首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
In an intertidal Zostera noltii Hornem seagrass bed, food sources used by sediment meiofauna were determined seasonally by comparing stable isotope signatures (δ13C, δ15N) of sources with those of nematodes and copepods. Proportions of different carbon sources used by consumers were estimated using the SIAR mixing model on δ13C values. Contrary to δ15N values, food source mean δ13C values encompassed a large range, from −22.1 ‰ (suspended particulate organic matter) to −10.0 ‰ (Z. noltii roots). δ13C values of copepods (from −22.3 to −12.3 ‰) showed that they use many food sources (benthic and phytoplanktonic microalgae, Z. noltii matter). Nematode δ13C values ranged from −14.6 to −11.4 ‰, indicating a strong role of microphytobenthos and/or Z. noltii matter as carbon sources. The difference of food source uses between copepods and nematodes is discussed in light of source accessibility and availability.  相似文献   

2.
In estuaries, eelgrass meadows contribute to fundamental ecosystem functions of estuaries, providing food to several predators and buffering the negative effects of eutrophication. We asked whether the presence of the eelgrass Zostera noltii decreased the nitrogen concentration in the overlying water, affected the sources of nitrogen sequestrated by primary producers and changed the benthic and pelagic food web structures. We also studied the importance of these food webs in providing food to fish. We compared bare sediment to sediment covered by a Z. noltii meadow, and examined nutrient concentrations in the water column and δ15N in primary producers as indicators of anthropogenic inputs of nutrients. We then measured both δ13C and δ15N in the tissues of plants and consumers to establish food web structures. There were no differences in the concentrations and sources of nitrogen between sites. Rather, δ15N values indicated anthropogenic inputs of N (e.g. sewage discharges, agriculture) in both sites. There were no major differences in the structure of the planktonic food web, which was in part sustained by particulate organic matter and supported most predator fish, and in the structure of the benthic food web. Nonetheless, there were differences in the sources of food for omnivore consumers and for the detritivore Scrobicularia plana. Overall, the benthic food web did not use food derived from the eelgrass or macroalgae deposited on the substratum. Suspension feeders used particulate and sediment organic matter, whereas the δ13C and δ15N values of the other consumers indicated a likely contribution of benthic microalgae. Furthermore, in both habitats we found large variability in the isotope signatures of benthic macrofauna consumers, which did not allow distinguishing clearly different trophic groups and indicated a high level of omnivory and a mixed diet opportunistically making use of the availability of food in the surroundings.  相似文献   

3.
Disaggregating seagrass meadows and studying its components separately (clones, ramets, shoots) can provide us insights on meadow dynamics and growth patterns. The clonal growth, dependent upon clonal rules may regulate and impose constraints to plant architecture and, therefore, determine how individual clones evolve into the environment. In order to investigate the relationship between clonal growth rules and clone architecture, the belowground network architecture of single-clones of the seagrass Zostera noltii was studied. Networks were traced in situ after washing out the overlying sediment, and network characteristics were measured using digital analysis: area covered by clone, total rhizome length, type of rhizomatic axes (main, secondary, tertiary, quaternary), number and length of the internodes, branching angles and branching frequencies. This approach revealed that Z. noltii is able to develop into large clones integrating up to 300 internodes, 676 cm of rhizome, 208 shoots and 4,300 cm2 of plant area. Internodal length depended on both, the distance to the apical shoot (time effect) and the axes type (apical dominance effect). However, average branching angle was independent of axis type (average 58.3 ± 0.75), but varied significantly depending on the distance from the apical shoot. This average branching angle allows Z. noltii maximize the rate of centrifugal expansion, maintaining a high density in colonized areas to produce close stands but also minimizing the investment in belowground biomass and ramets overlapping. The clonal architecture of Z. noltii seems to be regulated by the interaction of both, apical dominance strength and clonal integration distance. Moreover, clonal growth rules and growth pattern seem to constrain clonality through (clonal) plant architecture regulations (i.e. branching is restricted in secondary axes, similar average branching angles regardless the axes, the higher the distance to the apex the higher the number of internodes in secondary axes, shorter internodes in secondary and tertiary axes). Future research efforts should focus on how these complex relationships between apical dominance and clonal integration interact to elucidate the temporal (seasonal) and spatial scales of both processes and the outcome at the plant architectural level.  相似文献   

4.
Two-year old Ulmus laevis Pall (U. laevis) seedlings were cultivated in a three-month hydroponic experiment with inorganic (aresenite – As(III) and arsenate – As(V)) and organic (dimethylarsenic acid – DMA(V)) arsenic forms, at 0.06 and/or 0.6?mM concentrations. Further, the profile and content of total low molecular weight organic acids (LMWOAs) were investigated in the rhizosphere, roots and leaves of U. laevis. Obtained results showed that the addition of As(III) or As(V) individually or in a mixture led to increased LMWOAs concentration in the rhizosphere, especially of oxalic and malonic acids, in comparison to the control, while in roots the overall content of the profiled LMWOAs decreased. In both rhizosphere and roots, addition of the DMA(V) form resulted in the inhibition of LMWOAs exudation into the rhizosphere and their creation in plant roots. Leaves were characterised by a higher content of LMWOAs than in the rhizosphere and roots for all experimental systems, where the profile and content of LMWOAs was strictly correlated with the analysed As forms. Our study indicated that creation of LMWOAs in U. laevis organs and their exudation to the rhizosphere could be responsible for the As toxicity tolerance of the plants.  相似文献   

5.
Alkaline phosphatase activity (APA) was determined in 44 species of marine macrophytes collected throughout 1991 and 1992 along the southern coast of Spain. Activity varied between 0.83 mol paranitrophenol (pNP) released g-1 dry wt h-1 in Ulva rigida var. gigantea and 238.8 mol pNP g-1 dry wt h-1 in Bangia fuscopurpurea. Using a histochemical method, APA sites were located in five of these species: Corallina elongata Ellis et Soland, Gelidium latifolium (Grev.) Thur. et Born., G. sesquipedale (Clem.) Born. et Thur., Porphyra umbilicalis (L.) Kützing and Zostera noltii Hornem. Enzymatic activity was found in the outer part of the thallus, either on the cell wall or in the cortical cells. In the marine phanerogam Z. noltii activity was also located in the vascular bundle. The results suggest that APA is present in many, if not all, marine macrophytes from southern Spain, and plays a relevant role in the utilization of dissolved organic phosphorus compounds.  相似文献   

6.
Since the substantial loss of subtidal eelgrass (Zostera marina L.) in the 1930s, seagrass beds in the Wadden Sea are limited to the intertidal zone and dominated by Z. noltii Hornem. This study deals with the effect of vegetated tidal flats on quantities of mobile epifauna and proves empirically the function of seagrass canopies as a refuge for marine animals remaining in the intertidal zone at ebb tide. Drop-trap samples were taken in the Sylt-Rømø Bight, a shallow tidal basin in the northern Wadden Sea, on vegetated and unvegetated tidal flats during July and August 2002, and during the entire growth period of Z. noltii from May to September in 2003. The species composition in Z. noltii and bare sand flats showed minor differences since only two isopod species (Idotea baltica and I. chelipes) occurred on Z. noltii flats exclusively. Juvenile shore crabs (Carcinus maenas L.), brown shrimps (Crangon crangon L.) and common gobies (Pomatoschistus microps Krøyer) were also found abundantly on bare sand flats. However, the results showed significantly higher abundances and production of these dominant species on vegetated tidal flats. Additionally, the analyses of faunal size classes indicated higher percentages of small individuals in the seagrass bed during the entire sampling period. Despite drastic diurnal fluctuations of dissolved oxygen at low tide, faunal density in the residual water layer remaining in seagrass canopies at ebb tide was found to be consistently higher than that found in artificially created tide-pool units. Although species composition of mobile epifauna did not basically differ between vegetated and unvegetated tidal flats, Z. noltii beds are considered to contribute quantitatively to the function of tidal flats, as an extended juvenile habitat for some of the most important species of the Wadden Sea food web.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

7.
In this study, mangrove seedlings (Kandelia obovata (S. L.)) were cultivated in rhizo-boxes, which contain sediments collected from natural mangrove forest and modified with different rates of sulphate and phosphate. The fraction distributions of Zn, Cd, Cu, Ni and Pb in rhizosphere and non-rhizosphere sediments were studied by using a sequential extraction method. Metal concentrations in plant tissues and iron plaque on root surface were also determined to reveal migration variation of heavy metals in the plant-sediment system. The results showed that the activities of K. obovata roots enhance the reducible metals while reducing acid-extractable and oxidisable metals; sulphur amendment benefits the combination of metal ions with S2– and therefore reduces the bioavailability of metal pollutants; addition of sulphur also improves the content of iron plaque on the root surface, which plays an important role in metal accumulation by K. obovata root tissue; the addition of sulphur markedly reduces the concentration of Cd in roots, but significantly enhanced the concentrations of Cu, Zn, Ni and Pb in roots. The results indicate that sulphur and phosphorus content in mangrove sediment, and the growth of mangrove plant can significantly influence the migration of heavy metals in the mangrove wetland ecosystem.  相似文献   

8.
Respiration and excretion by the ctenophore Mnepiopsis leidyi   总被引:1,自引:0,他引:1  
Respiration (dissolved oxygen and carbon dioxide) and excretion (dissolved organic carbon, inorganic and organic nitrogen and phosphorus) rates were measured for a variety of sizes of Mnemiopsis leidyi over a temperature range of 10.3° to 24.5°C. Both respiration and excretion rates were a direct linear function of animal weight and very temperature sensitive (Q104). Oxygen uptake ranged from 155 to 489 g at O/(g dry weight) day-1 and carbon dioxide release from 43 to 166 M. Organic carbon made up about 38% of the total carbon released. Inorganic nitrogen excretion, exclusively in the form of ammonium, comprised 54% of the total nitrogen release and ranged from 10 to 36 M NH4/(g dry weight) day-1. Average release of dissolved primary amines (expressed as glycine equivalents) equaled 43% of the organic nitrogen fraction. Inorganic phosphorus release ranged from 2.0 to 4.9 M/(g dry weight) day-1 and made up about 72% of the total phosphorus loss. The turnover of elements in the body was calculated as 5 to 19% per day for carbon and nitrogen, depending on the temperature, and an even higher 20 to 48% per day for phosphorus. These values are comparable to rates observed for small, active zooplankton.  相似文献   

9.
Observations have been made on seasonal fluctuations in dissolved inorganic nutrients, internal reserves of nitrogen and growth rates in Laminaria longicruris. The onset of winter growth in shallow-water stations (6 and 9 m) correlated well with improved dissolved nitrate conditions in the sea. During the winter, reserves of NO 3 - were accumulated by the plants and reached maximum values of 150 moles per g fresh weight in March. This represents a concentration factor of approximately 28,000 over the ambient levels, or an internal nitrogen reserve of 2.1% of the dry weight of the tissue. Depletion of this nitrogen pool followed the disappearance of the external NO 3 - with a lag period of up to 2 months. Rapid kelp growth was measured during this period. Reserves of organic nitrogen also reached maximum values in March and declined slowly throughout the summer into autumn. It is suggested that the combined inorganic and organic nitrogen reserves sustain the rapid growth rates into July and at reduced rate through the late summer. Fertilization of an experimental perimental kelp bed with NaNO3 increased the internal plant reserves of NO 3 - and produced a much improved summer growth rate. The enriched plants developed very small reserves of carbohydrate during the rapid summer growth phase.NRCC No. 15549.  相似文献   

10.
Measurements of the defecation rate of Salpa thompsoni were made at several stations during two cruises west of the Antarctic Peninsula in 2004 and 2006. Rates were quantified in terms of number of pellets, pigment, carbon and nitrogen for a wide size range of both aggregate and solitary salps. Measured defecation rates were constant over several hours when salps were held at near-surface conditions from which they had been collected. The defecation rate per salp increased with both salp size and the ambient level of particulate organic matter (POM) in the upper water column. The weight-specific defecation rate ranged between 0.5 and 6% day−1 of salp body carbon, depending on the concentration of available particulate matter in the water. Carbon defecation rates were applied to biomass estimates of S. thompsoni to calculate daily carbon defecation rates for the populations sampled during the two cruises. Dense salp populations of over 400 mg C m−2 were calculated to produce about 20 mg C m−2 day−1, comparable to other major sources of vertical flux of organic material in the Southern Ocean. Measured sinking rates for salp fecal pellets indicated that the majority of this organic material could reach deep sediments within a few days, providing a fast and direct pathway for carbon to the deep ocean.  相似文献   

11.
Above and below-ground biomass and nitrogen and carbon composition ofSpartina maritima, Halimione portulacoides andArthrocnemum perenne, dominating species in plant communities of the lower, middle and higher salt marsh, respectively, were compared in an estuarine salt marsh in Portugal. Plant and soil nitrogen and carbon pools were estimated. For all three species root biomass was significantly higher (70–92% of total biomass) than above-ground biomass. The percentage of root biomass was related to the location of the plants in the marsh: higher values were found in plants growing in the lower salt marsh where the sediment was more unstable and subject to tidal action, which stresses the role of the roots as an anchor. For all three species nitrogen concentrations were highest in leaves, reflecting the photosynthetic role of the tissue. For carbon higher concentrations were found in the stems, with the exception ofS. maritima. In general, lower nitrogen concentrations were found in summer, which can be explained by dilution processes due to plant growth. For both nitrogen and carbon, higher concentrations were found in the soil surface layers. Higher soil nitrogen and carbon levels were associated with higher organic matter contents. Most of the nitrogen in the salt marsh occurred in the sediments (0–40 cm) and only ca. 5.7–13.3% of the total was found in the plants. The greater portion (76.5%–86%) of carbon was found in the sediment.  相似文献   

12.
ABSTRACT

The study was aimed at the migration and transformation of lead compounds in the rhizosphere, its accumulation in plants under the influence of the rhizosphere bacteria. For experiment, soil samples of the technogenous ecosystem contaminated differently by lead have been selected for plant growing. The samples were subdivided into control soil and the soil, inoculated by Azotobacter and Bacillus rhizobacteria. Lead concentrations have been analysed in easily exchangeable, carbonate, organic and Fe hydroxide-associated fractions as well in chelate forms and fulvic and humic acids. In soils, inoculated by rhizobacteria, there is an increased mobilisation of lead due to its decrease in humic acids and increase in fulvic acids. On technogenic soil, rhizobacteria initiate the immobilisation of Fe-hydroxide-bound, chelate-bound lead in the rhizosphere as well as lead occurring in roots. As a results, there is a decreased lead uptake by upper parts of plants. There is also a correlation between increasing soil alkalinity and increasing Pb accumulation in the roots of plants. The results of the experiment helped to understand more about the mechanisms of Pb compound behaviour under the influence of rhizobacteria that can be used for developing biotechnologies related to soil bioremediation and crop production.  相似文献   

13.
The aim of the study was to estimate Zn phytoextraction and changes in biomass of S?×?rubens growing in modified Knop's solution with different levels of Zn addition (0.5, 1.0, 2.5 and 5.0?mM). Obtained results were correlated with secretion of selected low-molecular-weight organic acids (LMWOAs) in the rhizosphere, roots and leaves. An increase in Zn concentration in Knop's solution resulted in Zn accumulation in roots, shoots and leaves. The highest accumulation was observed for plants growing in 5?mM Zn, at concentration levels 4741.36?±?98.66, 1227.31?±?16.57 and 2241.65?±?34.90?mg?kg?1 DW in roots, shoots and leaves, respectively. The bioaccumulation factor and the translocation factor for plants growing in 0.5, 1.0 and 2.5?mM Zn clearly indicate that this Salix taxon is an effective Zn accumulator. The general reduction of Salix biomass with an increase in Zn concentration in the solution was observed. In the rhizosphere, the total LMWOA concentration was almost 0.93?µmol?kg?1 DM for control (Zn free) plants, while for 5.0?mM of Zn it was 4.9?µmol?kg?1 DM. Increasing concentrations of acids were observed in roots (1.34 for the control and 5.57?µmol?kg?1 DM for plants treated with 2.5?mM of Zn).  相似文献   

14.
Large areas of mangroves in India are heavily disturbed by cattle grazing, hypersalinity, and other human-induced impacts. In two disturbed Avicennia marina forests and two undisturbed A. marina and Rhizophora apiculata forests in the Pichavaram mangroves of the Vellar–Coleroon estuarine complex, southeast India, we measured the rates and pathways of microbial decomposition of soil organic matter to determine if human impact is altering biogeochemical activity within these stands. Rates of total carbon oxidation (TCOX) were higher in the undisturbed A. marina forest (mean 199 mol C m–2 year–1) than in the two impacted stands (43 and 79 mol C m–2 year–1); rates of total carbon oxidation in the R. apiculata forest averaged 75 mol C m–2 year–1. Sulphate reduction (range 21–319 mmol S m–2 day–1) was the major decomposition pathway (65–85% of TCOX), except at the most disturbed forest (30% of TCOX). Rates of sulphate reduction at all sites peaked in sub-surface soils to a depth of about 1 m, leading to little carbon burial (3–5% of total C input). There was some evidence of measurable iron and manganese reduction in association with tree roots. Rates of microbial activity were rapid in comparison with rates measured in other mangrove soils, reflecting high rates of phytoplankton production and organic matter retention in this lagoon. Human-induced disturbance creates a sharp zonation of dry, hypersaline soil overlying less saline, wetter soil, suppressing surface microbial and root growth. We conclude that this vertical alteration of soil characteristics and biogeochemistry shifts the cycling of nutrients between trees and microbes to a disequilibrium state, partly explaining why mangroves are stunted in these declining forests.Communicated by G. F. Humphrey, Sydney  相似文献   

15.
Rates of ingestion of natural particulate organic matter and subsequent assimilation and respiration by zooplankton at Enewetak Atoll lagoon (Marshall Islands) were measured using a flow-through system. Maximum daily ingestion rates of carbon and nitrogen, expressed as a percentage of the body content, were 79 and 37%, respectively, for the large copepod Undinula vulgaris; 112 and 65%, respectively, for a group of mixed small copepods; and 61 and 34%, respectively, for the pteropod Creseis acicula. Daily metabolic carbon losses, expressed as above, were 63% for U. vulgaris, 88% for the small copepods, and 50% for C. acicula. Assimilation efficiences of carbon and nitrogen ranged from about 86 to 91%. The above rates are generally higher than in previous reports for similar sized zooplankton in temperate waters, while the daily growth increments, expressed as a percentage of the body carbon content (4.8% for U. vulgaris, 8.6% for the small copepods, and 2.6% for C. acicula), are comparable. It appears that the high rates of ingestion and assimilation of organic matter are compensated by high metabolic losses. These results indicate that at least for carbon, tropical zooplankton may have low growth efficiencies ranging from 4 to 9%.  相似文献   

16.
Nitrogen fixation in the rhizosphere of marine angiosperms   总被引:9,自引:0,他引:9  
High rates of acetylene reduction were observed in systems containing excised rhizomes of the Caribbean marine angiosperms Thalassia testudinum, Syringodium filiforme and Diplanthera wrightii, and the temperate marine angiosperm Zostera marina. For 4 plant and plant-sediment systems the ratio of acetylene reduced/N2 fixed varied from 2.6 to 4.6. For T. testudinum the estimated rates of nitrogen fixation are in agreement with estimated requirements of the plant for nitrogen. For a typical T. testudinum stand, N2 fixation is estimated to be 100 to 500 kg N/hectare per year. Numbers of N2-fixing bacteria in the rhizosphere sediments were roughly 50 to 300 times more abundant than those in the nonrhizosphere sediments, and in both types of sediments were of the same orders as the estimated numbers of heterotrophic aerobes.Canadian IBP Contribution No. 137.  相似文献   

17.
Heterotrophic nitrogen-fixation (acetylene reduction) was measured during decomposition (under dark conditions) of Rhizophora mangle L. and Avicennia germinans (L.) Stearn leaf litter. Nitrogen-fixation rates in leaf litter increased following 24 d incubation, then decreased after ≃44 d for both species. Maximum rates of 66.2 and 64.6 nmol C2H4 g−1 dry wt h−1 were reached by R. mangle and A. germinans leaf litter, respectively. Higher fixation rates of leaf litter were associated with an increase in water content and sediment particles on leaf surfaces of both species. Rates of nitrogen fixation by diazotrophs attached to sediment particles were not significantly different from zero. With additions of d-glucose, ethylene production rates increased by factors of 625-, 34- and 7-fold for sediment, R. mangle and A.␣germinans leaf litter, respectively, compared to rates prior to enrichment. These organically enhanced rates of nitrogen fixation on leaves could be accounted for by increased activity associated with attached sediment particles and not the leaf material. Total phenolics [reported as tannic acid equivalent (TAE) units] decreased nitrogen-fixation rates when added to d-glucose-enriched sediment at >20 mg TAE l−1. Phenolic compounds could explain the initial lag in rates of nitrogen fixation during leaf-litter decomposition of R. mangle (initial content of 110.8 mg TAE g−1 dry wt), but not of A. germinans (initial content of 23.4 mg TAE g−1 dry wt). The higher phenolic content and reportedly lower carbon substrate of R. mangle did not result in species-specific differences in either the magnitude or temporal pattern of nitrogen fixation compared to A. germinans leaf litter. We conclude that the availability of organic substrates leached from the leaf litter along with colonization by the heterotrophic diazotrophs (as indicated by sediment accumulation) controls nitrogen-fixation rates in a similar manner in the leaf litter of both species. Received: 8 August 1997 / Accepted: 4 December 1997  相似文献   

18.
A partial carbon budget was calculated for a population of the deposit feeding polychaete Nereis succinea (Frey and Leuckart) for a North Carolina, USA salt marsh in order to determine if the ingestion and assimilation of microbial carbon was sufficient to meet the carbon requirement. Carbon required by the population was estimated by calculating annual production, 2.1 g C m-2, and respiration, 9.4 g. There was no net release of dissolved organic carbon. Annual consumption of microbial carbon (as determined by ATP) was estimated to be 5.2 g m-2. Assimilation efficiency of heterotrophic, detrital microbes was estimated to be 57%. If this value is used for all the microbial carbon, then total assimilation was 3.0 g C m-2, or about one-fourth the carbon requirement. N. succinea was able to assimilate carbon from sterile plant detritus which suggests that some of the carbon needed to balance the budget may come from direct uptake of the plant substrate. Other possible additional sources of carbon include consumption of meiofauna and uptake of dissolved organic matter.  相似文献   

19.
This study was carried out to evaluate water quality, sediment and plant vegetation in eight tributaries of the Mankyeong River for enhancement of natural purification. Among the tributaries, the Iksancheon water had the highest concentration of BOD, T–N and NH4–N due to inflow of swine wastes from the livestock district. The Yucheon water had the highest level of electrical conductivity and SO 4 2– due to inflow of mis-treated wastewater from industrial districts. The Tabcheon had generally similar concentrations of nitrogen and phosphate to that of the upstream of the Mankyeong River: agricultural activity along the Tabcheon appeared to have little negative influence to the water quality. Among various sediments, concentration of organic matter, nitrogen and phosphate were high in the Iksancheon and the Yucheon due to the livestock wastes and industrial wastes. There were 282 species of plants during summer with 43 aquatic plants, 57 hydrophytes, 178 waterside plants and 4 terrestrial plants. Some plant resources were recommended due to much absorption of nitrogen and phosphate for enhancement of natural purification. C. demersum and H. verticillata were recommended in the submerged aquatic plants, H. dubia, N. indica and N. subinteperrimum in the floating leaf aquatic plants, P. communis, Z. latifolia and T. orientalis in the emerged aquatic plants, C. scutata and P. distichum in the waterside plants.  相似文献   

20.
Analysis of variations in water–soluble organic matter (WSOM) δ13C of leaves and phloem can efficiently describe the δ13C distributions within plants and identify the temporal variation of δ13C. In this study, WSOM δ13C values of both leaves and phloem (twig, stem, and root) of Platycladus orientalis were measured during seven sunny days, including 2–hour interval measurements at three days for diel pattern analysis and 6–hour interval measurements at the remaining four days for day–to–day variation analysis. Analysis of WSOM δ13C in different plant organs showed that 13C was generally depleted from leaves to twigs, then enriched in stems and subsequently depleted in roots. Stems were significantly 13C–enriched compared to twigs (p?<?0.05), while δ13C differences between stems and other organs and among leaves, twigs and roots were not significant (p?>?0.05). No clear diel patterns in δ13C of leaves and phloem were found. Daily average δ13C values indicated that all plant organs had more positive values on sunny days during the dry season than during the wet season. Both photosynthetic and post–photosynthetic fractionation influence variations in WSOM δ13C. These results have implications for research on plant physiology and plant water use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号