首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 630 毫秒
1.
确定经济合理的排氡及其子体所需风量,是铀矿井和其他有放射性危害矿井通风的一个重要问题。矿井排氡及其子体的风量计算方法按排除的对象分为排氡和排氡子体两种。计算的依据是将井下空气中氡或氡子体浓度稀释到国家规定的最大容许浓度。矿井排除氡及其子体风量计算方法按整体或分点计算可分为下列两种:  相似文献   

2.
铀矿山通风是稀释和排除井下空气中的氡子体,以减少其危害的主要措施。因此,确定经济合理的通风风量是矿山通风设计计算中的一个重要问题。排氡子体风量计算公式是根据氡及其子体放射性衰变规律推导出来的。由于按衰变规律建立氡子体浓度积累方程相当复杂,国内外过去都用图解法(或图表法)计算风量,直到70年代后期才出现几种排氡子体风量计算公式。  相似文献   

3.
铀矿开采和冶炼是核燃料循环的第一个环节.铀矿山职业危害除有毒有害因素外,还存在放射性危害。在铀矿山掘进和采矿过程中,主要危害有铀矿粉尘、氡及其子体、矿石γ外照射和表面性沾污等。对铀矿职工健康威胁最大的是铀矿粉尘和氡及其子体。粉尘浓度高会导致矽肺病,氡及其子体浓度高会诱发肺癌,这已被国内外专家们所公认,并为大量流行病学调查所证实。矽肺病和肺癌是铀矿山两种主要的职业病。  相似文献   

4.
在铀矿开发过程中,除存在一般矿业的有毒有害因素外,还具有其特殊的放射性危害。当矿工长期暴露在高浓度氡、氡子体环境中,累积照射量达到一定数值后,可使肺癌发病率明显增高。因此铀矿山对氡、氡子体的防护问题构成了辐射防护领域中重要而独特的部分。在铀矿山工程中,通风成本约占矿石成本的15%,通风耗电约占矿井总电  相似文献   

5.
针对铀矿井下受限空间内氡及氡子体浓度分布特征,分析受限空间含氡作业环境对人体的危害机制,提出基于“人—机—环”互联自适应的铀矿智能通风降氡方案,架构基于ARDUINO的氡气监测及智能调控系统,设计系统的“硬件”和“软件”方案。该系统的核心硬件为ARDUINO开发板和ESP8266-WiFi模块,铀矿粉尘浓度、氡及其子体浓度、风速动态数据由相应传感器获取,通过各传感数据采集器以相应的通信协议传输至ARDUINO主控,ARDUINO主控输出指令至通风设备及报警装置。系统同时搭建网络云平台,实现环境监测的远程监控和智能通风系统的远程控制。该系统能够基于物联感知获取环境数据,进行智能控制逻辑运算并实现通风设备自适应调控响应,从而安全、高效、稳定、低耗地调控铀矿井下空气质量指数。  相似文献   

6.
在铀矿水冶生产过程中,氡子体及气溶胶会对人呼吸系统产生放射性危害。为了改造铀矿水冶生产的通风除尘设施,两年来我们做了超高压静电抑制氡子体、气溶胶实验,收到了初步效果。 氡子体与危害 铀镭共生于铀矿石中,镭衰变为氡气,随着矿石破碎、运输而析出。氡对人危害性小,因为它在衰变到 RaA前,大部分都被人呼出,只有少量通过肺泡进入血液,然后积聚在含脂肪较多的器官和组织中。氡在连续衰变过程中形成多种元素,称为氢子体。氡子体包括下J“(针)、*卜‘气铅)、巳“‘(针)、*!“‘(%)等,它们都是固体微粒。形成离子态的子体微粒,容易与空气…  相似文献   

7.
铀矿井通风是以降低井下工作面空气中氡及其子体浓度为主要目的,亦称排氡通风。排氡通风是矿井通风的一个分支,矿井通风学的一般知识都适用于排氡通风。不过,仅仅依靠矿井通风的一般知识还不能搞好排氡通风。因为其中没有充分反映它的特点,也就是排氡通风所特有的规律。目前,对排氡通风特点的认识还不一致。这里粗浅地谈一谈个人的认识。按井下氡的析出量计算风量和分配风量,这是排氡通风的第一个特点。  相似文献   

8.
十三、怎样计算铀矿井通风所需风量? 铀矿山通风所需风量,主要按排除氡及其子体计算。按排氡计算,即根据矿井氡析出量和回风流中最高允许浓度计算。按排氡子体计算,即根据矿井中氡子体浓度、通风体积和完全换气时计算。这两种计算方法如下: 1.按排氡气计算所需风量根据稀释和排除矿井氡计算所需风量,设计中一般只考虑氡的主要来源(即从矿体  相似文献   

9.
根据我们对三十个金属矿山井下氡危害的调查,大部分矿山井下氡及氡子体浓度,在独头巷道区普遍要高于贯穿风流区,尤其是不通风的独头巷道,氡积累浓度值超过允许标准几倍、几十倍甚至上百倍。局部通风虽然是降低独头巷道中氡子体浓度的有效措施,但是,并下空气污染状况不同,按排尘及排炮烟的要求所采取的局部通风措施,并  相似文献   

10.
以铀系、钍系、锕系为主的放射性核素广泛分布在地壳上.非铀矿山,如煤矿、金属和非金属矿同样存在铀、钍放射性核素。一般情况下非铀矿山井下矿岩中的铀、钍含量常常高于地壳中的平均值,局部地方甚至接近和超过铀矿开采工业的边界品位。据调查,我国井下煤矿中,矿岩或煤层铀的品位为百万分之几到万分之几.~(233)U 是放射性气体~(222)Rn 的母体。氡形成之后,经扩散、渗流,由岩石、土壤表面进入大气,并衰变成子体,所以氡及其子体的危害不仅铀矿山存在,非铀矿山包括煤矿也存在。  相似文献   

11.
通常认为,通风是控制氡和氡子体的主要手段。但过大地增大风量,不仅会造成经济上的损失,而且通风效果不一定好,有时甚至适得其反。理论研究和通风实践证明,通风方式对氡的析出量和氡进入矿井空间的影响很大。在铀矿井下,氡除按其固有的规律衰变外,还继续以扩散和渗流的形式  相似文献   

12.
一、铀矿开采中的主要有害因素有哪些?铀矿开采中的有害因素包括放射性和非放射性两个方面。放射性有害因素主要有氡和氡子体、含有铀镭放射性物质的粉尘和放射性气溶胶,γ射线外照射以及α、β放射性  相似文献   

13.
(四)防止粉尘和放射性气溶胶危害的措施铀矿防尘的安全卫生意义深远而且任务重。开采铀矿时,矿尘的危害不单是粉尘中游离SiO2可以导致矿工尘肺病,更大的危害在于粉尘成分中有放射性同位素,而且有氡子体沉积在呼吸性粉尘上又形成极细微的气溶胶,这不仅加速尘肺病的发展,更能促进矿工肺癌的发生。所以,放射性矿山的防尘必须配合防氡,采取综合技术措施,加强个体防护。  相似文献   

14.
井下氡及氡子体的危害是导致矿工肺癌的主要因素之一。我国许多非铀金属矿山大多也存在氡的危害,井下排氧降氡的问题已日益受到重视,并曾提出过一些较有效的防护方法。但是对这个问题的解决,目前仍处于研究阶段。本文主要根据在云锡井下进行降氡研究取得的初步成果,阐明通风压力分布对控制氡污染的有效性。  相似文献   

15.
铀矿地下开采中,采场是生产活动的主要场所,也是产生氡和氡子体的主要地点之一。目前控制氡及其子体行之有效的方法仍然是通风,因此搞好铀矿采场的通风,对保护矿工身体健康,促进铀开采的发展具有重要意义。地下铀矿山常用的采矿方法主要有充填法、崩落法和留矿法。其中充填法采场约占产量60%,崩落法采场约占30%,留矿法采场近年有增加的趋势。本文根据这三类采场氡析出的特点,结合近年来科研生产的经验,试图对这三类采矿方法的采场通风降氡经验加以总结,以促进采场通风降氡技术的发展和采场通风管理水平的提高。  相似文献   

16.
铀矿山属于非煤矿山,但其开采不同于一般非煤矿山。一是对矿石的识别,一般用肉眼难以做到,主要依靠放射性物探方法;二是铀具有放射性,氡不断地从矿岩暴露和矿井水析出并衰变成氡子体,因此,铀矿开采多了一项放射性防护的内容;三是对比其他非煤矿山,铀矿床品位低,仅为千分之几甚至万分之几,多数采用湿法冶金。因此,铀矿山在矿山地质工作、采矿方法和通风防护技术等方面具有特殊要求。  相似文献   

17.
据冶金部安全技术研究所积累的72个非铀矿山井下氡及其子体浓度的资料介绍,其中超过国家允许标准的矿山占34.6%,如果按达到0.3允许标准就认为有氡的危害,则占65.4%。可见非铀矿山氡的危害,必须引起广大矿山工作者的注意。表1是上述资料中湖南四个典型有色矿山氡浓度的情况统计。  相似文献   

18.
近十多年来,随着铀矿通风与辐射防护技术的发展和进步,一些国家和国际组织对氡和氡子体的防护标准进行了研究。本文介绍几个国家和国际组织关于铀矿氡和氡子体防护标准的情况,并在此基础上对我国铀矿现行防护标准提出一些修改意见,供参考。  相似文献   

19.
以前,对铀矿空气中氡子体污染的控制主要采用通风方法。但随着采掘深度的增加和日益远离风井,用通风方法控制氡子体产物也日益困难。这就促使人们去试验通风以外的其他控制措施。华盛顿试用蛭石过滤器排除氡子体,使洁净空气再循环使用。蛭石过滤器可使500英尺~3/分的气流中30%的氡子体得以排除。有人曾试验用镭A上的静电负荷排除矿井大气中的衰变产物。镭A沉积于设在气流中的高压电极上,而使浓度降低5%,  相似文献   

20.
氡及其子体的辐射问题,在铀矿或非铀矿都普遍存在。然而在我国,对非铀矿山氡子体的辐射防护并未象铀矿山一样得到应有的重视。这主要是因为人们一般认为非铀矿的氡子体辐射问题并不十分严重,而且氡子体诱发肺癌的潜伏期长达15~40年。我国多数非铀矿山是在解放后逐步建立起来的,氡子体的危害尚未完全显现出来,只是在几个建设历史较久的矿,如云南锡矿、湖南香花岭矿等有所发现,肺癌死亡率一直呈上升趋势。因此,了解非铀矿山氡子体的辐射状况,重视其防护工作,是非常必要的。 根据我国几年来对70多个金属矿的辐射调查结果表明,其中55.4%的金属…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号