首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: The spatial changes in abiotic and biotic variables from riverine to lacustrine areas characterized by the river-lake concept of reservoir function was applied to the Tomhannock Reservoir, Rensselaer County, New York. To identify these longitudinal gradients, a two-year investigation (May 1991 to October 1992) was conducted to measure primary productivity, nutrient concentrations, chlorophyll α and phytoplankton biomass at three locations in the 705-ha water supply reservoir. Emphasis was placed on the measurement of primary production using the carbon-14 artificial incubator (photosynthetron) technique. The average annual production in 1992 was 247.3 gm?2 245 d?1, ranging from 52 to 2677 mg C m?2. Mean alphaB (assimilation efficiency), PBm (assimilation number), and Ik (saturation irradiance) were 4.40 mg C mgChl?1 E?1 m?2, 3.82 mg C mgChl?1 h?1, and 236.5 μE m?2 s?1, respectively. Neither seasonal nor spatial variability of these photosynethetic parameters were observed. Except for Secchi depth, distinct longitudinal zones from river inflow to darn were not statistically demonstrated in the Tomhannock Reservoir. Mean extinction coefficient, chlorophyll α and total phosphorus concentrations decreased; Secchi transparency and phytoplankton biomass increased; while primary productivity and dissolved inorganic nitrogen concentration remained the same from headwater to darn. These baseline data will be used to assess the future effectiveness of best management practices (BMPs) recently instituted on selected watershed farmland in an attempt to reduce the detrimental impact of agricultural activities on drinking water quality.  相似文献   

2.
ABSTRACT: The underwater light field of eight central New York lakes, which represent a wide range of trophic state, was characterized through paired measurements of Sechi disc transparency (SD, m) and diffuse light attenuation (Kd, m?1). A total of 90 paired measurements are included in the data base. Substantial variability in the Kd SD product with time within individual systems, and amongst systems, was observed, which indicates differences in the relative contributions of absorption and scattering to attenuation. More than 50 percent of the temporal variability in Kd was attributable to attendant variations in chlorophyll a (C, mg m?3) in only two of the lakes. Estimates of the adsorption (a, m?1) and scattering (b, m?1) coefficients based on paired Kd and SD measurements compared well with more precise determinations available for one of the lakes. Determinations of a and b for the eight lakes, from SD and Kd measurements, indicated great system-specificity and temporal variability in these characteristics. The temporal variability in relative contributions of a and b to Kd is consistent with covariation of different attenuating components and the lack of correlation between C and Kd in most of the study lakes.  相似文献   

3.
ABSTRACT: Turbidity, total residues, settleable solids, vertical light extinction, and primary production were measured in mined and unmined streams located in the interior highlands of Alaska. Undisturbed streams had low turbidities (< 1 NTU), total residue concentrations averaging 120 mg 1?1, and undetectable settleable solids. During active mining, turbidity, total residues, and settleable solids levels in a moderately mined stream averaged 170 NTU, 201 mg 1?1, and < 0.1 ml 1?1, respectively. In a heavily mined stream, turbidity and total residues were two orders of magnitude higher than in unmined streams and settleable solids nearly always exceeded 0.2 ml 1?1. Vertical extinction coefficients and turbidity were positively correlated. In undisturbed streams gross primary productivity (g-O2m?2d?1) ranged from 0.20 shortly after spring breakup to a maximum of 1.20 in early fall. Productivity in the moderately mined stream was reduced by 50 percent while photosynthetic efficiency doubled. Primary production was undetectable in a heavily mined stream. Maximum standing crops of periphyton measured as chlorophyll a occurred in fall in an undisturbed stream after 13 weeks of exposure and ranged from 4.5 to 11.8 mg-chl a m?2. The highest chlorophyll a densities recorded in the moderately mined stream was 3.8 mg m?2, and no chlorophyl a was detected in the heavily mined stream.  相似文献   

4.
ABSTRACT: One component of the filamentous algal community of a northern fen ecosystem in central Michigan was studied under conditions of nutrient enrichment by secondarily treated sewage effluent during one growing season. The productivity of Cladophora spp. measured by continuous flow bioassay was 2.6 g dry weight m day at the site of effluent addition compared to 0.085 g m day at the control site. Under conditions of nutrient enrichment, uptake by bioassay Cladophora spp. averaged 12 mg m?2day?1for phosphorus and 55 mg m?2day?1for nitrogen, compared to 0.01 mg m?2 day?1and 0.16 mg m?2day?1for phosphorus and nitrogen, respectively, in the control area. At the end of the growing season approximately 4.3 g N m?2 and 0.96 g P m?2were immobilized in Cladophora algal biomass. Algal growth temporarily immobilized 3.0 percent of the nitrogen and 1.0 percent of the phosphorus added as sewage effluent. Gross productivity of surface water in the fen averaged 1.5 g O2m?2day?1at the nutrient enriched site, compared to 0.5 g O2 m?2day?1at the control area. Gross productivity, community respiration and reaeration constant values in the fen were similar to data collected by other researchers in shallow water aquatic systems, but only at the fertilized sites.  相似文献   

5.
The possibility of application of black liquor for oil-riched algae cultivation is inspected. The results show that after ligin removal and enzymatic hydrolysis, the hydrolysate of black liquor contained 9.18 g L?1 of reducing sugar. When the hydrolysate was used for Scenedesmus obliquus (S. obliquus) cultivation, a 1.23 g L?1, 24.52%, and 23.20 mg L?1d?1 was obtained for growth yield, oil content, and the lipid productivity, seperately. The hemicellulose was extracted from black liquor and hydrolyzed. With addition of 3 g L?1 yeast extract, the growth yield of S. obliquus in hemicellulose hydrolysate increased to 2.7 g L?1, an increase of 26.8% than that of in glucose medium, oil content was 25.7% and the final lipid productivity reached 53.37 mg L?1d?1. The results indicate that black liquor can not be directly used by microalgae, but with approprate treatment, the carbohydrate of it could be recovered and uitilized for the oil production from microalgae.  相似文献   

6.
ABSTRACT: Productivity measurements of organisms attached to artificial substrates ranged from 6.5–7.6 mg C/m2/hr and were 17-65% greater in stirred bottles (simulated flow) than under static conditions. Carbon-14 was used to determine the effect of current on the primary productivity of these organisms in six artificial streams at the Flowing Streams Laboratory on the Savannah River Plant (U.S. Energy Research and Development Administration, Aiken, South Carolina, U.SA.). Seasonal changes in dominant organisms were monitored from June 1973 to March 1974. Estimates of productivity, accumulated biomass, and levels of chlorophyll a were compared for possible correlation. Production of chlorophyll a ranged from 50 to 381 mg/m2, and accumulated biomass ranged from 45 to 181 g/m2 on the artificial substrates (glass microscope slides) during the period of study. Productivity of attached organisms was generally an order of magnitude greater than productivity of phytoplankton or tychoplankton. The consistently higher productivity in simulated flowing systems than in static systems tends to cast some doubt on values obtained when lotic communities have been enclosed or isolated in chambers or bottles without inducing a current or stirring action.  相似文献   

7.
ABSTRACT: An agricultural nonpoint source polluted stream in northern Idaho was examined to determine seasonal and longitudinal patterns of periphyton chlorophyll α. Chlorophyll a was measured at eight sites along Lapwai Creek, a fifth order stream impacted by agricultural runoff containing nutrients and eroded soils. Seasonally, periphyton chlorophyll α was lowest in the spring (cumulative x?= 60.4 mg m?2) and highest in the summer (cumulative x?= 222 mg m?2). Winter concentrations were higher than expected (cumulative x?= 168.6 mg m?2). The headwaters, flowing through an open grassy meadow, had the lowest concentrations of the study (two-year x?= 49.7 mg m?2). Immediately below a small, eutrophic reservoir, periphyton chlorophyll α increased markedly (two-year x?= 155.8 mg m?2) and remained high through a deep canyon (two year x?= 135.5 mg m?2) and down to the mouth of the stream (two-year x?= 172.3 mg?2). Periphyton chlorophyll α in Lapwai Creek was at least two times greater than values reported in the literature for comparable, undisturbed Idaho streams. We suggest that increased nutrient concentrations via agricultural nonpoint source pollution and increased light penetration from the removal of large, woody riparian vegetation have resulted in high periphyton chlorophyll α along the continuum of Lapwai Creek.  相似文献   

8.
ABSTRACT: The applicability of empirical relationships governing phosphorus (P) retention and nutrient assimilation in lakes and reservoirs was extended to include free surface water wetland treatment systems. Mixed reactor models have been used in lakes to predict steady state P concentration, characterize trophic state, compare P‐dynamics, and predict permissible P‐loading rates. Applying lake models to free surface water wetlands treatment systems, it was found that: sedimentation rates, loading rates, and settling velocity in these wetlands, and their typology are comparable to their lake counterparts. The analyses also suggest that phosphorus removal efficiency in a free surface water wetland treatment system is independent of trophic status, and similar to lakes, these wetlands can be classified according to their trophic state. Oligo‐and eutrophic wetland treatment systems can be defined by low and high TP inflow concentrations, respectively. In this study, olig‐otrophic status is defined as systems receiving inflow P‐loading less than 0.10 g m‐2 year‐1, and their P inputs are mainly derived from agricultural and stormwater runoff. Eutrophic treatment systems, on the other hand, are defined as those receiving inflow P‐loading higher than 0.20 g m2 year‐1, and their inputs are mainly derived from industrial and municipal wastewater. The comparability found between lakes and free surface water wetlands treatment systems raises the question: should we consider these wetlands “shallow lakes?”  相似文献   

9.
This work illustrates the result of a study on earthworm abundance, seasonal population dynamics and casting activities under Bermuda grass cover in a semiarid tropical part of Rajasthan, India. The earthworm abundance and their casting activities showed the drastic variation during different seasons. The maximum density (individual m?2) of earthworms was recorded in autumn (87.0?±?7.2) and minimum in winter (5.3?±?3.2) season in grassland. There was also variation in temperature and moisture of canopy soil in different seasons of the experimental year. The casting activities of earthworm also showed variations among different seasons. The maximum cast production rate was recorded during autumn (690.0?±?78.0?g?m?2) while in winter (17.3?±?5.1?g?m?2), earthworms showed the lowest cast production rate. The chemical composition of worm casts and parental soil layers (topsoil: 0?C10?cm depth and subsoil: 10?C25?cm depth) in grassland ecosystem was also monitored. The earthworm casts collected during winter showed the maximum level of total N (0.890?g?kg?1), available P (0.373?g?kg?1), exchangeable K (0.835?g?kg?1), exchangeable Ca (7.10?g?kg?1) and exchangeable Mg level (5.93?g?kg?1) while the maximum organic C content (5.27?g?kg?1) was recorded in surface casts deposited in rainy season. The level of major soil nutrients was also high in worm casts than parental soil and indicates the earthworm-mediated nutrient mineralization and organic matter transformation. Results thus clearly suggest the major role of earthworm in soil nutrient transformation in semiarid ecosystem.  相似文献   

10.
ABSTRACT: Nitrogen and P fluxes, transformations and water quality functions of Lake Verret (a coastal Louisiana freshwater lake), were quantified. Ortho-P, total-P, NH4+-N NO3 -N and TKN in surface water collected from streams feeding Lake Verret averaged 104, 340, 59, 185, and 1,060 mg 1?1, respectively. Lake Verret surface water concentrations of ortho-P, total-P, NH+-N, NO3?-N and TKN averaged 66, 191, 36, 66, and 1,292 μg 1?1. The higher N and P concentrations were located in areas of the lake receiving drainage. Nitrification and denitrification processes were significant in removing appreciable inorganic N from the system. In situ denitrification rates determined from acetylene inhibition techniques show the lake removes 560 mg N m?2 yr?1. Laboratory investigations using sediment receiving 450 μg NH+4-N (N-15 labeled) showed that the lake has the potential to remove up to 12.8 g N m?2 yr?1. Equilibrium studies of P exchanges between the sediment and water column established the potential or adsorption capacity of bottom sediment in removing P from the overlying water. Lake Verret sediment was found to adsorb P from the water column at concentrations above 50 μg P 1?1 and the adsorption rates were as great as 300 μg P cm?2 day?1 Using the 137C s dating techniques, approximately 18 g N m?2 yr?1 and 1.2 g P m?2 yr?1 were removed from the system via sedimentation. Presently elevated nutrient levels are found only in the upper reaches of the lake receiving nutrient input from runoff from streams draining adjacent agricultural areas. Nitrification, denitrification, and adsorption processes at the sediment water interface over a relatively short distance reduces the N and P levels in the water column. However, if the lake receives additional nutrient loading, elevated levels will likely cover a larger portion of the lake, further reducing water quality in the lake.  相似文献   

11.
In lakes which experience water quality problems due to the nuisance growth of blue-green algae, summer concentrations of chlorophyll a may not always be a meaningful measure of water quality for making management decisions. Models for the prediction of summer mean blue-green algal biomass were thus developed from data collected from five systems located in North America and Sweden. It is suggested that the model of choice is log BG =?0.142 + 0.596 log TP – 0.963 log Z, where BG is the biomass of blue-green algae (g m?3), TP is the concentration of total phosphorus (mg m?3), and Z is the mean depth of the lake (m). When coupled to current loading models, this model can potentially be used to assess the impacts of phosphorus loading reductions on threshold odor in water supplies.  相似文献   

12.
The storage of fresh agricultural products is not easy because of its high moisture. Dehydration is an efficient preservation method. The investigation of drying modeling and transfer characteristics are important for selecting operating conditions and equipment design. The drying behavior of Lactuca sativa slices, with the thickness of 2 mm, was investigated at 60.0–80.0°C and 0.60–1.04 m sec?1 velocity in a convective hot air drier. The mass transfer during the drying process was described using six thin drying models. The convective heat transfer coefficient α and mass transfer coefficient kH were finally calculated. The results showed that the drying process could be separated into three stages including accelerating rate, constant rate, and falling rate period, which was influenced by hot air temperature and velocity, and the Modi?ed Page model agreed well with the experimental data. When the operating temperature was increased from 60.0°C to 80.0°C, α was found increased from 88.07 to 107.93 W·m?2·K?1, and kH increased from 46.32 × 10–3 to 68.04 × 10–3 kg·m?2·sec?1·ΔH?1. With the increase of air velocity from 0.60 to 1.04 m·sec?1, α was increased from 78.85 to 101.35 W·m?2·K?1, and kH was enhanced from 51.78 × 10–3 to 65.85 × 10–3 kg·m?2·sec?1·ΔH?1.  相似文献   

13.
Velocity and depth preference curves for juvenile and adult red shiners (Notropis lutrensis) were developed for each season of the year. The incremental methodology, developed by the U.S. Fish and Wildlife Service for quantifying the amount of physical habitat available for fish, was applied as a basis for recommending minimum stream flows for life stages of red shiners and channel catfish (Ictalurus punctatus) in the Washita River below Foss Reservoir. The minimum stream flow required to support populations of red shiners and channel catfish was estimated to be 0.60 m3/s during all months except April and May, during which flushing flows of 3.0 m3/s were recommended. Under drought conditions a contingency flow of 0.18 m3/s was recommended for August through March, a flushing flow of 2.4 m3/s for April and May, and a flow of 0.30 m3/s for channel catfish spawning in June and July. Standing crop of adult red shiners per weighted usable area averaged 2.73 g/m2 (27 kg/ha) for two sites on the Washita River. A positive relation between standing crop and weighted usable area was suggested. Use of the incremental methodology on the study reach below Foss Reservoir required 96 person-hours of labor, excluding training, travel, and developing preference curves, and a total cost of $1,762, of which $1,200 was for the purchase of equipment.  相似文献   

14.
Fuel ethanol was produced using rice straw with the simultaneous saccharification and fermentation (SSF) method. The influence of cellulose liquefaction pretreatment and Fe2+ quantity on ethanol productivity was investigated in detail. At the same time, the optimized conditions including fermentation temperature, Fe2+ amount, yeast inoculation quantity, and the inoculated cellulose enzyme dosage in the SSF process were systematically investigated by analyzing fuel ethanol yield. The result indicated that fuel ethanol yield was 0.319 g per gram rice straw by SSF approach when appropriate amount of Fe2+ was added into the reaction system. The optimal technology parameters were: fermenting temperature of 36°C, Fe2+ amount of 4 mg · g?1, inoculating proportion of 20%, cellulose enzyme of 20 IU · g?1, and Pachysolen tannophilu/saecharomyces cerevisiae of 1:2 ratio. The ethanol yield under the best conditions was larger than that of the control group. We hope that this research can facilitate to achieve large-scale comprehensive utilization for rice straw.  相似文献   

15.
In this study, the distribution of airborne manganese (Mn) bound with particulate matters (PM) was investigated using data sets collected from 15 major cities in Korea over a 16-year time span (1991–2006). The mean Mn concentration measured from all the major cities in Korea throughout the entire study period was 71 ng m?3, while the annual mean values of different cities ranged from 10.5 ng m?3 in Yeosu (2003) to 615 ng m?3 in Wonju (2006). The Mn levels were considerably larger in industrialized areas than in other land-use types. The Mn concentrations in the major industrial cities of Pohang, Incheon, and Ansan averaged 255, 98.2, and 84.6 ng m?3, respectively; these values were far higher than those measured typically at most cities, e.g., 20–60 ng m?3. Seasonal patterns characterized by the peak occurrence in spring and the noticeable drop in summer reflected the effects of the massive PM inflow from China (spring) and effective washout by summer monsoon in East Asia, respectively. Examination of Mn data over a long-term period indicated that the temporal trends of Mn seen in most cities were fairly constant through time since the 1990s, although some abnormalities were observed in cities of strong man-made activities (e.g., Pohang and Wonju). In light of the severity of airborne Mn pollution in many urban areas, it is desirable to establish an abatement strategy that can help effectively reduce Mn levels.  相似文献   

16.
ABSTRACT: Hyalite Reservoir, Montana, was studied to determine properties of this small, montane, headwater, deep-release reservoir relative to reservoirs at lower elevations. While retention times for waters were as brief as 12 d, the mean residency of 40 d from mid-March to mid-December was within the range reported for other reservoirs. No significant through-reservoir gradients for suspended sediments were observed, contrasting to observations for most reservoirs. Thermal stratification, evident during the first part of the summer, was disrupted in August by cool, dense tributary inflows and strong wind-induced mixing. Dissolved oxygen concentrations paralleled temperature patterns in the reservoir; lowest average values for both occurred in waters sampled nearest the outlet. Total phosphorus averaged greater than twice the total nitrogen concentrations; greatest average concentrations for both were found in the near-bottom waters nearest the outlet. Enrichment of nitrogen concentrations in outflow over inflow waters is hypothesized to occur through nitrogen fixation by Aphanizonwnon flos-aquae. Despite the relatively high quality of waters from tributary inflows, an algal bloom, chlorophyll a concentrations, and primary productivity estimates suggested that the reservoir was mesotrophic. Circulation of waters within the reservoir was primarily influenced by wind-induced mixing, thermal gradients, and currents produced by the deep-water outlet.  相似文献   

17.
We investigated the effects of herbage removal on three subalpine meadow plant communities in the Rock Creek drainage of Sequoia National Park, California, USA. In the xericCarex exserta Mkze. (short-hair sedge) type, annual aboveground productivity averaged 19 g/m2 in control plots (clipped once after plant senescence in late September) over a five-year period. Annual aboveground productivity was enhanced about 30%–35% when plots in this community type were clipped more frequently (i.e., additional herbage removal in the early, mid, and late seasons) during each of four treatment years but was reduced by 13%–19% during a fifth (recovery) year in which all but late September clipping was suspended. In a moderately mesicEleocharis pauciflora (Lightf.) Link. (few-flowered spike rush)-Calamagrostis breweri Thurb. (short-hair grass) type, control plot productivity averaged 115 g/m2/yr and was reduced by 20–30% by the additional herbage removal. A more mesicDeschampsia caespitosa (L.) Beauv. (tufted hairgrass)-Carex rostrata Stokes, (beaked sedge) type had the greatest mean above-ground productivity (169 g/m2/yr) but also showed damage (i.e., decrease in productivity by 15%–20%) caused by the additional herbage removal. These data suggest that longterm, intensive herbage removal may be more detrimental to moderately mesic and mesic subalpine meadow community types than to xeric types.  相似文献   

18.
There is increasing awareness of the damage caused to valuable and often unique sensitive habitats by people pressure as degradation causes a loss of plant species, disturbance to wildlife, on-site and off-site impacts of soil movement and loss, and visual destruction of pristine environments. This research developed a new perspective on the problem of recreational induced environmental degradation by assessing the physical aspects of soil erosion using the fallout radionuclide caesium-137 (137Cs). Temporal sampling problems have not successfully been overcome by traditional research methods monitoring footpath erosion and, to date, the 137Cs technique has not been used to estimate longer-term soil erosion in regard to sensitive recreational habitats. The research was based on-sites within Dartmoor National Park (DNP) and the South West Coast Path (SWCP) in south-west England. 137Cs inventories were reduced on the paths relative to the reference inventory (control), indicating loss of soil from the path areas. The Profile Distribution Model estimated longer-term erosion rates (ca. 40 years) based on the 137Cs data and showed that the combined mean soil loss for all the sites on ‘paths’ was 1.41 kg m?2 yr?1 whereas the combined ‘off path’ soil loss was 0.79 kg m?2 yr?1, where natural (non-recreational) soil redistribution processes occur. Recreational pressure was shown to increase erosion in the long-term, as greater soil erosion occurred on the paths, especially where there was higher visitor pressure.  相似文献   

19.
This study examined algal productivity and nitrate assimilation in a 2.85 km reach of Cucamonga Creek, California, a concrete lined channel receiving treated municipal wastewater. Stream nitrate concentrations observed at two stations indicated nearly continuous loss throughout the diel study. Nitrate loss in the reach was approximately 11 mg/L/d or 1.0 g/m2/d as N, most of which occurred during daylight. The peak rate of nitrate loss (1.13 mg/l/hr) occurred just prior to an afternoon total CO2 depletion. Gross primary productivity, as estimated by a model using the observed differences in dissolved oxygen between the two stations, was 228 mg/L/d, or 21 g/m2/d as O2. The observed diel variations in productivity, nitrate loss, pH, dissolved oxygen, and CO2 indicate that nitrate loss was primarily due to algal assimilation. The observed levels of productivity and nitrate assimilation were exceptionally high on a mass per volume basis compared to studies on other streams; these rates occurred because of the shallow stream depth. This study suggests that concrete‐lined channels can provide an important environmental service: lowering of nitrate concentrations similar to rates observed in biological treatment systems.  相似文献   

20.
A new contact oxidation filtration separation integrated bioreactor (CFBR) was used to treat municipal wastewater. The CFBR was made up of a biofilm reactor (the upper part of the CFBR) and a gravitational filtration bed (the lower part of the CFBR). Polyacrylonitrile balls (50 mm diameter, 237 m2/m3 specific surface, 90% porosity, and 50.2% packing rate) were filled into the biofilm reactor as biofilm attaching materials and anthracite coal (particle size 1–2 mm, packing density 0.947 g/cm3, non-uniform coefficient (K80 = d80/d10) < 2.0) was placed into the gravitational filtration bed as filter media. At an organic volumetric loading rate of 2.4 kg COD/(m3 d) and an initial filtration velocity of 5 m/h in the CFBR, the average removal efficiencies of COD, ammonia nitrogen, total nitrogen and turbidity were 90.6%, 81.4%, 64.6% and 96.7% respectively, but the treatment process seemed not to be effective in phosphorus removal. The average removal efficiency of total phosphorus was 60.1%. Additionally, the power consumption of the CFBR was less than 0.15 kWh/m3 of wastewater treated, and less than 1.5 kWh/kg BOD5 removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号