首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
ABSTRACT: The Soil and Water Assessment Tool (SWAT) has been used for hydrologic analyses at various watershed scales. However, little is known about the model's performance in coastal watersheds. In this study SWAT was evaluated for its applicability in three Louisiana coastal watersheds: the Amite, Tickfaw, and Tangipahoa River watersheds. The model was calibrated with daily discharge from 1976 to 1977 and validated from 1979 to 1999 for the Amite and Tangipahoa and with daily discharge from 1979 to 1989 for the Tickfaw. Deviation of mean discharge and the Nash‐Sutcliffe model efficiency were used to evaluate model behavior. The study found that Manning's roughness coefficient for the main channel, SCS curve number, and soil evaporation compensation factor were the most sensitive parameters for these coastal watersheds. The Manning's roughness coefficient showed the greatest effect on the response time of surface runoff, suggesting the critical role of channel routing in hydrologic modeling for lowland watersheds. The SWAT model demonstrated an excellent performance, with Nash‐Sutcliffe efficiencies of 0.935, 0.940, and 0.960 for calibrations of the Amite, Tickfaw, and Tangipahoa watersheds, respectively, and of 0.851, 0.811, and 0.867 for validations. The modeling results demonstrate that SWAT is capable of simulating hydrologic processes for medium scale to large scale coastal lowland watersheds in Louisiana.  相似文献   

2.
Due to resource constraints, long‐term monitoring data for calibration and validation of hydrologic and water quality models are rare. As a result, most models are calibrated and, if possible, validated using limited measured data. However, little research has been done to determine the impact of length of available calibration data on model parameterization and performance. The main objective of this study was to evaluate the impact of length of calibration data (LCD) on parameterization and performance of the Agricultural Policy Environmental eXtender model for predicting daily, monthly, and annual streamflow. Long‐term (1984‐2015) measured daily streamflow data from Rock Creek watershed, an agricultural watershed in northern Ohio, were used for this study. Data were divided into five Short (5‐year), two Medium (15‐year), and one Long (25‐year) streamflow calibration data scenarios. All LCD scenarios were calibrated and validated at three time steps: daily, monthly, and annual. Results showed LCD affected the ability of the model to accurately capture temporal variability in simulated streamflow. However, overall average streamflow, water budgets, and crop yields were simulated reasonably well for all LCD scenarios.  相似文献   

3.
ABSTRACT: The measurement of discharge in natural streams requires hydrographers to use accurate meters that have consistent performance among meters of the same model. This paper presents the results of an investigation into the accuracy and consistency of four models of current meters‐Price Type‐AA, Price Pygmy, Marsh McBirney 2000, and Swoffer 2100. Test results for six meters of each model are presented. Variation of meter performance within a model is used as an indicator of consistency, and percent velocity error that is computed from a measured reference velocity is used as an indicator of meter accuracy. Velocities measured by each meter are also compared to the manufacturer's published or advertised accuracy limits. The investigation found the Price models to be more accurate and consistent than the other models. The Price models met their respective accuracy limits over the range of test velocities better than the other models. The Marsh McBirney model usually measured within its accuracy specification. The Swoffer meters did not meet the stringent Swoffer accuracy limits for all the velocities tested. The Swoffer model had accuracies similar to the Price Type‐AA model when individual meter rating equations were computed and used. Every model tested had meters that did not meet manufacturer accuracy limits. Because current meters are not consistently accurate within a model, hydrographers should periodically check meters against a velocity standard.  相似文献   

4.
ABSTRACT: The snowmelt-runoff model (SRM) was used to produce accurate simulations of streamfiow during the snowmelt period (April-September) for ten years on the Rio Grande Basin (3419 km2) near Del Norte, Colorado, U.S.A. In order to use SRM in the forecast situation, it was necessary to develop a family of snow cover depletion curves for each elevation zone based on accumulated snow water equivalent on April 1. Selection of an appropriate curve for a particular year from snow course measurements allows input of the daily snow cover extent to SRM for forecast purposes. Data from three years (1980, 1981, and 1985) were used as a quasi-forecast test of the procedure. In these years forecasted snow cover extent data were input to SRM, but observed temperature and precipitation data were used. The resulting six-month hydrographs were very similar to the hydrographs in the ten simulation years previously tested based on comparisons of performance evaluation criteria. Based on this result, the Soil Conservation Service (SCS) requested SRM forecasts for 1987 on the Rio Grande. Using the same procedure but with SCS estimated temperature and precipi-tation data, SRM produced a forecast hydrograph that had a r2= 0.82 and difference in seasonal volume of 4.4 percent. To approximate actual operational conditions, SRM computed daily flows were updated every seven days with measured flows. The resulting forecast hydrograph had a R2= 0.90 and a difference in volume of 3.5 percent. The method developed needs to be refined and tested on additional years and basins, but the approach appears to be applicable to operational runoff forecasting using remote sensing data.  相似文献   

5.
ABSTRACT: The purpose of this study was to evaluate the Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) watershed management system. BASINS data were used with the NPSM model to predict discharge and sediment concentrations at the outlet of a 103 km2 Ohio watershed. It was concluded that the NPSM model should always be calibrated but only a few of the parameters provided with BASINS needed to be calibrated. For a three‐year study period, there was a 2 percent underestimation of discharge using area weighted precipitation values and a 25 percent overestimation using the single station data in BASINS. A comparison of observed and predicted monthly discharge resulted in an r2 of 0.86 with area‐weighted precipitation and an r2 of 0.74 with the single station data. Calibrating the model to substantially improve sediment predictions was unsuccessful and we concluded that a calibration period of one year was too short. For the three‐year study period, the r2 for sediment was 0.36 with a slope of 0.37 and an intercept of 18.8 mg/l. The mean observed and predicted sediment concentrations were 27.1 mg/l and 22.6 mg/l, respectively.  相似文献   

6.
ABSTRACT: A comprehensive mathematical model (Urban Wastewater Management Model) has been developed to continuously simulate time-varying wastewater flows and qualities in complex metropolitan combined sewerage systems. The model serves three functions: (1) assessment of existing or planned system performance in relation to other wastewater discharges in either a metropolitan or river basin area; (2) determination of the optium operation or automatic control of existing or planned systems during rainstorms; and (3) determination of the most economically feasible combination of design alternatives for improving or expanding existing systems to meet specified performance criteria. The model provides an efficient engineering tool for evaluating and controlling pollutant discharges from combined sewerage systems (including treatment plants) to receiving waters, while considering the time and spacial variations of rainfall and dry-weather flows and qualities as well as economic constraints.  相似文献   

7.
ABSTRACT: The Soil and Water Assessment Tool (SWAT) model, designed for use on rural ungaged basins and incorporating a GRASS GIS interface, was used to model the hydrologic response of the Ariel Creek watershed of northeastern Pennsylvania. Model evaluation of daily flow prior to calibration revealed a deviation of runoff volumes (Dv) of 68.3 percent and a Nash-Sutcliffe coefficient of-0.03. Model performance was affected by unusually large observed snowmelt events and the inability of the model to accurately simulate baseflow, which was influenced by the presence of fragipans. Seventy-five percent of the soils in the watershed contain fragipans. Model calibration yielded a Dv of 39.9 percent and a Nash-Sutcliffe coefficient of 0.04, when compared on a daily basis. Monthly comparisons yielded a Nash-Sutcliffe coefficient of 0.14. Snowmelt events in the springs of 1993 and 1994, which were unusually severe, were not adequately simulated. Neglecting these severe events, which produced the largest and third largest measured flows for the period of record, a Dv of 4.1 percent and Nash-Sutcliffe coefficient of 0.20 were calculated on a daily comparison, while on a monthly basis the Nash-Sutciffe coefficient was 0.55. These results suggest that the SWAT model is better suited to longer period simulations of hydrologic yields. Baseflow volumes were accurately simulated after calibration (Dv= -0.2 percent). Refinements made to the algorithms controlling subsurface hydrology and snowmelt, to better represent the presence of fragipans and snowmelt events, would likely improve model performance.  相似文献   

8.
ABSTRACT: Streamflow changes resulting from clearcut harvest of lodgepole pine (Pinus contorta) on a 2145 hectare drainage basin are evaluated by the paired watershed technique. Thirty years of continuous daily streamflow records were used in the analysis, including 10 pre-harvest and 20 post-harvest years of data. Regression analysis was used to estimate the effects of timber harvest on annual water yield and annual peak discharge. Removal of 14 million board feet of lodgepole pine (Pinus contorta) from about 526 hectares (25 percent of the basin) produced an average of 14.7 cm additional water yield per year, or an increase of 52 percent. Mean annual daily maximum discharge also increased by 1.6 cubic meters per second or 66 percent. Increases occurred primarily during the period of May through August with little or no change in wintertime streamflows. Results suggest that clearcutting conifers in relatively large watersheds (> 2000 ha) may produce significant increases in water yield and flooding. Implications of altered streamflow regimes are important for assessing the future ecological integrity of stream ecosystems subject to large-scale timber harvest and other disturbances that remove a substantial proportion of the forest cover.  相似文献   

9.
ABSTRACT: Two methods of computing rainfall excess in the U.S. Army Corps of Engineers’flood hydrograph package (HEC-1), the Initial and Uniform method and the Exponential method, are compared to evaluate the effects on modeled hydrograph accuracy. Two computed unit-hydrograph parameters, time of concentration and storage coefficient, were also compared. Rainfall and runoff data from 209 storms in 32 gaged basins in Illinois were used to calibrate the HEC-1 model. Three hydrograph characteristics - sum of incremental flows, peak discharge, and time of peak discharge - were used to evaluate modeled hydrograph accuracy. Mean percent error for each basin and hydrograph characteristic was computed. An evaluation of the mean errors indicates that, although some bias in modeled hydrograph accuracy is evident, rainfall excess computed using either method results in a computed hydrograph accuracy that is within generally accepted limits. Application of a linear-regression model shows no significant differences in computed values of unit-hydrograph parameters.  相似文献   

10.
ABSTRACT: A stochastic estimation of low flow in the upper reaches of streams is needed for the planning, development, and management of water resources and/or water use systems. In this paper, the definition and development procedure for the stochastic flow duration curve is presented and applied to five catchments located in eastern Japan and to two catchments in western Thailand. The probability distribution of N‐year daily discharge data is extracted at various percentages of time for which specified discharges are equaled or exceeded in a water year. Such a distribution is usually represented with a straight line on log‐normal probability paper. However, some of the probability plots for the annual minimum daily discharge are best represented with a straight line on Weibull probability paper. The effectiveness of the stochastic flow duration curve defined for the evaluation of flow regime is illustrated through its application. The ten year probability for the discharge exceeded 97 percent of the time may be recognized as an index of low flow. The recession shape of the lower part of the flow duration curve is dependent on the strength of low flow persistence.  相似文献   

11.
ABSTRACT: A two-parameter farm pond storage index, FPSI, was Used to adjust computed surface. runoff using the partial area runoff contribution resulting from runoff captured by farm ponds. The validity of the index method was tested by fitting a continuous accounting version of the Soil Conservation Service curve number procedure to surface runoff data from each of three watersheds, first with and then without the FPSI routine. Evapotranspiration computed with the Jensen-Haise method and rainfall were input to the model. A linear relationship was assumed between the storage index and the portion of the controlled drainage area that was contributing to runoff. Adjusting the computed runoff with the FPSI reduced the coefficient of variation of monthly measured versus computed surface runoff for each of the three watersheds. The correlation coefficients for the same comparisons were increased. The annual predicted surface runoff Was improved for 12 of the 17 station years of data tested. The farm pond storage index could be used with any surface runoff model to improve the prediction of runoff from watersheds with drainage areas greater than 1 square mile and with about 20 percent or more of the drainage area controlled by farm ponds.  相似文献   

12.
ABSTRACT: The purpose of this study was to determine the relationships between precipitation at the seasonal and annual scale and water discharge per surface area for seven contiguous first - and second-order tributaries of the Rhode River, a small tidal tributary to Chesapeake Bay, Maryland, USA. The goal was to quantify the effects of a wide range of precipitation, representative of inter-annual variations in weather in this region. The discharges measured included both overland storm flows and groundwater, since the aquifers were perched on a clay aquiclude. Precipitation varied from 824 to 1684 mm/yr and area-weighted Rhode River watershed discharge varied from 130 to 669 mm/yr with an average of 332 mm/yr or 29.1 percent of average precipitation. Average annual dis. charges from three first-order watersheds were significantly lower per surface area and varied from 16.0 to 21.9 percent of precipitation. Winter season precipitation varied from 125 to 541 mm. Area-weighted Rhode River winter discharge varied from 26.3 to 230 mm with an average of 115 mm or 43.9 percent of average precipitation. Spring season precipitation varied from 124 to 510 mm and watershed discharge varied from 40.0 to 321 mm with an average of 138 mm or 46.9 percent of average precipitation. In the summer and fall seasons, watershed discharge averaged 40.6 and 40.9 mm or 13.5 and 14.3 percent of average precipitation, respectively. Except in winter, the proportion of precipitation discharged in the streams increased rapidly with increasing volume of precipitation. Stream order showed a higher correlation with volume of discharge than vegetative cover on the watershed.  相似文献   

13.
ABSTRACT: To investigate the impacts of urbanization and climatic fluctuations on stream flow magnitude and variability in a Mediterranean climate, the HEC‐HMS rainfall/runoff model is used to simulate stream flow for a 14‐year period (October 1, 1988, to September 30, 2002) in the Atascadero Creek watershed located along the southern coast of California for 1929, 1998, and 2050 (estimated) land use conditions (8, 38 and 52 percent urban, respectively). The 14‐year period experienced a range of climatic conditions caused mainly by El Nino‐Southern Oscillation variations. A geographic information system is used to delineate the watershed and parameterize the model, which is calibrated using data from two stream flow and eight rainfall gauges. Urbanization is shown to increase peak discharges and runoff volume while decreasing stream flow variability. In all cases, the annual and 14‐year distributions of stream flow are shown to be highly skewed, with the annual maximum 24 hours of discharge accounting for 22 to 52 percent of the annual runoff and the maximum ten days of discharge from an average El Nino year producing 10 to 15 percent of the total 14‐year discharge. For the entire period of urbanization (1929 to 2050), the average increase in annual maximum discharges and runoff was 45 m3/s (300 percent) and 15 cm (350 percent), respectively. Additionally, the projected increase in urbanization from 1998 to 2050 is half the increase from 1929 to 1998; however, increases in runoff (22 m3/s and 7 cm) are similar for both scenarios because of the region's spatial development pattern.  相似文献   

14.
ABSTRACT: Loading functions are proposed as a general model for estimating monthly nitrogen and phosphorus fluxes in stream flow. The functions have a simple mathematical structure, describe a wide range of rural and urban nonpoint sources, and couple surface runoff and ground water discharge. Rural runoff loads are computed from daily runoff and erosion and monthly sediment yield calculations. Urban runoff loads are based on daily nutrient accumulation rates and exponential wash off functions. Ground water discharge is determined by lumped parameter unsaturated and saturated zone soil moisture balances. Default values for model chemical parameters were estimated from literature values. Validation studies over a three-year period for an 850 km2 watershed showed that the loading functions explained at least 90 percent of the observed monthly variation in dissolved and total nitrogen and phosphorus fluxes in stream flow. Errors in model predictions of mean monthly fluxes were: dissolved phosphorus - 4 percent; total phosphorus - 2 percent; dissolved nitrogen - 18 percent; and total nitrogen - 28 percent. These results were obtained without model calibration.  相似文献   

15.
Thornton, Christopher I., Anthony M. Meneghetti, Kent Collins, Steven R. Abt, and S. Michael Scurlock, 2011. Stage‐Discharge Relationships for U‐, A‐, and W‐Weirs in Un‐submerged Flow Conditions. Journal of the American Water Resources Association (JAWRA) 47(1):169‐178. DOI: 10.1111/j.1752‐1688.2010.00501.x Abstract: Instream rock weirs are routinely placed into stream systems to provide grade control, reduce streambank erosion, provide energy dissipation, and allow fish passage. However, design and performance criteria for site specific applications are often anecdotal or qualitative in nature, and based upon the experience of the design team. A study was conducted to develop generic state‐discharge relationships for U‐, A‐, and W‐weirs. A laboratory testing program was performed in which scaled, near‐prototype U‐, A‐, and W‐rock weir structures were constructed in 11 configurations. Each configuration encompassed a unique weir shape, bed material, and/or bed slope. Thirty‐one tests were conducted in which each structure was subjected to a sequence of predetermined discharges that minimally included the equivalent of 1/3 bankfull, 2/3 bankfull, and bankfull conditions. All tests were performed in subcritical, un‐submerged flow conditions. Stage‐discharge relationships were developed using multivariant, power regression techniques for each of the U‐, A‐, and W‐rock weirs as a function of the effective weir length, flow depth, mean weir height, rock size, and discharge coefficient. Unique coefficient expressions were developed for each weir shape, and a single discharge coefficient was proposed applicable to the weirs for determining the channel stage‐discharge rating.  相似文献   

16.
ABSTRACT: A computer model was developed, based on the Green-Ampt infiltration equation, to computed rainfall excess for a single precipitation event. The model requires an estimate of parameters related to hydraulic conductivity, wetting front section, and fillable porosity of the soil layers. Values of parameters were estimated from soil textural averages or regression equations based on percent sand, percent clay, and porosity. Average values of effective porosity and wetting front suction were largely acceptable due to the relatively low variability and low model sensitivity to the parameters. Hydraulic conductivity was the most erratic constituent of the loss rate computation due to the high variability and the high sensitivity of the computed infiltration to the parameter. The performance of the Green-Ampt infiltration model was tested through a comparison with the SCS curve number procedure. Seven watersheds and 23 storms with precipitation of one inch or greater were used in the comparison. For storms with less than one inch of rainfall excess, the SCS curve number procedure generally gave the best results; however, for six of the seven storms with precipitation excess greater than one inch, the Green-Ampt procedure delivered better results. In this comparison, both procedures used the same initial abstractions. The separation of rainfall losses into infiltration, interception, and surface retention is, in theory, an accurate method of estimating precipitation excess. In the second phase of the study using nine watersheds and 39 storms, interception and surface retention losses were computed by the Horton equations. Green-Ampt and interception parameters were estimated from value sin the literature, while the surface retention parameter was calibrated so that the computed runoff volumes matched observed volumes. A relationship was found between the surface retention storage capacity and the 15-day antecedent precipitation index, month of year, and precipitation amount.  相似文献   

17.
Boomer, Kathleen M.B., Donald E. Weller, Thomas E. Jordan, Lewis Linker, Zhi‐Jun Liu, James Reilly, Gary Shenk, and Alexey A. Voinov, 2012. Using Multiple Watershed Models to Predict Water, Nitrogen, and Phosphorus Discharges to the Patuxent Estuary. Journal of the American Water Resources Association (JAWRA) 1‐25. DOI: 10.1111/j.1752‐1688.2012.00689.x Abstract: We analyzed an ensemble of watershed models that predict flow, nitrogen, and phosphorus discharges. The models differed in scope and complexity and used different input data, but all had been applied to evaluate human impacts on discharges to the Patuxent River or to the Chesapeake Bay. We compared predictions to observations of average annual, annual time series, and monthly discharge leaving three basins. No model consistently matched observed discharges better than the others, and predictions differed as much as 150% for every basin. Models that agreed best with the observations in one basin often were among the worst models for another material or basin. Combining model predictions into a model average improved overall reliability in matching observations, and the range of predictions helped describe uncertainty. The model average was not the closest to the observed discharge for every material, basin, and time frame, but the model average had the highest Nash–Sutcliffe performance across all combinations. Consistently poor performance in predicting phosphorus loads suggests that none of the models capture major controls. Differences among model predictions came from differences in model structures, input data, and the time period considered, and also to errors in the observed discharge. Ensemble watershed modeling helped identify research needs and quantify the uncertainties that should be considered when using the models in management decisions.  相似文献   

18.
ABSTRACT: Bank full hydraulic geometry relationships relate stream channel geometry to watershed size for specific physiographic regions. This paper presents bank full hydraulic geometry relationships and recurrence intervals for the Southeastern Plain coercion and the flat woods subtype of the Middle Atlantic Coastal Plain ecoregion found within North Carolina's Coastal Plain physiographic province. Cross‐sectional and longitudinal survey data from gated and unpaged streams were used to compute channel dimension and profile information. Power functions were developed, relating drainage area to bank full discharge, cross‐sectional area, width, and mean depth. Recurrence intervals of bank full events were estimated from gagged streams using both a Log‐Pearson Type III distribution of peak annual discharge and a partial‐duration series of average daily discharge. Results from both methods indicate that average bank full recurrence intervals for the study area are below one year. Determinations of recurrence intervals by the Log‐Pearson Type III distribution were for the most part inconclusive (less than one year), while a partial duration series estimated a 0.19 year average, ranging from 0.11 to 0.31 years.  相似文献   

19.
This study aimed to evaluate the influence of sub‐daily precipitation time steps on model performance and hydrological components by applying the Green and Ampt infiltration method using the Soil and Water Assessment Tool (SWAT). Precipitation was measured at a resolution of 0.1 mm and aggregated to 5‐, 15‐, 30‐, and 60‐min time steps. Daily discharge data over a 10‐year period were used to calibrate and validate the model. Following a global sensitivity analysis, relevant parameters were optimized through an automatic calibration procedure using SWAT‐CUP for each time step. Daily performance statistics were almost equal among all four time steps (NSE ≈ 0.47). Discharge mainly consisted of groundwater flow (55%) and tile flow (42%), in reasonable proportions for the investigated catchment. In conclusion, model outputs were almost identical, showing simulations responded nearly independently of the chosen precipitation time step. This held true for (1) the selection of sensitive parameters, (2) performance statistics, (3) the shape of the hydrographs, and (4) flow components. However, a scenario analysis revealed that the precipitation time step becomes important when saturated hydraulic conductivities are low and curve numbers are high. The study suggests that there is no need in using precipitation time steps <1 h for lowland catchments dominated by soils with a low surface runoff potential if daily flow values are being considered. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

20.
Abstract: The processes affecting the fate and transport of Escherichia coli in surface waters were investigated using high‐resolution observation and modeling. The concentration patterns in Boston’s Charles River were observed during four sampling events with a total of 757 samples, including two spatial surveys with two along‐river (1,500 m length) and three across‐river (600 m length) transects at approximately 25‐m intervals, and two temporal surveys at a fixed location (Community Boating) over seven days at hourly intervals. The data reveal significant spatial and temporal structure at scales not resolved by typical monitoring programs. A mechanistic, time‐variable, three‐dimensional coupled hydrodynamic and water quality model was developed using the ECOMSED and RCA modeling frameworks. The computational grid consists of 3,066 grid cells with average length dimension of 25 m. Forcing functions include upstream and downstream boundary conditions, Stony Brook, and Muddy River (major tributaries) combined sewer overflow (CSO) and non‐CSO discharge and wind. The model generally reproduces the observed spatial and temporal patterns. This includes the presence and absence of a plume in the study area under similar loading, but different hydrodynamic conditions caused by operation of the New Charles River Dam (downstream) and wind. The model also correctly predicts an episode of high concentrations at the time‐series station following seven days of no rainfall. The model has an overall root mean square error (RMSE) of 250 CFU/100 ml and an error rate (above or below the USEPA‐recommended single sample criteria value of 235 CFU/100 ml) of 9.4%. At the time series station, the model has an RMSE of 370 CFU/100 ml and an error rate of 15%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号