首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
ABSTRACT: The sources and distribution of nutrients in the Charlotte Harbor estuarine system were evaluated using nutrient dilution curve models. Except for ammonia, nutrient concentrations were highest and most variable in the rivers, and generally decreased with increasing salinity. Observed and theoretical dilution curves for phosphorus were generally in close agreement, which suggests conservative behavior. Phosphorus concentrations sagged below a straight line because phosphorus-rich water from the upper Peace River basin was diluted by tributaries in the lower basin. The concentrations of dissolved silica appeared to be conservative on some occasions. On other occasions, dissolved silica appeared to be removed at low salimties or released at higher salinities. Concentrations of ammonia were highly variable along the salinity gradient, presumably because of variations in ammonia regeneration and uptake. Concentrations of nitrite plus nitrate were well below conservative dilution curves, probably due to phy-toplankton uptake. At salinities greater than 20%, nitrite plus nitrate concentrations were usually at or below the detection limit and may limit phytoplankton productivity. Projected increased nitrogen loadings from urban development in the basin would favor undesirable increases in phytoplankton and benthic algal growth in waters where sufficient light is available.  相似文献   

2.
ABSTRACT. This paper describes the methodology for a nutrient balance to evaluate the sources and distribution of nutrients in a small river basin. Loadings for total nitrogen and phosphorus are calculated from measured nutrient concentration and river discharge data. Using a special retrieval program and a data storage and processing system, loadings are accumulated over a given time period to allow for time of passage through the basin and seasonal changes in nutrient distribution. Nutrient balances are made with the accumulated loadings to obtain the relative contribution of each nutrient source and the retention of nutrients within the basin through sedimentation and aquatic growth. The methodology has been used to study nutrients in the Qu'Appelle River Basin, Saskatchewan, Canada.  相似文献   

3.
Lake Okeechobee (surface area = 1830 km2, mean depth = 3.5 m), the largest lake in Florida, is eutrophic and has nitrogen and phosphorus loading rates in excess of nearly all established criteria. The lake is not homogeneous regarding trophic conditions, and spatial and temporal variations occur regarding nutrient limitation. Nonetheless, phosphorus loading rate and trophic state data fit reasonably well to various input-output models developed for temperate lakes. Modification of the models by regression analysis to fit data for Florida lakes resulted in improved predictions for most parameters. Analysis of nutrient management alternatives for the lake indicates that a 75% reduction of phosphorus loading from the largest source (the Taylor Creek-Nubbins Slough watershed) would reduce the average chlorophyll a concentration by less than 20%. Complete elimination of inputs from the largest nitrogen source (the Everglades Agricultural Area) would decrease the average nitrogen concentration in the lake by about 20%. Limitations of nutrient inputoutput models regarding analysis of trophic conditions and management alternatives for the lake are discussed.  相似文献   

4.
ABSTRACT: Accurate data about nutrient concentrations in wastewater treatment plant effluents are needed for river basin water-quality studies. As part of the U.S. Geological Survey's National Water-Quality Assessment Program in the South Platte River Basin, nutrient data were requested from 31 wastewater-treatment plants located in the basin. This article describes the types of nutrient data available from the plants, examines the variability of effluent nutrient concentrations, and discusses methods for estimation of nutrient concentrations where data are lacking. Ammonia was monitored at 88 percent of the plants, nitrite plus nitrate was monitored at 40 percent of the plants, and organic nitrogen and phosphorus were monitored at less than 25 percent of the plants. Median total nitrogen concentrations and median total phosphorus concentrations were small compared to typical literature estimates for wastewater-treatment plants with secondary treatment. Nutrient concentrations in effluent from wastewater-treatment plants varied widely between and within plants. For example, ammonia concentrations varied as much as 5 mg/L during a day, as much as 10 mg/L from day to day, and as much as 30 mg/L from summer to winter within a plant. In the South Platte River Basin, estimates of median annual ammonia and nitrite plus nitrate concentrations can be improved based on plant processes; and nitrite plus nitrate and organic nitrogen concentrations can be estimated based on ammonia concentrations. However, to avoid large estimation errors, more complete nutrient data from wastewater-treatment plants are needed for integration into river basin water quality studies. The paucity of data hinders attempts to evaluate the relative importance of point source and nonpoint source nutrient loadings to rivers.  相似文献   

5.
ABSTRACT: A nutrient mass balance — accounting for nutrient inputs from atmospheric deposition, fertilizer, crop nitrogen fixation, and point source effluents; and nutrient outputs, including crop harvest and storage — was calculated for 18 subbasins in the Mobile River Basin, and trends (1970 to 1997) were evaluated as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program. Agricultural nonpoint nitrogen and phosphorus sources and urban nonpoint nitrogen sources are the most important factors associated with nutrients in this system. More than 30 percent of nitrogen yield in two basins and phosphorus yield in eight basins can be attributed to urban point source nutrient inputs. The total nitrogen yield (1.3 tons per square mile per year) for the Tombigbee River, which drains a greater percentage of agricultural (row crop) land use, was larger than the total nitrogen yield (0.99 tons per square mile per year) for the Alabama River. Decreasing trends of total nitrogen concentrations in the Tombigbee and Alabama Rivers indicate that a reduction occurred from 1975 to 1997 in the nitrogen contributions to Mobile Bay from the Mobile River. Nitrogen concentrations also decreased (1980 to 1995) in the Black Warrior River, one of the major tributaries to the Tombigbee River. Total phosphorus concentrations increased from 1970 to 1996 at three urban influenced sites on the Etowah River in Georgia. Multiple regression analysis indicates a distinct association between water quality in the streams of the Mobile River drainage basin and agricultural activities in the basin.  相似文献   

6.
ABSTRACT: A loading function methodology is presented for predicting runoff, sediment, and nutrient losses from complex watersheds. Separate models are defined for cropland, forest, urban and barnyard sources, and procedures for estimating baseflow nutrients are provided. The loading functions are designed for use as a preliminary screening tool to isolate the major contributors in a watershed. Input data sources are readily available and the functions do not require costly calibrations. Data requirements include watershed land use and soil information, daily precipitation and temperature records and rainfall erosivities. Comparison of predicted and measured water, sediment, and nutrient runoff fluxes for the West Branch Deleware River in New York, indicated that runoff was underpredicted by about 14 percent while dissolved nutrients were within 30 percent of observed values. Sediment and solid-phase nutrients were overpredicted by about 50 percent. An annual nutrient budget for the West Branch Delaware River showed that cornland was the major source of sediment, solid phase nutrients, and total phosphorus. Waste water treatment plants and ground water discharge contributed the most dissolved phosphorus and dissolved nitrogen, respectively.  相似文献   

7.
ABSTRACT: Concentrations of total nitrogen, total phosphorus, and total organic carbon in the Loxahatchee River estuary decreased with increasing salinity in a manner indicating that mixing and dilution of freshwater by seawater was the primary process controlling the down-stream concentrations of nutrients. Most of the nutrients in the surface freshwater inflows entered the estuary from five major tributaries; however, about 10 percent of the total nitrogen and 32 percent of the total phosphorus were from urban stormwater runoff. The input of nutrients was highly seasonal and storm related. During a 61-day period of above average rainfall that included Tropical Storm Dennis, the major tributaries discharged 2.7 metric tons of total phosphorus, 75 metric tons of total nitrogen, and 1,000 metric tons of organic carbon to the estuary. This period accounted for more than half of the total nutrient load from the major tributaries during the 1981 water year (October 1, 1980, through September 30, 1981). Inorganic phosphorus and nitrogen increased relative to total phosphorus and nitrogen during storm runoff. Nutrient yield from the basin, expressed as grams per square meter of basin area, was relatively low. However, because the basin area (544 square kilometers) is large compared with the volume of the estuary, the basin might be expected to contribute significantly to estuarine enrichment were it not for tidal flushing. Approximately 60 percent of the total volume of the estuary is flushed on each tide. Because the estuary is well flushed, it probably has a large tolerance for nutrient loading.  相似文献   

8.
While expansion of agricultural land area and intensification of agricultural practices through irrigation and fertilizer use can bring many benefits to communities, intensifying land use also causes more contaminants, such as nutrients and pesticides, to enter rivers, lakes, and groundwater. For lakes such as Benmore in the Waitaki catchment, South Island, New Zealand, an area which is currently undergoing agricultural intensification, this could potentially lead to marked degradation of water clarity as well as effects on ecological, recreational, commercial, and tourism values. We undertook a modeling study to demonstrate science-based options for consideration of agricultural intensification in the catchment of Lake Benmore. Based on model simulations of a range of potential future nutrient loadings, it is clear that different areas within Lake Benmore may respond differently to increased nutrient loadings. A western arm (Ahuriri) could be most severely affected by land-use changes and associated increases in nutrient loadings. Lake-wide annual averages of an eutrophication indicator, the trophic level index (TLI) were derived from simulated chlorophyll a, total nitrogen, and total phosphorus concentrations. Results suggest that the lake will shift from oligotrophic (TLI = 2–3) to eutrophic (TLI = 4–5) as external loadings are increased eightfold over current baseline loads, corresponding to the potential land-use intensification in the catchment. This study provides a basis for use of model results in a decision-making process by outlining the environmental consequences of a series of land-use management options, and quantifying nutrient load limits needed to achieve defined trophic state objectives.  相似文献   

9.
ABSTRACT: A method is demonstrated for the development of nutrient concentration criteria and large scale assessment of trophic state in environmentally heterogeneous landscapes. The method uses the River Environment Classification (REC) as a spatial framework to partition rivers according to differences in processes that control the accrual and loss of algae biomass. The method is then applied to gravel bed rivers with natural flow regimes that drain hilly watersheds in New Zealand's South Island. An existing model is used to characterize trophic state (in terms of chlorophyll a as a measure of maximum biomass) using nutrient concentration, which controls the rate of biomass accrual, and flood frequency, which controls biomass loss. Variation in flood frequency was partitioned into three classes, and flow data measured at 68 sites was used to show that the classes differ with respect to flood frequency. Variation in nutrient concentration was partitioned at smaller spatial scales by subdivision of higher level classes into seven classes. The median of flood frequency in each of the three higher level classes was used as a control variable in the model to provide spatially explicit nutrient concentration criteria by setting maximum chlorophyll a to reflect a desired trophic state. The median of mean monthly soluble reactive phosphorus and soluble inorganic nitrogen measured at 68 water quality monitoring sites were then used to characterize the trophic state of each of the seven lower level classes. The method models biomass and therefore allows variation in this response variable to provide options for trophic state and the associated nutrient concentrations to achieve these. Thus it is less deterministic than using reference site water quality. The choice from among these options is a sociopolitical decision, which reflects the management objectives rather than purely technical considerations.  相似文献   

10.
为评价西南地区高尔夫球场人工湖的营养状态,并探讨影响球场湖泊富营养化的原因,2010年1月至12月,以成都麓山高尔夫球场为例,对球场的4个球道人工湖(12号球道、13号球道、14号球道和16号球道)水体的水体理化性质进行监测。结果显示:人工湖的富营养化程度呈季节性变化,其在试验期内综合营养状态已达到轻度富营养的状态。水体营养盐主要来自于球场草坪的施肥,氮、磷等营养物质随降水输入人工湖,从而引起的湖泊富营养化,尤其体现在多雨的夏季。  相似文献   

11.
ABSTRACT: A cross-sectional data set of 80 lakes and reservoirs in nine southeastern states was examined to specify and parameterize trophic state relationships. The relationships fitted are based on measurements of several limnological variables taken over the course of a growing season or year in each of the lakes. The trophic state models relate phosphorus and nitrogen loading to inlake phosphorus and nitrogen concentrations, which in turn are related to maximum chlorophyll level, Secchi disk depth, dominant algal species, and hypolimnetic dissolved oxygen status. Due to the empirical nature of the study, causal conclusions are limited; rather, the models are most useful for prediction of average growing season conditions related to trophic state.  相似文献   

12.
ABSTRACT: Data from 85 sites across the United States were used to estimate concentrations and yields of selected nutrients in streams draining relatively undeveloped basins. Flow‐weighted concentrations during 1990–1995 were generally low with median basin concentrations of 0.020, 0.087, 0.26, 0.010, and 0.022 milligrams per liter (mg/L) for ammonia as N, nitrate as N, total nitrogen, orthophosphate as P, and total phosphorus, respectively. The flow‐weighted concentration of nitrate exceeded 0.6 mg/L in only three basins. Total nitrogen exceeded 1 mg/L in only four basins, and total phosphorus exceeded 0.1 mg/L in only four basins. The median annual basin yield of ammonia as N, nitrate as N, total nitrogen, orthophosphate as P, and total phosphorus was 8.1, 26, 86, 2.8, and 8.5 kilograms per square kilometer, respectively. Concentrations and yields of nitrate tended to be highest in northeastern and mid‐Atlantic coastal states and correlated well with areas of high atmospheric nitrogen deposition. Concentrations and yields of total nitrogen were highest in the southeastern part of the nation and in parts of the upper Midwest. In the northeast, nitrate was generally the predominant form of nitrogen, and in the southeast and parts of the upper Midwest, organic nitrogen was the dominant form. Concentrations of total phosphorus were generally highest in the Rocky Mountain and Central Plain states.  相似文献   

13.
ABSTRACT: A synthetic relationship is developed between nutrient concentrations and discharge rates at two river gauging sites in the Illinois River Basin. Analysis is performed on data collected by the U.S. Geological Survey (USGS) on nutrients in 1990 through 1997 and 1999 and on discharge rates in 1988 through 1997 and 1999. The Illinois River Basin is in western Arkansas and northeastern Oklahoma and is designated as an Oklahoma Scenic River. Consistently high nutrient concentrations in the river and receiving water bodies conflict with recreational water use, leading to intense stakeholder debate on how best to manage water quality. Results show that the majority of annual phosphorus (P) loading is transported by direct runoff, with high concentrations transported by high discharge rates and low concentrations by low discharge rates. A synthetic relationship is derived and used to generate daily phosphorus concentrations, laying the foundation for analysis of annual loading and evaluation of alternative management practices. Total nitrogen (N) concentration does not have as clear a relationship with discharge. Using a simple regression relationship, annual P loadings are estimated as having a root mean squared error (RMSE) of 39.8 t/yr and 31.9 t/yr and mean absolute percentage errors of 19 percent and 28 percent at Watts and Tahlequah, respectively. P is the limiting nutrient over the full range of discharges. Given that the majority of P is derived from Arkansas, management practices that control P would have the most benefit if applied on the Arkansas side of the border.  相似文献   

14.
ABSTRACT: The applicability of empirical relationships governing phosphorus (P) retention and nutrient assimilation in lakes and reservoirs was extended to include free surface water wetland treatment systems. Mixed reactor models have been used in lakes to predict steady state P concentration, characterize trophic state, compare P‐dynamics, and predict permissible P‐loading rates. Applying lake models to free surface water wetlands treatment systems, it was found that: sedimentation rates, loading rates, and settling velocity in these wetlands, and their typology are comparable to their lake counterparts. The analyses also suggest that phosphorus removal efficiency in a free surface water wetland treatment system is independent of trophic status, and similar to lakes, these wetlands can be classified according to their trophic state. Oligo‐and eutrophic wetland treatment systems can be defined by low and high TP inflow concentrations, respectively. In this study, olig‐otrophic status is defined as systems receiving inflow P‐loading less than 0.10 g m‐2 year‐1, and their P inputs are mainly derived from agricultural and stormwater runoff. Eutrophic treatment systems, on the other hand, are defined as those receiving inflow P‐loading higher than 0.20 g m2 year‐1, and their inputs are mainly derived from industrial and municipal wastewater. The comparability found between lakes and free surface water wetlands treatment systems raises the question: should we consider these wetlands “shallow lakes?”  相似文献   

15.
ABSTRACT. Laboratory and field studies were initiated to evaluate at regular intervals by 14C and chlorophyll enrichment bioassay some of the nutrients, particularly ammonia, that might limit phytoplankton photosynthesis in two central Virginia ponds. Preliminary comparisons of the phytoplankton, their production, and the chemical characteristics of the water were determined. Ammonia, phosphate, nitrate, iron, carbon dioxide, silica and chloride differed most markedly among the various nutrients analyzed. Investigations were continued to compare the validity of using field and laboratory ecosystem work to predict changes in trophic levels resulting from nutrient enrichment, i.e., eutrophication. Laboratory experiments using aquatic microecosystems and field experiments employing in situ plastic cylinders and battery jars support the view that ammonia is a key factor regulating “trophic” features in these two ponds.  相似文献   

16.
ABSTRACT: Water quality and trophic conditions in the Feitsui Reservoir, a subtropical reservoir, were evaluated with data from a ten-year data base to depict the impacts of river impoundment upon the chemical and biological characteristics of a reservoir, and to discuss the effects of flushing rate on in-lake phosphorus concentrations and phytoplankton growth. The results of the investigation showed that during the incipient impounding period, the water quality in the Feitsui Reservoir was significantly affected by internal loadings from submerged vegetation and soil in the flooded area. Studies of the changes in phosphorus compounds indicated that total phosphorus concentration appeared to approach equilibrium after the seventh year of impoundment and that orthophosphate stabilized after the sixth year of impoundment. Concentrations of both phosphorus forms varied seasonally after attaining stability. Nitrogen compounds (NH3-N, NO3-N and NO2-N) approached equilibrium within three years after impoundment. The seasonal variation in carbon was correlated to the number of phytoplankton. The mean value of the N:P mass ratio has remained over 110 since year seven of impoundment (1990), indicating that phosphorus constitutes the potential limiting nutrient in the growth of phytoplankton. The rapid flushing rate (132.11 and 110.43 yr-1) in Feitsui Reservoir during the first and second impounding stages was a critical factor influencing the phytoplankton growth response to available nutrients.  相似文献   

17.
ABSTRACT: The relationship between chlorophyll u, total phosphorus, secchi disk depth, and trophic state were examined using data on U.S. lakes collected by U.S. EPA's National Eutrophication Survey. By comparing predicted secchi disk depths with observed summer secchi disk depths in 757 lakes, it was determined that in many lakes non-chlorophyll related light attenuation is important in controlling the amount of chlorophyll u produced per unit of total phosphorus. Ranking of 44 lakes by 18 different trophic state measurements and single and multivariable indices were compared with rankings provided by mean summer ambient total phosphorus and chlorophyll u. The trophic state measurements and indices were much more successful in ranking the lakes against total phosphorus than chlorophyll u, indicating that there are differences in the relative trophic rankings of many of the lakes depending upon whether primary nutrients or biological manifestations are used as the ranking mechanism. If the manifestations of nutrients rather than their absolute levels are the primary criteria for beneficial use of lakes, the use of many of the commonly employed trophic state measurements, which assume or imply that there is a constant relationship between total phosphorus or secchi disk and chlorophyll, can lead to erroneous conclusions and unnecessary costly management controls. Secchi disk measurements may be more useful as a predictor of ambient lake total phosphorus concentrations than of chlorophyll.  相似文献   

18.
ABSTRACT: Long term effects of precipitation and land use/land cover on basin outflow and nonpoint source (NFS) pollutant flux are presented for up to 24 years for a rapidly developing headwater basin and three adjacent headwater basins on the urban fringe of Washington, D.C. Regression models are developed to describe the annual and seasonal responses of basin outflow and IMPS pollutant flux to precipitation, mean impervious surface (IS), and land use. To quantify annual change in mean IS, a variable called delta IS is created as a temporal indicator of urban soil disturbance. Hydrologic models indicate that total annual surface outflow is significantly associated with precipitation and mean IS (r2= 0.65). Seasonal hydrologic models reveal that basin outflow is positively associated with IS during the summer and fall growing season (June to November). NPS pollutant flux models indicate that total and storm total suspended solids (TSS) flux are significantly associated with precipitation and urban soil disturbance in all seasons. Annual NPS total nitrogen flux is significantly associated with both urban and agricultural soil disturbance (r2= 0.51). Seasonal models of phosphorus flux indicate a significant association of total phosphorus flux with urban soil disturbance during the growing season. Total soluble phosphorus (TSP) flux is significantly associated with IS (r2= 0.34) and urban and agricultural soil disturbance (r2= 0.58). In urbanizing Cub Run basin, annual TSP concentrations are significantly associated with IS and cultivated agriculture (r2= 0.51).  相似文献   

19.
A quasi-steady state numerical ecosystem model was designed to help evaluate the potential impact of various scenarios of effluent treatment and of a landfill on the distribution of phytoplankton and inorganic nutrients in Los Angeles and Long Beach harbors Formulations included (a) tidal circulation, (b) phytoplankton growth and oxygen production as a function of temperature, light, and nutrients, (c) grazing by zooplankton, (d) respiration and nutrient regeneration by the benthos, (e) biochemical oxidation of organics, and (f) nitrification Phytoplankton nitrogen, ammonium, nitrate, and oxygen were the state variables, which were simulated with diel and spatial variability for a range of seasonal conditions. Physical circulation was indicated to be a primary factor governing the distribution of state variables, and the landfill resulted in significant alterations. Simulated phytoplankton stocks approximated the upper range of reported concentrations, indicating a satisfactory prediction of bloom conditions. The model indicated that while light may usually regulate maximum phytoplankton levels, under bloom conditions nutrient limitation may also be important Most of the outer Los Angeles Harbor was affected by the effluent, as shown by comparison to the case with zero input Simulations for secondary versus primary treatment converged a short distance from the outfall in response to high BOD oxidation rates. In general, total phytoplankton crop was not greatly affected by the change from primary to secondary treatment, and predation on phytoplankton was small  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号