitioners. If cement kilns are considered as another waste treatment option, the functional unit is usually 1 t of waste to be treated. In this case, it has been observed that contradictory results may arise depending on the initial assumptions, generating high uncertainty in the results. Air emissions, as heavy metals, are quite relevant when assessing waste co-incineration, as the amount of pollutants in the input are increased. Constant transfer factors are mainly used for heavy metals, but it may not be the correct approach for mercury emissions. 相似文献
9.
High-quality food and general good health are fundamental needs that have to be satisfied if society is to attain a high standard of living. Accordingly, a great deal of effort is expended in order to guarantee a high quality of food and ensure healthy living conditions. Among other things, these efforts entail massive substance flows. Significant substance flows are connected with the production and consumption of food and can be regarded from an economic, social, or environmental point of view. Substance flows are a part of both nature and the anthroposphere. This study demonstrates that food production at present is not linked to societal issues of production and sustainability; rather, it shows that a systematic approach and an analysis of issues and measures to be taken are required. This interconnectedness can be described as a timescape, in analogy to a landscape. For proper orientation in a landscape, a map is helpful, especially in combination with a compass. In the same way, we need a temporal orientation. Time scales serve as a compass to give orientation. A complete temporal analysis that includes all relevant temporalities provides the information that is encoded in a map. What has to be learned and exercised is the reading of such temporal maps. One method of doing this is temporal impact analysis (TIA). Temporal impact analysis brings issues that are not normally focused on into the foreground. It allows a better understanding of the implications of certain substance flows and the measures necessary for their management, and it provides an opportunity to develop a more sustainable management of substance flows. 相似文献
10.
A generic comparison of the airborne risks to human health from landfill and incinerator disposal of municipal solid waste 总被引:3,自引:0,他引:3
A comparison of the potential risks to human health from municipal solid waste (MSW) incineration and landfill on a generic basis is attempted. For this purpose a 'worst case' approach is adopted and a number of assumptions regarding the size and activities of each waste disposal method are made. The airborne pollutants measured for an incinerator are different from those for a landfill with or without gas collection. However, based on the available information it appears that as far as airborne pollution is concerned, landfill sites without gas collection pose a potentially higher generic risk to human health than MSW incinerators performing to Environmental Agency (UK) standards. This analysis cannot be used to replace specific evaluations for a particular incinerator or a landfill site because local conditions can have a very large impact on the magnitude of risks involved. 相似文献
11.
Construction and demolition wastes (CDW) have increasingly serious problems in environmental, social, and economic realms. There is no coherent framework for utilization of these wastes which are disposed both legally and illegally. This harms the environment, contributes to the increase of energy consumption, and depletes finite landfills resources. The aim of this paper is to evaluate the impacts of two alternatives for the management of CDW, recycling and disposing. The evaluation is carried out through developing a dynamic model with aid STELLA software by conducting the following steps: (1) quantifying the total cost incurred to mitigate the impacts of CDW landfills and uncollected waste on the environment and human health; (2) quantifying the total avoided emissions and saved energy by recycling waste; (3) estimating total external cost saved by recycling waste and; (4) providing a decision support tool that helps in re-thinking about waste disposal. The proposed evaluation methodology allows activating the stringent regulations that restrict waste disposal and developing incentives to encourage constructors to recycle their wastes. The research findings show that recycling CDW leads to significant reductions in emissions, energy use, global warming potential (GWP), and conserves landfills space when compared to disposal of wastes in landfills. Furthermore, the cost of mitigating the impact of disposal is extremely high. Therefore, it is necessary to recycle construction and demolition wastes. 相似文献
12.
Life cycle assessment of waste paper management: The importance of technology data and system boundaries in assessing recycling and incineration 总被引:2,自引:0,他引:2
Hanna Merrild Anders Damgaard Thomas H. Christensen 《Resources, Conservation and Recycling》2008,52(12):1391-1398
The significance of technical data, as well as the significance of system boundary choices, when modelling the environmental impact from recycling and incineration of waste paper has been studied by a life cycle assessment focusing on global warming potentials. The consequence of choosing a specific set of data for the reprocessing technology, the virgin paper manufacturing technology and the incineration technology, as well as the importance of the recycling rate was studied. Furthermore, the system was expanded to include forestry and to include fossil fuel energy substitution from saved biomass, in order to study the importance of the system boundary choices. For recycling, the choice of virgin paper manufacturing data is most important, but the results show that also the impacts from the reprocessing technologies fluctuate greatly. For the overall results the choice of the technology data is of importance when comparing recycling including virgin paper substitution with incineration including energy substitution. Combining an environmentally high or low performing recycling technology with an environmentally high or low performing incineration technology can give quite different results. The modelling showed that recycling of paper, from a life cycle point of view, is environmentally equal or better than incineration with energy recovery only when the recycling technology is at a high environmental performance level. However, the modelling also showed that expanding the system to include substitution of fossil fuel energy by production of energy from the saved biomass associated with recycling will give a completely different result. In this case recycling is always more beneficial than incineration, thus increased recycling is desirable. Expanding the system to include forestry was shown to have a minor effect on the results. As assessments are often performed with a set choice of data and a set recycling rate, it is questionable how useful the results from this kind of LCA are for a policy maker. The high significance of the system boundary choices stresses the importance of scientific discussion on how to best address system analysis of recycling, for paper and other recyclable materials. 相似文献
13.
This study presents the results of a comparative life cycle assessment (LCA) on the energy requirements and greenhouse gas (GHG) emission implications of recycling construction and demolition (C&D) rubble and container glass in Cape Town, South Africa. Cape Town is a medium sized city in a developing country with a growing population and a rising middle class, two factors that are resulting in increased generation of solid waste. The City is constrained in terms of landfill space and competing demands for municipal resources.The LCA assessment was based on locally gathered data, supplemented with ecoinvent life cycle inventory data modified to the local context. The results indicated that recycling container glass instead of landfilling can achieve an energy savings of 27% and a GHG emissions savings of 37%, with a net savings still being achieved even if collection practices are varied. The C&D waste results, however, showed net savings only for certain recycling strategies. Recycling C&D waste can avoid up to 90% of the energy and GHG emissions of landfilling when processed and reused onsite but, due to great dependence on haulage distances, a net reduction of energy use and GHG emissions could not be confidently discerned for offsite recycling. It was also found that recycling glass achieves significantly greater savings of energy and emissions than recycling an equivalent mass of C&D waste.The study demonstrated that LCA provides an important tool to inform decisions on supporting recycling activities where resources are limited. It also confirmed other researchers’ observations that strict adherence to the waste management hierarchy will not always result in the best environmental outcome, and that more nuanced analysis is required. The study found that the desirability of recycling from an energy and climate perspective cannot be predicted on the basis of whether such recycling conserves a non-renewable material. However, recycling that replaces a virgin product from an energy-intensive production process appears to be more robustly beneficial than recycling that replaces a product with little embodied energy. Particular caution is needed when applying the waste management hierarchy to the latter situations. 相似文献
14.
The benefits of strategic environmental considerations in the process of siting a repository for low- and intermediate-level radioactive waste (LILW) are presented. The benefits have been explored by analyzing differences between the two site selection processes. One is a so-called official site selection process, which is implemented by the Agency for radwaste management (ARAO); the other is an optimization process suggested by experts working in the area of environmental impact assessment (EIA) and land-use (spatial) planning. The criteria on which the comparison of the results of the two site selection processes has been based are spatial organization, environmental impact, safety in terms of potential exposure of the population to radioactivity released from the repository, and feasibility of the repository from the technical, financial/economic and social point of view (the latter relates to consent by the local community for siting the repository). The site selection processes have been compared with the support of the decision expert system named DEX. The results of the comparison indicate that the sites selected by ARAO meet fewer suitability criteria than those identified by applying strategic environmental considerations in the framework of the optimization process. This result stands when taking into account spatial, environmental, safety and technical feasibility points of view. Acceptability of a site by a local community could not have been tested, since the formal site selection process has not yet been concluded; this remains as an uncertain and open point of the comparison. 相似文献
15.
Synthesis of distributed wastewater treatment plants (WTPs) has focused on cost reduction, but never on the reduction of environmental impacts. A mathematical optimization model was developed in this study to synthesize existing distributed and terminal WTPs into an environmentally friendly total wastewater treatment network system (TWTNS) from a life cycle perspective. Life cycle assessment (LCA) was performed to evaluate the environmental impacts of principal contributors in a TWTNS. The LCA results were integrated into the objective function of the model. The mass balances were formulated from the superstructure model, and the constraints were formulated to reflect real wastewater treatment situations in industrial plants. A case study validated the model and demonstrated the effect of the objective function on the configuration and environmental performance of a TWTNS. This model can be used to minimize environmental impacts of a TWTNS in retrofitting existing WTPs in line with cleaner production and sustainable development. 相似文献
16.
Options for management of municipal solid waste in New York City: a preliminary comparison of health risks and policy implications 总被引:2,自引:0,他引:2
Moy P Krishnan N Ulloa P Cohen S Brandt-Rauf PW 《Journal of environmental management》2008,87(1):73-79
Landfill disposal and waste-to-energy (WTE) incineration remain the two principal options for managing municipal solid waste (MSW). One critical determinant of the acceptability of these options is the different health risks associated with each. In this analysis relying on published data and exposure modeling, we have performed health risk assessments for landfill disposal versus WTE treatment options for the management of New York City's MSW. These are based on the realistic scenario of using a waste transfer station (WTS) in Brooklyn and then transporting the untreated MSW by truck to a landfill in Pennsylvania or using a WTE facility in Brooklyn and then transporting the resultant ash by truck to a landfill in Pennsylvania. The overall results indicate that the individual cancer risks for both options would be considered generally acceptable, although the risk from landfilling is approximately 5 times greater than from WTE treatment; the individual non-cancer health risks for both options would be considered generally unacceptable, although once again the risk from landfilling is approximately 5 times greater than from WTE treatment. If one considers only the population in Brooklyn that would be directly affected by the siting of either a WTS or a WTE facility in their immediate neighborhood, individual cancer and non-cancer health risks for both options would be considered generally acceptable, but risks for the former remain considerably higher than for the latter. These results should be considered preliminary due to several limitations of this study such as: consideration of risks only from inhalation exposures; assumption that only volume and not composition of the waste stream is altered by WTE treatment; reliance on data from the literature rather than actual measurements of the sites considered, assuming comparability of the sites. However, the results of studies such as this, in conjunction with ecological, socioeconomic and equity considerations, should prove useful to environmental managers, regulators, policy makers, community representatives and other stakeholders in making sound and acceptable decisions regarding the optimal handling of MSW. 相似文献
17.
Integrated smelter-refineries play an important role in the recovery of multiple metals from complex primary and secondary materials, and hence in closing metals cycles. Processes in these facilities are strongly interconnected, dynamic, and multifunctional, which challenges a typical representation in life cycle assessment (LCA). This is especially true when LCA is applied to calculate the environmental profile of single metals products.This study examines methodological requirements for assessing complex co-product systems using attributional LCA through a static, gate-to-gate inventory model that quantifies the environmental impacts of each of the metal products of an integrated precious metals smelter-refinery. The model is based on a large number of subprocesses and is formulated using detailed industry data, which allows quantification of the sensitivity of the results with respect to allocation rationales and the data collection period.The results within one impact category vary strongly among metals (up to four orders of magnitude for copper compared to rhodium). Moving from mass- to value-based allocation changes the result for a given metal by up to two orders of magnitude. If value-based allocation is used, the selected reference year for metals prices influences the results by up to a factor of two.Allocation rationales are critically analyzed, and it is shown that none reflect the business model or other system drivers. While the model is focused on quantifying environmental impacts of metal outputs, the actual process is economically driven to efficiently treat a continuously changing feed mix. The complexity of a smelter-refinery cannot be captured by static, attributional inventory models, which is why the choice of allocation rationale remains arbitrary. Instead, marginal, parameterized models are needed; however, such models are substantially more time and data intensive and require disclosure of more detailed, process specific data. 相似文献
18.
The life cycle of rice: LCA of alternative agri-food chain management systems in Vercelli (Italy) 总被引:1,自引:0,他引:1
The Vercelli rice district in northern Italy plays a key role in the agri-food industry in a country which accounts for more than 50% of the EU rice production and exports roughly 70%. However, although wealth and jobs are created, the sector is said to be responsible for environmental impacts that are increasingly being perceived as topical. As a complex and comprehensive environmental evaluation is necessary to understand and manage the environmental impact of the agri-food chain, the Life Cycle Assessment (LCA) methodology has been applied to the rice production system: from the paddy field to the supermarket. The LCA has pointed out the magnitude of impact per kg of delivered white milled rice: a CO2eq emission of 2.9 kg, a primary energy consumption of 17.8 MJ and the use of 4.9 m3 of water for irrigation purposes. Improvement scenarios have been analysed considering alternative rice farming and food processing methods, such as organic and upland farming, as well as parboiling. The research has shown that organic and upland farming have the potential to decrease the impact per unit of cultivated area. However, due to the lower grain yields, the environmental benefits per kg of the final products are greatly reduced in the case of upland rice production and almost cancelled for organic rice. LCA has proved to be an effective tool for understanding the eco-profile of Italian rice and should be used for transparent and credible communication between suppliers and their customers. 相似文献
19.
The human population is rising and the availability of terrestrial land and its resources are finite and, perhaps, not sufficient to deliver enough food, energy, materials and space. Thus, it is important to (further) explore and exploit the marine environment which covers no less than 71% of the earth's surface. The marine environment is very complex but can roughty be divided into two systems: natural (e.g. wild fishing) and human-made (e.g. artificial islands). In this study, characterization factors (CF) for natural and human-made marine systems were calculated in order to be able to assess the environmental impact of occupying marine surfaces, which was not possible so far in life cycle assessment. When accounting for natural resources while occupying one of these systems, it is important to consider the primary resources that are actually deprived from nature, which differs between the natural and human-made marine systems.In natural systems, the extracted biomass was accounted for through its exergy content, which is the maximum quantity of work that the system can execute in its environment. Reference flows for marine fish, seaweeds, crustaceans and mollusks were proposed and their correlated CF was calculated. For human-made systems, the deprived land resource is, in fact, the occupied area of the marine surface. Based on potential marine net primary production data (NPP), exergy based spatial and temporal CFs for ocean areal occupation were calculated. This approach was included in the Cumulative Exergy Extraction from the Natural Environment (CEENE) method which makes it the first life cycle impact assessment (LCIA) method capable of analyzing the environmental impact (and more specific the resource footprint) of marine areal occupation. Furthermore, the methodology was applied to two case studies: comparing resource consumption of on- and offshore oil production, and fish and soybean meal production for fish feed applications. 相似文献
20.
Life Cycle Impact Assessment (LCIA) and Risk Assessment (RA) employ different approaches to evaluate toxic impact potential for their own general applications. LCIA is often used to evaluate toxicity potentials for corporate environmental management and RA is often used to evaluate a risk score for environmental policy in government. This study evaluates the cancer, non-cancer, and ecotoxicity potentials and risk scores of chemicals and industry sectors in the United States on the basis of the LCIA- and RA-based tools developed by U.S. EPA, and compares the priority screening of toxic chemicals and industry sectors identified with each method to examine whether the LCIA- and RA-based results lead to the same prioritization schemes. The Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) is applied as an LCIA-based screening approach with a focus on air and water emissions, and the Risk-Screening Environmental Indicator (RSEI) is applied in equivalent fashion as an RA-based screening approach. The U.S. Toxic Release Inventory is used as the dataset for this analysis, because of its general applicability to a comprehensive list of chemical substances and industry sectors. Overall, the TRACI and RSEI results do not agree with each other in part due to the unavailability of characterization factors and toxic scores for select substances, but primarily because of their different evaluation approaches. Therefore, TRACI and RSEI should be used together both to support a more comprehensive and robust approach to screening of chemicals for environmental management and policy and to highlight substances that are found to be of concern from both perspectives. 相似文献