首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Most studies examining escape behaviour have considered single approaches and single fleeing responses; few have considered how organisms’ response is influenced by persistent pursuit. We explored fleeing behaviour of two grasshopper species to test whether they modified escape behaviour when approached repeatedly. Schistocerca alutacea did not increase flight initiation distance (FID) upon repeated approach but fled farther. Psinidia fenestralis increased its FID on the second approach but decreased its flight distance over successive escapes. Both species showed a bimodal pattern of flight direction, either flying directly away or flying perpendicular to the direction of the observer’s approach. Neither species showed a significant pattern of flight direction or change in flight direction with successive escapes. Most (88 %) P. fenestralis initially landed on sand, but after repeated approaches an increasing proportion landed in grass and hid. Both species therefore changed escape behaviour with persistent pursuit but used different tactics, suiting their flight ability or camouflage, and optimised habitat use. Three grasshopper species have now been examined for responses to repeated approach by predators and all show different tactics supporting escape decision theory. Our results emphasise the variety of escape responses across species and how the dynamic nature of escape responses vary according to an animal’s situation. Rather than single optimum escape options, each grasshopper species shows a range of responses, which vary with risk from persistent predators. Although grasshoppers provide an excellent model, it would be profitable to examine responses of a range of species according to levels of predation risk.  相似文献   

2.
H. Schmidt 《Marine Biology》1972,15(3):265-278
Strombolicchio is a rocky islet situated about 1.6 km northeast of the isle of Stromboli. The islet consists of three steep walls having different light and surface conditions. The zonation on the northern wall differs essentially from the zonation found in caves because of the greater turbulence. On smooth rocks near the water surface, there is only one actinian species which resists turbulence, Actinia equina. The best turbulence resisting anthozoan species are the scleractinians (Astroides calycularis Balanophyllia verrucaria). They are followed by stolonial growing forms (Paralcyonium elegans, Cornularia cornucopiae). All other actinians settle in crevices and small holes. The turbulence prevents Parazoanthus axinellae and Corynactis viridis from settling on the smooth rock near the surface. Therefore, these species occur on Strombolicchio only at comparatively deep levels. As a result of being forced to settle in crevices, space competition occurs among the various actinian species. Cereus pedunculatus, Aiptasia mutabilis, and Telmatactis forskalii co-exist, while Anemonia sulcata lives isolated in few crevices only. Contrary to other localities, A. sulcata is not the most abundant actinian species on Strombolicchio. Most frequent are the viviparous forms of Cereus pedunculatus and Actinia equina mediterranea. This mode of reproduction is rather rare in these species in the Mediterranean Sea, but common in the Atlantic Ocean. It is supposed that the viviparous varieties of Strombolicchio are geographical isolates of Atlantic populations. The influence of light on the colour of some anthozoans has also been studied. Zooxanthellae were found to be much more abundant in Aiptasia mutabilis in darkness than in bright surface waters. Gerardia savaglia proved to be quite abundant in deeper caves and on overhanging walls; it is more sciaphilic than Paramuricea clavata. Paralcyonium elegans occurs near the surface as well as at different depth levels; it has been observed in differing growth forms, corresponding to different patterns of turbulence. Alcyonium brioniense is considered to be a growth form of Alcyonium acaule.  相似文献   

3.
S. Imsand 《Marine Biology》1981,63(1):87-100
Prey (chiefly euphausiids and copepods) eaten by two myctophids (lanternfishes) are compared from incidence in fish stomachs and from abundance in the environment. One lanternfish species, Triphoturus mexicanus, lives in the California Current, and the other, T. nigrescens, lives in the central Pacific Ocean. Although these two environments are very different physically and biologically, the feeding habits of the two lanternfishes are surprisingly similar. Prey biomass is 94% euphausiids, 3% copepods, and 3% other organisms for T. mexicanus and 88% euphausiids, 4.5% copepods, and 7.5% other organisms for T. nigrescens; the difference between the fish species is not significant when tested statistically. The two fishes resemble one another in frequency distributions of ingested copepod individuals, copepod species, euphausiid individuals, and euphausiid species. During a single diurnal feeding period, both fishes eat a variety of copepod species but tend to eat only a single species of euphausiid. T. mexicanus grows to twice the length of T. nigrescens and eats proportionally larger euphausiids; however, both fishes eat copepods having the same median size. The frequencies of euphausiid species in the diets of both fishes differ from the frequencies in the environment. The chief differences between the feeding habits of the two lanternfishes are that T. nigrescens, in comparison to its congener, eats a greater variety of organisms during one diurnal feeding period and captures smaller euphausiids. The feeding patterns for each lanternfish species are consistent over distances of hundreds of kilometers and over many years of sampling.  相似文献   

4.
Pecten maximus (L.), when stimulated by contact with various sea-star species, displays several fairly distinct types of responses. These range from valve closure, through jumping to the well-known swimming escape reaction. These responses are described in detail. The most violent responses are evoked by contact with the predatory sea starsAsterias rubens,Astropecten irregularis, andMarthasterias glacialis, whereas non-predatory sea stars may evoke minor reactions or none at all. It is suggested that, in this instance, the adaptive value of the various types of responses lies not only in enabling the scallop to escape from predators, but also in preventing needless and even hazardous movement away from the refuge of its prepared depression in the substratum when confronted by the less harmful species of sea stars. Crude chemical extracts of all sea stars always evoked escape reactions, but only those ofAsterias rubens andAstropecten irregularis caused the full swimming response.  相似文献   

5.
Hatchery rearing of the scallop Argopecten purpuratus has resulted in successive generations of scallops not exposed to predators that are less sensitive to and escape more slowly from predators than wild scallops. The present study examined whether conditioning hatchery-reared A. purpuratus to its natural predator, the sea star Meyenaster gelatinosus, improved its escape responses. Both juvenile and adult A. purpuratus from Tongoy Bay, Chile, were exposed for 7 days to different conditions: (1) continuous predator odor, (2) predator contact for 30 min three times a day, (3) a combination of the two previous conditions, and (4) no exposure to the predator (control). After conditioning, we evaluated scallop’s escape responses: reaction time, total clap number, duration of the clapping response, clapping rate, and the time scallops spent closed when exhausted. Conditioning with contact and odor plus contact (i.e., high predation risk) resulted in 25 and 50% shorter reaction times of juveniles and adults, respectively. Further, these stimuli caused juveniles to increase the number of claps and clapping rate. For adults, the time spent closed after exhaustion decreased by 50 and 63% after conditioning with contact and odor plus contact, respectively. Therefore, it is shown for the first time that exposure of scallops to increasing predator stimuli enhances escape responses, evidence of threat-sensitive predator avoidance.  相似文献   

6.
There is increasing evidence that populations may not be well adapted to their local environments, and as a result, recent interest has focused on understanding factors that constrain adaptive evolution. This study presents data suggesting gene flow may constrain the ability of larvae of the streamside salamander Ambystoma barbouri to avoid predation by fish via escape behavior and life history tactics. Streamside salamander larvae face conflicting selection pressures in different streams. Some streams are ephemeral, where larvae should be active to feed, grow, and reach metamorphosis before stream drying. Other streams contain predatory fish, where larvae should be generally inactive to avoid predation. Previous work has shown that streamside salamander larvae exhibit ineffective antipredator behavior by having inappropriately high activity levels with fish, resulting in high predation in laboratory and field experiments. This study investigated the possibility that gene flow from larvae in ephemeral habitats may reduce the escape performance of larvae from populations with fish and alter their life history characteristics to increase their susceptibility to fish predation. I assayed escape behavior (speed, acceleration, and duration of escape) and life history characteristics (hatching date, size, stage) associated with predator avoidance among laboratory-reared larvae from four populations. As predicted, two populations (one with fish and the other fishless and ephemeral) connected by gene flow were not significantly different in almost all assays. In contrast, larvae from an isolated population with fish had significantly stronger escape behaviors and delayed hatching than both an isolated population that lacked a history of fish co-occurrence and the population with fish but gene flow from a fishless population. These results support theory suggesting that gene flow can constrain adaptive evolution. Received: 22 February 1999 / Received in revised form: 4 April 1999 / Accepted: 26 April 1999  相似文献   

7.
Lipid is a major energy reserve in many aquatic animals, and wax esters are the principal type of lipid present in most pelagic marine invertebrates and teleost fishes from deep water or near-surface cold waters. It has been suggested that these wax esters are biosynthesized by only a few organisms, and are then transferred along the food web to the fishes and marine mammals. We found that accessible mesopelagic myctophid (Lampanyctus ritteri, Stenobrachius leucopsarus and Triphoturus mexicanus) and gonostomatid (Cyclothone atraria and Gonodtoma gracile) fishes and crustaceans (Gaussia princeps, Calanus helgolandicus, Acanthephyra quadrispinosa and Sergestes prehensilis) biosynthesize wax esters from acetate, longchain alcohol or fatty acid precursors, in vivo or in vitro. In the latter experiments, organ tissues (hepatopancreas and gut) are more active than muscle, although, overall, fish muscle is probably a major site of wax ester biosynthesis in the species studied. Therefore, wax esters are not persistent dietary survivors in the food web of the oceanic midwaters; rather, most invertebrates and fishes in this environment make wax esters, modifying ingested fats to their own characteristic patterns.  相似文献   

8.
Although scyphomedusae have received increased attention in recent years as important predators in coastal and estuarine environments, the factors affecting zooplankton prey vulnerability to these jellyfish remain poorly understood. Current models predicting feeding patterns of cruising entangling predators, such as Chrysaora quinquecirrha (Desor, 1948), fail to account for the selection of fast-escaping prey such as copepods. Nevertheless, our analysis of gastric contents of field-collected medusae showed that this scyphomedusa fed selectively on the calanoid copepod Acartia tonsa (Dana, 1846) and preferentially ingested adult over copepodite stages. We measured feeding rates in a planktonkreisel while simultaneously videotaping predator–prey interactions. C. quinquecirrha consumed adult A. tonsa ten times faster than copepodites. Differences in prey behavior, in the form of predator–prey encounter rates or post-encounter escape responses, could not account for the elevated feeding rates on adults. Prey size, however, had a dramatic impact on the vulnerability of copepods. In experiments using heat-killed prey, feeding rates on adults (1.5 times longer than copepodites) were 11 times higher than on copepodites. In comparison, medusae ingested heat-killed prey at only two to three times the rate of live prey. These results suggest that during scyphomedusan–copepod interactions, prey escape ability is important, but ultimately small size is a more effective refuge from predation. Received: 26 September 1997 / Accepted: 20 May 1998  相似文献   

9.
The relationship between particulate-feeding rates and prey concentrations (functional response) of juvenile herring and sprat (5–9 cm total length) was investigated in controlled feeding experiments monitored by an underwater camera system. A special tank system was developed allowing the regulation and quantification of low prey concentrations (1–160 L?1). Non-evasive Artemia nauplii was used as prey to estimate the maximum biting rate of both predators. In contrast, Acartia tonsa with a high escape ability was used as a realistic prey type. Herring and sprat showed a type II functional response for both prey types. Nonlinear mixed effects model revealed no significant difference between the functional responses of both predators, except that herring showed significantly higher biting rates than sprat at A. tonsa concentrations below ~40 L?1. For both predators feeding rates were significantly higher with Artemia nauplii than with A. tonsa. Video analysis indicated that sprat, unlike herring, is an obligate particulate-feeder.  相似文献   

10.
Divergence at gamete recognition loci is hypothesized to result in speciation in broadcast spawning invertebrates. Many gamete recognition loci evolve quickly and show patterns of positive selection, yet the advantage of divergence is rarely known. M7 lysin is a sperm protein in the Mytilus edulis species complex that shows evidence of adaptive evolution. This locus is polymorphic with two distinct clades within Mytilus galloprovincialis, one of which, the D clade, shows the strongest signal of positive selection. We tested whether the geographic patterns in allele frequency were consistent with the hypothesis that positive selection on D clade alleles (G D ) was due to reinforcement. Populations of M. edulis showed little evidence of introgression of G D alleles, but there was no consistent evidence of reproductive character displacement. The lack of consistent patterns expected of reinforcement suggests that another mechanism is likely responsible for the adaptive divergence of M7 lysin.  相似文献   

11.
Although medusan predators play demonstrably important roles in a variety of marine ecosystems, the mechanics of prey capture and, hence, prey selection, have remained poorly defined. A review of the literature describing the commonly studied medusa Aurelia aurita (Linnaeus 1758) reveals no distinct patterns of prey selectivity and suggests that A. aurita is a generalist and feeds unselectively upon available zooplankton. We examined the mechanics of prey capture by A. aurita using video methods to record body and fluid motions. Medusae were collected between February and June in 1990 and 1991 from Woods Hole, Massachusetts and Narragansett Bay, Rhode Island, USA. Tentaculate A. aurita create fluid motions during swimming which entrain prey and bring them into contact with tentacles. We suggest that this mechanism dominates prey selection by A. aurita. In this case, we predict that medusae of a specific diameter will positively select prey with escape speeds slower than the flow velocities at their bell margins. Negatively selected prey escape faster than the medusan flow velocity draws them to capture surfaces. Faster prey will be captured by larger medusac because flow field velocity is a function of bell diameter. On the basis of prey escape velocities and flow field velocities of A. aurita with diameters of 0.8 to 7.1 cm, we predict that A. aurita will select zooplankton such as barnacle nauplii and some slow swimming hydromedusae, while faster copepods will be negatively selected.  相似文献   

12.
Antipredator behavior studies generally assess prey responses to single predator species although most real systems contain multiple species. In multi-predator environments prey ideally use antipredator responses that are effective against all predator species, although responses may only be effective against one predator and counterproductive for another. Multi-predator systems may also include introduced predators that the prey did not co-evolve with, so the prey may either fail to recognize their threat (level 1 naiveté), use ineffective responses (level 2 naiveté) or succumb to their superior hunting ability (level 3 naiveté). We analyzed microhabitat selection of an Australian marsupial (koomal, Trichosurus vulpecula hypoleucus) when faced with spatiotemporal differences in the activity/density levels of one native (chuditch, Dasyurus geoffroii) and two introduced predators (red fox, Vulpes vulpes; feral cat, Felis catus). From this, we inferred whether koomal recognized introduced predators as a threat, and whether they minimized predation risk by either staying close to trees and/or using open or dense microhabitats. Koomal remained close to escape trees regardless of the predator species present, or activity/density levels, suggesting koomal employ this behavior as a first line of defense. Koomal shifted to dense cover only under high risk scenarios (i.e., with multiple predator species present at high densities). When predation risk was low, koomal used open microhabitats, which likely provided benefits not associated with predator avoidance. Koomal did not exhibit level 1 naiveté, although further studies are required to determine if they exhibit higher levels of naiveté (2–3) against foxes and cats.  相似文献   

13.
In the ongoing evolutionary arms race between predators and their prey, successful escape from the predator leads to the evolution of improved escape tactics in prey, but also predators become more effective in following and attacking the prey. Antipredatory behavior of prey is considered to be the strongest towards their most dangerous predators. However, prey species can differ both in vulnerability and efficiency of escape to a shared predator. We studied escape reactions of two vole species, the bank vole (Myodes glareolus) and the field vole (Microtus agrestis), under a simulated predation risk of the least weasel (Mustela nivalis nivalis). We conducted a laboratory experiment where a vole was given a possibility to escape from a weasel by fleeing to a horizontal tunnel or climbing the tree. Subsequently to the vole escape decision, we released a weasel to the same tunnel system to test how the weasel succeeded in following the vole. Weasel presence changed the behavior of voles as especially bank voles escaped by climbing. Instead, the majority of field voles fled into the ground-layer tunnel. The different escape tactics of the voles affected the success of the weasel, because climbing voles were less often successfully followed. We suggest that the difference in escape tactics has evolved as an adaptation to different habitats; meadow-exploiting field voles using ground-level escape while bank voles living in three-dimensional forest habitat frequently use arboreal escape tactics. This is likely to lead to different habitat-dependent vulnerabilities to predation in Microtus and Myodes vole species.  相似文献   

14.
While adults of most species of butterflies visit flowers for food (nectar), those of certain species can feed on rotting food (e.g., exuded tree sap and rotting fruits). These food sources considerably differ in odor; flowers emit species-specific scents and rotting-food odors are characterized by fermentation products. To determine whether adult butterflies have different olfactory performances adaptive to their food selections, we examined the following responses of naïve adults of six nymphalid species, namely, Nymphalis xanthomelas, Kaniska canace, Vanessa indica, Cynthia cardui, Hypolimnas bolina, and Argyreus hyperbius: the proboscis extension reflex (PER) was evaluated as the behavioral criterion of preference for scent compounds, and the electroantennographic (EAG) response was assessed as the sensory criterion of antennal perception. All of these species are nectarivorous, but N. xanthomelas, K. canace, and V. indica also forage rotting food. The PERs to 52 tested compounds were in good agreement with the food habits of these butterflies. The six species showed high PERs to several aromatic compounds widely found in flower scents. Fermentation products such as ethanol and acetic acid elicited intermediate to high responses from the three species feeding on rotting foods. The other three species showed low PERs to these compounds, and acetic acid strongly inhibited the PER-eliciting activities of the other compounds. These results demonstrate that the olfactory preference for fermentation products is a characteristic of the rotting-food feeders. The spectrum of EAG responses to 37 tested compounds was relatively similar among the six species. Particular acyclic aliphatic compounds, including green leaf volatiles, elicited high EAG responses from all the species. Despite a high PER-eliciting activity, most aromatic compounds induced intermediate EAG responses; however, ethanol and acetic acid evoked very weak responses. The results suggest that in food selection, adult butterflies use a specific olfactory system to perceive these major food-derived volatiles.  相似文献   

15.
Summary.  Antennae of six sympatric bark and ambrosia beetles (Scolytidae), Dendroctonus valens LeConte, Gnathotrichus retusus (LeConte), Hylastes tenuis Eichhoff, Ips mexicanus (Hopkins), Ips plastographus maritimus Lanier, and Pseudohylesinus sericeus (Mannerheim), and two scolytid predators, Enoclerus sphegeus (F.) (Cleridae) and Lascontonus tuberculatus Kraus (Colydiidae), were analyzed by gas chromatographic-electroantennographic detection (GC-EAD) for their responses to synthetic Ips spp. pheromone components, and host and nonhost volatiles. The beetles emerged from cut logs of pitch canker-infected Monterey pine trees, Pinus radiata D. Don. There were significant disparities in EAD response patterns to the hemiterpene and monoterpene alcohol pheromone components that are typically produced by Ips spp. Antennae of I. p. maritimus responded strongly to ( ± )-ipsdienol, ( ± )-ipsenol, amitinol, and lanierone; antennae of I. mexicanus responded strongly to (1S,2S)-(–)-cis-verbenol, with weaker responses to ( ± )-ipsdienol, ( ± )-ipsenol, and amitinol; antennae of H. tenuis responded to (1S, 2R)-(–)-trans-ver-benol, with less pronounced responses to (–)-cis-verbenol and 2-methyl-3-buten-2-ol; and antennae of D. valens, G. retusus, and P. sericeus generally responded to all Ips spp. pheromone components except 2-methyl-3-buten-2-ol (D. valens and G. retusus) and E-myrcenol (G. retusus and P. sericeus). Ips mexicanus responded only to the (–)-enantiomers of ipsenol and ipsdienol, whereas I. p. maritimus responded to (–)-ipsenol, but to both the (+)- and (–)-enantiomers of ipsdienol. The antennae of the two predaceous insects (E. sphegeus and L. tuberculatus) responded to a range of the Ips spp. pheromone components. Host monoterpenes elicited no antennal responses from E. sphegeus, G. retusus, H. tenuis, and I. mexicanus, but several monoterpenes elicited various levels of responses from D. valens and I. p. maritimus antennae. Interestingly, antennae of female D. valens responded to (–), but not (+)-limonene. α- and β-Pinene elicited weak responses from L. tuberculatus antennae. EAD responses to selected nonhost volatiles were almost identical among the six scolytid species, with trans-conophthorin eliciting the strongest response in most cases, followed by three C6- alcohols and two C8-alcohols. The antennal responses by most of these species to linalool or geranylacetone were very weak; (E)-2-hexenal, (Z)-3-hexenyl acetate, and benzyl alcohol elicited almost no response. The response pattern of P. sericeus to nonhost volatiles differed slightly from the rest of the scolytids: a strong response to linalool, weaker response to the C8-alcohols. The two predaceous Coleoptera generally had weak, but detectable, responses to nonhost volatiles, except for a relatively strong response to trans-conophthorin by L. tuberculatus. No notable differences in EAD responses were observed between males and females of the two Ips spp. Our results provide an electrophysiological baseline for future efforts to identify attractive and repellent semiochemicals (aggregation pheromones, host kairomones, or nonhost interruptants) for this guild of scolytids and their key predators that are associated with moribund and pitch canker- infected P. radiata.  相似文献   

16.
C. Espoz  J. C. Castilla 《Marine Biology》2000,137(5-6):887-892
The Chilean intertidal Lottiidae limpet fauna consists of at least nine species, grouped into the monophyletic taxon Scurria and a single taxon preliminarily designated as `Lottia' orbignyi (Dall). Within the Scurria clade, the most basal species are Scurria variabilis (Sowerby), S. viridula (Lamarck), and S.zebrina (Lesson), and among the most crown groups are S. ceciliana (Orbigny) and S. araucana (Orbigny). This phylogenetic information, obtained by the analysis of molecular characters (16S mtDNA), provides a framework for a comparative study of behavioral characters. In this study, we analyze the escape responses of two basal limpet species (`L.' orbignyi and S. viridula) and two derived limpet species (S. araucana and S. ceciliana) in the presence of the limpet predatory seastar Heliaster helianthus (Lamarck) and the limpet non-predatory seastars Stichaster striatus Muller and Troschel and Patiria chilensis Lutken. Neither P.chilensis nor Stichaster striatus induced escape responses such as those observed with the predatory H. helianthus. Moreover, in the presence of H. helianthus, basal and derived limpet species differed significantly in the percentage of individuals responding, reaction time, and duration of the response. The basal species `L.' orbignyi and Scurriaviridula exhibited instantaneous and vigorous locomotor responses, whereas the derived species S.araucana and S. ceciliana displayed no locomotor responses. The same pattern was found in responses to H. helianthus homogenates. The results strongly suggest a correlation between phylogeny and anti-predator escape responses to the seastar H. helianthus. Alternative escape responses have evolved for basal and derived species within the Chilean clade. Received: 27 April 2000 / Accepted: 16 August 2000  相似文献   

17.
Three new cases of sponge symbiosis between species of Plakortis and Xestospongia were found in reef caves and mesophotic reef habitats of the Caribbean. Plakortis sp. 1 from the Bahamas associates exclusively with Xestospongia deweerdtae which was originally described living freely on the deep fore-reef and caves of Jamaica. In addition, we found Plakortis sp. 2 from Puerto Rico which associates with both X. deweerdtae and a different Xestospongia sp. Sponge specimens were identified using cytochrome oxidase subunit 1, 28S rRNA and 18S rRNA gene sequence fragments, spicule analysis, and histological sections with SEM. Unlike previous sponge pairs, Xestospongia spp. not only grew as a thin veneer of tissue over the Plakortis host sponge but through the mesohyl, forming inner channels (0.1–1 cm) that may provide a benefit by facilitating more efficient water transport through the dense Plakortis tissue. Symbioses with both Plakortis spp. were documented from an early recruit stage through adulthood. Spicule measurements conducted on symbiotic versus free-living X. deweerdtae revealed significantly smaller spicule sizes for symbiotic individuals, suggesting a cost in terms of silicon availability, or a benefit in terms of a lower investment in skeleton synthesis for support. This study reveals new specialized symbiotic associations between distantly related sponge genera that likely represent an alternative strategy of adaptation for life in reef caves and mesophotic reefs.  相似文献   

18.
To assess the effect of oxygen reduction on the escape response of sea bass, Dicentrarchus labrax, an integrative experimental approach was employed. The effect of hypoxia was tested on locomotor variables, i.e. cumulative distance (D), maximum swimming speed (V max) and maximum acceleration (A max). Behavioural variables, such as responsiveness (i.e. the proportion of individuals responding out of the total number of fish tested), response latency (i.e. the time interval between stimulus onset and the first detectable movement leading to the escape of the animal) and directionality (i.e. the proportion of escape responses in which the first detectable movement of the head was oriented away or towards the stimulus at its onset) were also considered. Four levels of oxygen were used: >85% (i.e. normoxia, the control treatment), 50, 20 and 10% of air saturation. Sea bass responsiveness decreased significantly at 10% of air saturation, while hypoxia did not have any effect on the response latency. At the onset of the escape response, the proportion of away/towards responses was random when oxygen was ≤50% of air saturation, suggesting an impairment of the left–right discrimination. Whatever the level of hypoxia, none of the locomotor variables (i.e. D, V max and A max) was significantly different from normoxia. Our study suggests that hypoxia may reduce sea bass elusiveness facing a predator by directly affecting its escape behaviour, possibly related to an impairment of the mechano-sensory performance and/or in the Mauthner cells involved in triggering the escape response.  相似文献   

19.
In situ feeding patterns of ephyrae of the jellyfish Aurelia aurita (Linnaeus) revealed the importance of relatively large (>1 mm) prey in the diet of these scyphozoan predators. These studies were carried out in Narragansett Bay, Rhode Island, USA in March and April, from 1993 through 1996. Rotifers were the only small prey ingested in quantity, and then only when they were unusually abundant in the plankton. Copepod nauplii, similar in size to rotifers and equally abundant, were rarely consumed. Since copepods evince rapid escape responses, this observation suggested a role for prey escape in determining prey vulnerability, while the predominance of large prey in the diet suggested a role for prey size. Using two dimensional video observations of free-swimming ephyrae and their prey in the laboratory we tested hypotheses about the mechanisms underlying these dietary patterns, comparing mechanisms for capture of large versus small prey and for prey of equal size but differing escape behaviors. Capture efficiencies of ephyrae feeding on large prey were 4 to 12 times greater than for small prey taxa. Capture efficiencies for prey of equal size also differed significantly, indicating that other factors influence the outcome of predator–prey interactions. Most prey captures occurred while the ephyrae were swimming and creating fluid flows that entrained prey into the subumbrellar region. Even copepod nauplii were frequently drawn into the subumbrella of swimming ephyrae despite average potential escape velocities (25.7 mm s−1) that exceeded mean maximum velocity of fluid flows around the ephyrae (13.1 mm s−1). Large prey were more likely than small prey to contact nematocyst-bearing surfaces both before and after entrainment in flow fields. With regard to behavior, prey escape speeds were not the only predictor of prey vulnerability. Prey that continued swimming after entrainment (rotifers and brine shrimp) were captured more often than prey of equal size that ceased normal swimming (copepod nauplii and barnacle nauplii). Copepod nauplii were the prey least likely to be captured because they either “played dead” and were expelled from the subumbrella of the ephyrae before contacting a surface, or they eventually escaped at high velocity. These observations indicate that size-selective predation by ephyrae of A. aurita can be influenced by a variety of behavioral responses of the prey. Received: 9 April 1997 / Accepted: 5 September 1997  相似文献   

20.
The vast majority of ectothermic organisms grow larger when developing at cooler environmental temperatures, a pattern frequently referred to as the temperature-size rule (TSR). Assuming that this reaction norm has adaptive significance, life history theory predicts that converse patterns may evolve if favored by natural selection, namely if the costs associated with complying to the TSR outweigh the benefits. Calcifying ectotherms may comprise such an exception not following the TSR, because calcification is expected to be more costly at lower temperatures thus increasing associated costs. To test this hypothesis, we reared wild-caught juveniles of the intertidal gastropod Monetaria annulus and compared their shell sizes at the end of the juvenile stage between two rearing temperatures. Contrary to our prediction, M. annulus does follow the TSR, suggesting that increased calcification costs at lower temperatures are not high enough to break the TSR. Such plastic responses should be considered when interpreting geographical patterns such as latitudinal size clines, which may be caused at least partly by phenotypic plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号