首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Inland water bodies are considered as integrated parts of the landscape and the monitoring of water quality and aquatic resources need to be addressed on a regional basis for optimal assessment and management. In this study, a simple stratified sampling scheme was applied to a mesoscale survey of western and northwestern Irish lakes, which was carried out to identify, based on the distribution patterns of phytoplankton biomass, potential associations between lake trophic state and land cover attributes. Phytoplankton community analysis was also performed to determine whether taxa associations reflected meteorology-linked aestival succession or specific spatial distributions. The assessment was based on the typology of hydrogeomorphological and land cover attributes of river catchments through ArcGIS analysis. Sampling was carried out in 50 lakes and during a 15-week period in summer 2009. Results showed a general longitudinal gradient in the trophic status of the lakes sampled, with a greater frequency of mesotrophic lakes in the eastern part of the study area where land cover is dominated by agricultural surfaces. Significant relationships (p < 0.010) were found between chlorophyll-a concentration and the proportion of river catchment surface covered by agriculture land and wetlands, findings which might be considered further as proxies for developing an eutrophication risk index. Multivariate analysis of phytoplankton community data clustered the sampled lakes into three assemblages, with ordination along axis 1 being significantly correlated to time and temperature (p < 0.006). There was greater frequency of occurrence of diatoms in lakes from cluster III (Kruskal–Wallis, p < 0.05, H = 6.34, df = 2, n = 49), concomitant to lower chlorophyll-a concentrations, lake surface temperatures and Secchi depths, reflecting meteorological conditions dominated by precipitations. Those results support the potential of mesoscale surveys to assess water quality variables and detect environmental patterns at regional scales.  相似文献   

2.
Lakes,Wetlands, and Streams as Predictors of Land Use/Cover Distribution   总被引:2,自引:0,他引:2  
The importance of the surrounding landscape to aquatic ecosystems has been well established. Most research linking aquatic ecosystems to landscapes has focused on the one-way effect of land on water. However, to understand fully the complex interactions between aquatic and terrestrial ecosystems, aquatic ecosystems must be seen not only as receptors of human modification of the landscape, but also as potential drivers of these modifications. We hypothesized that the presence of aquatic ecosystems influences the spatial distribution of human land use/cover of the nearby landscape (≤1 km) and that this influence has changed through time from the 1930s to the 1990s. To test this hypothesis, we compared the distribution of residential, agricultural, and forested land use/cover around aquatic ecosystems (lakes, wetlands, and streams) to the overall regional land use/cover proportion in an area in southeast Michigan, USA; we also compared the distribution of land use/cover around county roads/highway and towns (known determinants of many land use/cover patterns) to the regional proportion. We found that lakes, wetlands, and streams were strongly associated with the distribution of land use/cover, that each ecosystem type showed different patterns, and that the magnitude of the association was at least as strong as the association with human features. We also found that the area closest to aquatic ecosystems (<500 m) was more strongly associated with land use/cover distribution than areas further away. Finally, we found that the strength of the association between aquatic ecosystems and land use/cover increased from 1938 to 1995, although the overall patterns were similar through time. Our results show that a more complete understanding is needed of the role of aquatic ecosystems on the distribution of land use/cover.  相似文献   

3.
A Proposed Aquatic Plant Community Biotic Index for Wisconsin Lakes   总被引:2,自引:0,他引:2  
The Aquatic Macrophyte Community Index (AMCI) is a multipurpose tool developed to assess the biological quality of aquatic plant communities in lakes. It can be used to specifically analyze aquatic plant communities or as part of a multimetric system to assess overall lake quality for regulatory, planning, management, educational, or research purposes. The components of the index are maximum depth of plant growth; percentage of the littoral zone vegetated; Simpson's diversity index; the relative frequencies of submersed, sensitive, and exotic species; and taxa number. Each parameter was scaled based on data distributions from a statewide database, and scaled values were totaled for the AMCI value. AMCI values were grouped and tested by ecoregion and lake type (natural lakes and impoundments) to define quality on a regional basis. This analysis suggested that aquatic plant communities are divided into four groups: (1) Northern Lakes and Forests lakes and impoundments, (2) North-Central Hardwood Forests lakes and impoundments, (3) Southeastern Wisconsin Till Plains lakes, and (4) Southeastern Wisconsin Till Plains impoundments, Driftless Area Lakes, and Mississippi River Backwater lakes. AMCI values decline from group 1 to group 4 and reflect general water quality and human use trends in Wisconsin. The upper quartile of AMCI values in any region are the highest quality or benchmark plant communities. The interquartile range consists of normally impacted communities for the region and the lower quartile contains severely impacted or degraded plant communities. When AMCI values were applied to case studies, the values reflected known impacts to the lakes. However, quality criteria cannot be used uncritically, especially in lakes that initially have low nutrient levels.  相似文献   

4.
ABSTRACT: Data from a recent survey conducted by the Adirondack Lake Survey Corporation were used to evaluate the influence of lake surface area on the acid-base status of lakes in Adirondack State Park, New York. Acid neutralizing capacity (ANC) in the small lakes (< 4 ha) occurred more frequently at extreme values (> 200, < 0 μeq L?1), whereas larger lakes tended to be intermediate in ANC. Consequently, acidic (ANC ≤ 0) and low-pH lakes were typically small. The small lakes also exhibited lower Ca2+ concentration and higher dissolved organic carbon than did larger lakes. Lakes ≥ 4 ha were only half as likely to be acidic as were lakes ≥ 1 ha in area. These data illustrate the dependence of lake chemistry on lake surface area and the importance of the lower lake area limit for a statistical survey of lake water chemistry.  相似文献   

5.
The variability in surface water chemistry within and between aquatic ecosystems is regulated by many factors operating at several spatial and temporal scales. The importance of geographic, regional-, and local-scale factors as drivers of the natural variability of three water chemistry variables representing buffering capacity and the importance of weathering (acid neutralizing capacity, ANC), nutrient concentration (total phosphorus, TP), and importance of allochthonous inputs (total organic carbon, TOC) were studied in boreal streams and lakes using a method of variance decomposition. Partial redundancy analysis (pRDA) of ANC, TP, and TOC and 38 environmental variables in 361 lakes and 390 streams showed the importance of the interaction between geographic position and regional-scale variables. Geographic position and regional-scale factors combined explained 15.3% (streams) and 10.6% (lakes) of the variation in ANC, TP, and TOC. The unique variance explained by geographic, regional, and local-scale variables alone was <10%. The largest amount of variance was explained by the pure effect of regional-scale variables (9.9% for streams and 7.8% for lakes), followed by local-scale variables (2.9% and 5.8%) and geographic position (1.8% and 3.7%). The combined effect of geographic position, regional-, and local-scale variables accounted for between 30.3% (lakes) and 39.9% (streams) of the variance in surface water chemistry. These findings lend support to the conjecture that lakes and streams are intimately linked to their catchments and have important implications regarding conservation and restoration (management) endeavors.  相似文献   

6.
Lakes are dominant landforms in the National Petroleum Reserve Alaska (NPRA) as well as important social and ecological resources. Of recent importance is the management of these freshwater ecosystems because lakes deeper than maximum ice thickness provide an important and often sole source of liquid water for aquatic biota, villages, and industry during winter. To better understand seasonal and annual hydrodynamics in the context of lake morphometry, we analyzed lakes in two adjacent areas where winter water use is expected to increase in the near future because of industrial expansion. Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery acquired between 1985 and 2007 were analyzed and compared with climate data to understand interannual variability. Measured changes in lake area extent varied by 0.6% and were significantly correlated to total precipitation in the preceding 12 months (p < 0.05). Using this relation, the modeled lake area extent from 1985 to 2007 showed no long-term trends. In addition, high-resolution aerial photography, bathymetric surveys, water-level monitoring, and lake-ice thickness measurements and growth models were used to better understand seasonal hydrodynamics, surface area-to-volume relations, winter water availability, and more permanent changes related to geomorphic change. Together, these results describe how lakes vary seasonally and annually in two critical areas of the NPRA and provide simple models to help better predict variation in lake-water supply. Our findings suggest that both overestimation and underestimation of actual available winter water volume may occur regularly, and this understanding may help better inform management strategies as future resource use expands in the NPRA.  相似文献   

7.
ABSTRACT: We surveyed over 2000 lakes in the State of Massachusetts (1983–1984) to examine the spatial variations in their acid-base chemistry. Our survey differed from previous surveys by including small lakes and nonpristine urban lakes. For samples collected in October 1983 and 1984, the median acid neutralizing capacity (ANC) was 184 μeq L?1 and 5.9 percent were acidic (ANC≤O). Small lakes (<4 ha) were more likely to be acidic than large lakes. Generally, sulfate was the dominant acidifying agent, although organic anions were dominant in some of the lakes in the Cape Cod Region. The ionic composition of the lakes showed strong regional patterns which appear to be related to geology and human population density. An analysis of variance of ANC shows the six regional categories in the state explain 51 percent of the variance, while a combined general linear model of lake drainage type, color, elevation, size, silica, and hydrogen ion deposition could explain only 4.9 percent of the variation in ANC. Calcium rich, high ionic strength lakes were present in the marble bedrock in the west, and relatively dilute lakes dominated by sodium and chloride were found near the coast. Chloride concentrations were also related to population density, suggesting road salt as a likely contributing source.  相似文献   

8.
Although theorists have suggested that aquatic environments or “blue space” might have particular restorative potential, to date there is little systematic empirical research on this issue. Indeed the presence of water has, unintentionally, been a confounding factor in research comparing people’s reactions to built and natural environments. Whereas aquatic features (rivers, lakes, coasts) are frequently present in visual stimuli representing natural environments they are rarely incorporated in stimuli portraying built environments. As many towns are, for good reason, located near water this is a potentially significant oversight. The current research collated a set of 120 photographs of natural and built scenes, half of which contained “aquatic” elements. Proportions of “aquatic”/“green”/“built” environments in each scene (e.g. 1/3rd, 2/3rds) were also standardised. Two studies investigated preferences (attractiveness, willingness to visit and willingness to pay for a hotel room with the view), affect and perceived restorativeness ratings for these photographs. As predicted, both natural and built scenes containing water were associated with higher preferences, greater positive affect and higher perceived restorativeness than those without water. Effect sizes were consistently large. Intriguingly, images of “built” environments containing water were generally rated just as positively as natural “green” space. We propose a number of avenues for further research including exploration of the mechanisms underlying these effects.  相似文献   

9.
Water is a resource that is essential for all life on Earth. An exponentially growing human population, in addition to unprecedented industrial and technological development, threaten the availability and quality of this resource. Climate change and ozone depletion are two major environmental problems facing mankind today. These problems have the potential to further strain currently available freshwater resources. Recent research has shown that climate change and ozone depletion are linked phenomena and their interaction exacerbates their impact. Changes in precipitation, surface runoff, solar UV radiation, temperatures, and evaporation are some of the predicted outcomes of climate change and ozone depletion. They influence the biogeochemical cycles and aquatic ecosystems in lakes and rivers, and alter the character of natural organic matter (NOM) and, consequently, they have the potential to affect the quality, quantity and treatability of our water resources. Given these uncertainties, and the need to mitigate the consequences of climate change and ozone depletion, the issues of changing water quality, quantity and treatability cannot be ignored by Australian governments and water utilities.  相似文献   

10.
ABSTRACT: Lake water sulfate values were examined for two areas in western Norway and the western United States presently receiving low levels of sulfate in atmospheric deposition. Data from these areas were used to estimate background concentrations of sulfate in lakes found in areas currently receiving acidic deposition. The two areas contain dilute lakes with concentrations of sea-salt corrected Ca+ Mg less than 50 μeq/l or conductivity < 10μS cm-1and receive precipitation with volume-weighted mean pH > 4.8. Based on observations from these areas, we conclude that background sulfate concentrations were probably no more than 10 to 15 μeq L-1for areas of Norway and the U.S. containing lakes with low concentrations of base cations. For southern Norway and the northeastern U.S., present lakewater sulfate concentrations represent an increase of 7 to 10 fold above these estimated background values.  相似文献   

11.
ABSTRACT: Based on alkalinity data for 596 lakes, 31 percent of Florida's 7300 lakes have < 100 μeq/l alkalinity and are sensitive to acid depostion. More than two-thirds of the lakes in 12 northern Florida counties fit this criterion. Increasing aluminum and decreasing nutrient and chlorophyll a concentrations were observed with decressing pH in a survery of 20 softwater lakes. Maximum measured aluminum values (100-150 μg/L) are below levels asociated with fish toxicity. Factor analysis showed that lake chemistry was related to three principal factors, representing three major processes: watershed weathering, acidification, and nutrient inputs. An acidification index defined as the difference between excess SO42- and excess (Ca2++Mg2+) accounted for 74 percent of the variance in lake pH. Comparison of historical (late 1950a) and present data for pH, alkalinity, and excess SO42- indicated loss of alkalinity (>25 μeq/L) and increase in excess SO42- (16-34 μeq/L) in several softwater lakes.  相似文献   

12.
Spatial patterns in major dissolved solute concentrations were examined to better understand impact of surface coal mining in headwaters on downstream water chemistry. Sixty sites were sampled seasonally from 2012 to 2014 in an eastern Kentucky watershed. Watershed areas (WA) ranged from 1.6 to 400.5 km2 and were mostly forested (58%–95%), but some drained as much as 31% surface mining. Measures of total dissolved solutes and most component ions were positively correlated with mining. Analytes showed strong convergent spatial patterns with high variability in headwaters (<15 km2 WA) that stabilized downstream (WA > 75 km2), indicating hydrologic mixing primarily controls downstream values. Mean headwater solute concentrations were a good predictor of downstream values, with % differences ranging from 0.55% (Na+) to 28.78% (Mg2+). In a mined scenario where all headwaters had impacts, downstream solute concentrations roughly doubled. Alternatively, if mining impacts to headwaters were minimized, downstream solute concentrations better approximated the 300 μS/cm conductivity criterion deemed protective of aquatic life. Temporal variability also had convergent spatial patterns and mined streams were less variable due to unnaturally stable hydrology. The highly conserved nature of dissolved solutes from mining activities and lack of viable treatment options suggest forested, unmined watersheds would provide dilution that would be protective of downstream aquatic life.  相似文献   

13.
微山湖养殖湖区水体中多环芳烃的分布及来源   总被引:1,自引:0,他引:1  
郑曦  韩宝平  蒋欢  刘抗 《四川环境》2010,29(6):21-24
采用HPLC定量分析微山湖养殖湖区水体中16种优先控制PAHs的总量浓度范围在5348.8~12970.8ng/L之间,平均值为8671.5ng/L,处于中等偏高污染水平;养殖湖区水体中的多环芳烃主要来源于养殖船只的石油泄露及煤炭、木材与石油的不完全燃烧,PAHs的组成以2~3环为主。  相似文献   

14.
The endangered snail kite (Rostrhamus sociabilis) feeds primarily on the freshwater apple snail (Pomacea paludosa) in Florida. The nonindigenous, floating water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes) impede kites from finding snails. Effective control of these aquatic plants in the littoral zone of central and south Florida lakes benefits kites by maintaining open foraging habitat. However, incidental herbicide spraying of nesting substrates result in nest collapse when kites breed in nonwoody, emergent plants [cattail (Typha spp.) and giant bulrush (Scirpus validus)] in the outer littoral zone during lower lake levels. Many endangered species recovery plans and their implementation have experienced problems due to inaction and/or noncooperation by various governmental agencies and their personnel. Herein, we describe the development and implementation of a buffer zone strategy to prevent secondary impacts from an aquatic plant control program to snail kites nesting on lakes in central and south Florida. A strategy was jointly developed by personnel of five state and federal agencies to control herbicide application near kite nesting areas during the normal breeding season. Although requiring various modifications during its implementation, this cooperative effort successfully integrated aquatic plant control objectives with snail kite conservation on Lake Okeechobee during 1988. The program was expanded the following year to lakes Kissimmee and Tohopekaliga. Since the implementation of the snail kite impact preclusion program, no nest loss was attributed to incidental herbicide applications on lakes Okeechobee, Kissimmee, and Tohopekaliga.  相似文献   

15.
Introduced species are a major threat to the planet's ecosystems and one of the major causes of species extinction. This study deals with some of the economic impacts of one of these "invaders," variable milfoil. Variable milfoil can clog water-bodies, cause boating and swimming hazards, and crowd out native species. This study analyzed the effects of variable milfoil on shoreline property values at selected New Hampshire lakes. Results indicate that property values on lakes experiencing milfoil infestation may be considerably lower than similar properties on uninfested lakes. Results are highly sensitive to specification (variable selection) of the hedonic equation.  相似文献   

16.
The hydrochemical study of the surface water along with land-use/land-cover study of its catchment area is useful for determining its suitability for support to aquatic ecosystem and agricultural purposes. The surface water quality around the wetland in Sugadaira region, Japan, is being affected both by complex hydrogeochemical processes and by anthropogenic activity, mainly intensive agricultural practices. Statistical analysis was carried out in this study using surface water chemistry data to enable hydrochemical evaluation of the water quality based on the ionic constituents, water types, and factors controlling water quality. Results show that the general trend of various ions was found to be Ca2+ > Mg2+ > Na+ > K+ and HCO3  > NO3  > SO4 2− > Cl. Spatial distribution of water chemistry shows that enrichment of NO3 has taken place along one side of the wetland that is exposed directly to human settlement and agricultural practices. This study is vital considering that pollution in a wetland indicates that poor health of water resources in the region not only makes the situation alarming but also calls for immediate attention.  相似文献   

17.
ABSTRACT: The ability to predict how streams and wetlands retain phosphorus (P) is critical to the management of watersheds that contribute nutrients to adjacent aquatic systems such as lakes. Field and laboratory experiments were conducted to determine the P assimilatory capacity of a stream (Otter Creek) in the Taylor Creek/Nubbin Slough Basin located north of Lake Okeechobee, Florida. Dominant soils in this basin are sandy Spodosols; landuse is primarily dairy farms and beef cattle pastures. Estimates of P assimilation show that sediments assimilate approximately 5 percent of the P load. Phosphorus assimilation rates in the stream were estimated using first-order relationships based on the total P concentration of the water column as a function of distance from the primary source. This method assumes minimal lateral inputs. Stream lengths required for one turnover in P assimilation were estimated to be in the range of 3–16 km. Laboratory studies using intact sediment cores indicated a P assimilation rate of 0.025 m day?1, and equilibrium P concentration of 0.16 ± 0.03 mg L?1 in the water column. Dissolved P concentration gradients in the sediments showed upward flux of P at water column P concentration of <0.16 mg L?1. Approximately 56–77 percent of the P assimilated in the above-ground vegetation during active growth was released or translocated within six months of senesence, suggesting short-term storage in above-ground vegetation. Bottom sediments and recalcitrant detrital plant tissue provide for long-term P assimilation in the creek. Although stream sediments have the potential to adsorb P, high flow rate and low contact period between water and sediment limits this process.  相似文献   

18.
Regionalization frameworks cluster geographic data to create contiguous regions of similar climate, geology and hydrology by delineating land into discrete regions, such as ecoregions or watersheds, often at several spatial scales. Although most regionalization schemes were not originally designed for aquatic ecosystem classification or management, they are often used for such purposes, with surprisingly few explicit tests of the relative ability of different regionalization frameworks to group lakes for water quality monitoring and assessment. We examined which of 11 different lake grouping schemes at two spatial scales best captures the maximum amount of variation in water quality among regions for total nutrients, water clarity, chlorophyll, overall trophic state, and alkalinity in 479 lakes in Michigan (USA). We conducted analyses on two data sets: one that included all lakes and one that included only minimally disturbed lakes. Using hierarchical linear models that partitioned total variance into within-region and among-region components, we found that ecological drainage units and 8-digit hydrologic units most consistently captured among-region heterogeneity at their respective spatial scales using all lakes (variation among lake groups = 3% to 50% and 12% to 52%, respectively). However, regionalization schemes capture less among-region variance for minimally disturbed lakes. Diagnostics of spatial autocorrelation provided insight into the relative performance of regionalization frameworks but also demonstrated that region size is only partly responsible for capturing variation among lakes. These results suggest that regionalization schemes can provide useful frameworks for lake water quality assessment and monitoring but that we must identify the appropriate spatial scale for the questions being asked, the type of management applied, and the metrics being assessed.  相似文献   

19.
The European Union Water Framework Directive (WFD) has created a demand for comparing the benefits and costs of the remedial measures. A major part of the benefits from improved water quality relate to the increased recreational value. However, there is a lack of easily operative and widely applicable quantitative methods to assess the benefits of improved water quality for recreational use. We present a new model to link physical indicators of water quality, water feasibility indicators for different recreational uses, individuals’ perceptions concerning the current feasibility of water for recreational purposes and monetary measures of water-related recreation benefits. The model has been applied to nine lakes, three rivers and one large coastal area in Finland. In this paper, we present the principles of the method and the results from one case study. In Finland, the method has been applied for the economic analysis required in the WFD.  相似文献   

20.
2 was obtained from the output of the Canadian Climate Center General Circulation Model. To illustrate the effect of projected climate change on lake DO characteristics, we present herein DO information simulated, respectively, with inputs of past climate conditions (1961–1979) and with a projected 2 × CO2 climate scenario, as well as differences of those values. Specific parameters obtained were minimum under-ice and lake bottom DO concentration in winter, duration of under-ice anoxic conditions (<0.1 mg/liter) and low DO conditions (<3 mg/liter), and percentage of anoxic and low DO lake volumes during the ice cover period. Under current climate conditions winterkill occurs typically in shallow eutrophic lakes of the northern contiguous United States. Climate warming is projected to eliminate winterkill in these lakes. This would be a positive effect of climate warming. Fish species under ice may still experience periods of stress and zero growth due to low DO (<3 mg/liter) conditions under projected climate warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号