首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 560 毫秒
1.
ABSTRACT: A bromide tracer was used to evaluate percolate water and ion movement in the upper 1.2 m of soil at a proposed sewage effluent irrigation site located in the Missouri Ozarks. Two plots representing Doniphan silt loam and Crider silt loam soils were sprinkler irrigated with local ground water at a rate of 7.62 cm/week from June through August 1976. Soil water potential, percent soil moisture by volume, and background levels of bromide in soil water, ground water, and precipitation were measured at the study plots. Bromide exchange properties and saturated hydraulic conductivity of the soils were determined in the laboratory. During two selected time periods, irrigation water, was spiked with NaBr (5.0 mg/l Br). Bromide movement through the upper profile was quantified by soil water samples and post-sampling neutron activation analysis. Soil moisture was near saturatin in both soils when the Br tracer was applied. Bromide concentrations above background levels (0.023 mg/l Br, Doniphan silt loam and 0.016 mg/l Br, Crider silt loam) were detected within 2.60 hours at 0.9 m in the Doniphan soil and within 3.75 hours at that depth in the Crider soil. The rate of Br movement in the profile was greater in both soils than the measured saturated hydraulic conductivity, Bromide concentrations above background levels were present in soil water from the study plots for a minimum of 21 days after irrigation with the Br tracer.  相似文献   

2.
ABSTRACT: Certain physical and chemical properties of soil vary with soil water content. The relationship between these properties and water content is complex and involves both the pore structure and constituents of the soil solution. One of the most economical techniques to quantify soil water content involves the measurement of electrical resistance of a dielectric medium that is in equilibrium with the soil water content. The objective of this research was to test the reliability and accuracy of fiberglass soil-moisture electrical resistance sensors (ERS) as compared to gravimetric sampling and Time Domain Reflectometry (TDR). The response of the ERS was compared to gravimetric measurements at eight locations on the USDA-ABS Walnut Gulch Experimental Watershed. The comparisons with TDR sensors were made at three additional locations on the same watershed. The high soil rock content (≥45 percent) at seven locations resulted in consistent overestimation of soil water content by the ERS method. Where rock content was less than 10 percent, estimation of soil water was within 5 percent of the gravimetric soil water content. New methodology to calibrate the ERS sensors for rocky soils will need to be developed before soil water content values can be determined with these sensors.  相似文献   

3.
Soil moisture data collected using an automated data logging system were used to estimate ground water recharge at a crude oil spill research site near Bemidji, Minnesota. Three different soil moisture probes were tested in the laboratory as well as the field conditions of limited power supply and extreme weather typical of northern Minnesota: a self‐contained reflectometer probe, and two time domain reflectometry (TDR) probes, 30 and 50 cm long. Recharge was estimated using an unsaturated zone water balance method. Recharge estimates for 1999 using the laboratory calibrations were 13 to 30 percent greater than estimates based on the factory calibrations. Recharge indicated by the self‐contained probes was 170 percent to 210 percent greater than the estimates for the TDR probes regardless of calibration method. Results indicate that the anomalously large recharge estimates for the self‐contained probes are not the result of inaccurate measurements of volumetric moisture content, but result from the presence of crude oil, or borehole leakage. Of the probes tested, the 50 cm long TDR probe yielded recharge estimates that compared most favorably to estimates based on a method utilizing water table fluctuations. Recharge rates for this probe represented 24 to 27 percent of 1999 precipitation. Recharge based on the 30 cm long horizontal TDR probes was 29 to 37 percent of 1999 precipitation. By comparison, recharge based on the water table fluctuation method represented about 29 percent of precipitation.  相似文献   

4.
ABSTRACT: Spatial distribution of soil and water properties and the correlations between them and crop yield were determined for a natural rainfall environment. Hydraulic conductivity, soil texture, water retention, and soil-water flux were variables used to investigate their relationship to crop yield using multiple regression techniques. Variations in crop yields on a watershed with a 3 to 4 percent slope and moderately erosive soils were related to soil-water characteristics and soil properties along slope and with depth. Climatic conditions to sustain crop growth and yield ranged from inadequate soil water in 1983 to adequate soil water in 1984. Crop yield was predicted with models using both available and measured soil-water content. Available water content provided a better model for the prediction of water yield and does not require field measurements of actual soil-water content. Soil water holding capacity was more significant for predicting crop yield in soils with moderate to high silt content than infiltrability of water into the soil.  相似文献   

5.
ABSTRACT: Wastewater from a municipal treatment plant was applied in rapid infiltration basins for four years to determine a poorly drained soils effectiveness in removing influent N and P and the soil changes that might limit their removal. About half the total PO4-P lost from the influent was sorbed in the upper 91 cm of the soil and the other half was sorbed by the soil below the perforated pipe, which was used to drain the basins and collect the effluent for analysis. Drying of the basin soils converted more sorbed PO4-P to Ca phosphates but the total sorbed was about the same. The in. fluent N decreased, probably by volatilization, because the two basins with surface soil lost soil N rather than gained soil N. The soil total Ca, Mg, and K contents did not change significantly but Na increased slightly. Changes in the physical characteristics of the soils were slight and would have little effect on the longevity of a rapid infiltration basin.  相似文献   

6.
ABSTRACT: Runoff was measured from a 564-ha catchment located on the Entiat Experimental Forest for nine years before a severe wild-fire in 1970 destroyed the mixed conifer vegetation. Runoff records from the Chelan River (2 393 km2) were used as control data for determining changes in water yield during the seven years following the fire. The first post-fire year was a period of transition in which the soil profile retained more water than in previous years and measured runoff was 8.9 cm greater than the predicted value based on pre-fire conditions. Runoff from the burned catchment during subsequent years was much greater than measured values before the fire. Measured minus predicted runoff, based on the pre-fire calibration equation, varied from 10.7 cm during the dry year of 1977 to 47.2 cm during the abnormally wet year of 1972. Flow duration curves indicated that runoff at each percent value after the fire was at least double the comparable pre-fire value. Sediment production increased dramatically after the fire because of increased flow rates, increased overland flow caused by reduced infiltration capacity, and mass soil movement. Sediment yield is beginning to decrease as stream channels become stabilized and vegetation on upper slopes improves infiltration capacity.  相似文献   

7.
ABSTRACT: Nonirrigated crop yields and forage production are limited by low and variable precipitation in the southern Great Plains. Precipitation variation involves production risks, which can be reduced by considering probability of precipitation, precipitation retention, and soil erosion under various production systems. The objective of this study was to probabilistically quantify the impact of precipitation variations, land use, cropping, and tillage systems on precipitation retention and soil erosion. Five 1.6 ha watersheds that had 3 to 4 percent slopes, and similar silt loam soils were selected. One was kept in native grass, and the others were planted into winter wheat (Triticum aestivum L.) under different cropping and tillage systems. Daily runoff and soil erosion were measured at the outlet of each watershed. Precipitation distributions exhibited great seasonal and interannual variations, and precipitation retention distributions resembled those of precipitation. Cropping and tillage systems affected precipitation retention but much less than did precipitation variations. Available soil water storage, which was largely controlled by ET, played an important role in retaining precipitation. This indicates that cropping systems should be adjusted to precipitation patterns, if predictable, for better soil water use. Land use and cropping and tillage systems had a much greater impact on soil erosion than on precipitation retention. Soil erosion risks, which were proportional to the levels of tillage disturbance, were mainly caused by a few large storms in summer, when surface cover was low. This study explored a novel approach for evaluating production risks associated with insufficient precipitation retention and excessive soil erosion for certain crops or cropping systems under assumed precipitation conditions.  相似文献   

8.
ABSTRACT: A number of criteria can be used in the selection of an area for the irrigation disposal of secondary treated waste water. The inherent capacity of the surface soil to retain, or at least detain, the various nutrient ions passing through the profile in the percolating waters becomes the prime consideration in regions with shallow water tables or in Karst areas such as the Missouri Ozarks where the risk of ground water supply contamination is high. A comprehensive study of the nutrient renovation potential of several soils was undertaken at a proposed effluent irrigation site along the Ozark National Scenic Riverways in south central Missouri. The surface soil hydrology was evaluated employing selected soil water parameters. Exchange equilibria studies determined the retention capacity for Ca and Mg while the concentrations of other selected ions were analyzed in the soil water to measure their retention time and net removal. The movement of a bromine tracer was monitored as an index of the renovation capacity of these soils for the more mobile anions such as nitrate. Neutron activation analysis proved to be a useful tool in the water quality analyses. All surface soil profiles demonstrated some degree of nutrient renovation for the various nutrients studied.  相似文献   

9.
Abstract: Efficient water resource management is one of the most important policy issues facing agriculture in Hawaii in the years ahead. Soil water sensors, multisensor capacitance probes (MCP), have been successfully used for different water management projects. These MCPs monitor water content at multiple depths and at various locations in real-time. The objectives of this study were to determine the effect of water content on field soil bulk density of Wahiawa silty clay tropical soil; measure field saturated hydraulic conductivity of this tropical soil: calibrate MCP system for this soil: and monitor and evaluate real-time soil water content variations under a tomato crop using the calibrated MCP system. Sensor calibration was conducted under laboratory conditions. Soil bulk density at different water contents and saturated hydraulic conductivity were measured on the field. Bulk density increased with increasing water content: there was a 30 percent bulk density increase as a result of 0.25 cm3 cm-3 water content variation. Compared with the manufacturer's calibration, site specific laboratory calibration of MCP gave a more accurate determination of soil water. Field determined saturated hydraulic conductivity was higher than laboratory determined values reported in the literature for the same soil type. Real-time soil water content monitoring within the root zone showed substantial variations due to water input (irrigation and rainfall) and water output (evapotranspiration and deep percolations). However, water content variations were much further reduced in the soil layer below the root zone.  相似文献   

10.
ABSTRACT A study was made to determine if Seasat Synthetic Aperture Radar (SAR) data could be used to make practical estimates of soil moisture. Extensive ground measurements were collected at two primary sites near Guymon, Oklahoma, and Sublette, Kansas. The relative sensitivity of the SAR to differences in soil moisture, tillage roughness, and vegetation was determined. To validate the effects detected in the SAR data, an airborne scatterometer with a similar wavelength was flown repeatedly over the Guymon site. Soil moisture variations in the surface 2 cm and surface 15 cm of fields with bare soil, milo and alfalfa produce similar responses in the scattering coefficient from both systems. Roughness due to tillage in row crops produced as much as 12–15 dB increase in the scatterometer return. Most agricultural vegetation was effectively penetrated by the L-band frequencies; however, corn produced an exceptionally high radar return either standing or after combine harvesting. When corn had ripened, there was some evidence that tillage roughness could be detected through the canopy. Moderate tillage roughness produced by grain drill furrows caused over 12 dB increase in return when row directions changed from parallel to perpendicular with respect to the SAR look direction. Dramatic increases in return occurred when vegetation surfaces were wet. Increased radar returns from tillage roughness, some vegetation and wet vegetation surfaces, all dyanmic in nature, were significant and may limit the practical estimation of soil moisture from the radar data.  相似文献   

11.
ABSTRACT: The accumulation of arsenic, nickel, copper, and lead in the soil profile was determined beneath five urban storm-water retention/recharge basins used by the Fresno Metropolitan Flood Control District, California. Soils were sampled from the surface to the first zone of saturation and compared with soils from an adjacent un-contaminated control site. These elements were found to be accumulating in the first few centimeters of basin soil and are important to the effectiveness of a specific best management practice, i.e., the retention and recharge of urban storm water. Study basins in use since 1962, 1965, and 1969 had lead contents in the 0–2 cm soil depth interval‘of 570, 670, and 1400 mg Pb/kg soil, respectively. The median indigenous soil lead concentration was 4.6 mg/kg soil. The practice of removing excess flood runoff water from two basins by pumping apparently is a factor in reducing the accumulation rate of these elements in the surface soils of the basins.  相似文献   

12.
Southern Alberta has the highest density of feedlot cattle in Canada, and there is a concern that leaching of water and contaminants may be greater for feedlots located on coarser-textured than finer-textured soils. Our objective was to determine if infiltration and leaching were greater for a 4-yr-old feedlot located on a moderately coarse-textured (MC) soil compared with two feedlots located on moderately fine-textured (MF) soils (5- and 52-yr-old pens). Various soil physical properties of feedlot pen surfaces were measured, including field-saturated hydraulic conductivity (K(fs)) and near-saturated hydraulic conductivity at -0.9 and -3.9 cm water potential. Selected chemical properties of feedlot soil layers were measured, as well as the chloride content of the soil profile (0-100 cm). Mean K(fs), K(-0.9), and K(-3.9) values were not significantly (P > 0.10) greater at the MC site than the two MF sites, indicating no evidence of greater infiltration on coarser-textured soils. In addition, mean K(fs), K(-0.9), and K(-3.9) values of soils within feedlot pens at all three sites were significantly (P < or = 0.10) reduced by 46 to 78% compared with soil outside the pens. Depth of chloride accumulation was greatest at the 52-yr-old feedlot on MF soil (60-70 cm), followed by 4-yr-old feedlot on MC soil (40-50 cm) and 5-yr-old feedlot on MF soil (30-40 cm). Visual inspection determined that the black interface layer formed within 2 mo of cattle stocking at all three sites.  相似文献   

13.
ABSTRACT: Relative yields of water, sediment, and salt (as indexed by electrical conductivity) were determined using simulated rainfall plots on three soil landform units on Mancos shale in the Price River Basin, Utah. Final infiltration rates on residual shale derived soils were between 0.13 and 0.50 cm/hr. No runoff was generated on cracked soils derived from aeolian deposits. Suspended sediment concentrations and elehcal conductivities were 180 and 68 times greater, respectively, for a steep dissected Mancos shale upland than for a low relief shale pediment and recent alluvial surface. Riling accounted for approximately 80 percent of the sediment produced on the steep, dissected shale surface. Channel scow and soil creep also produced measurable mounts of sediment. A survey of sediment basins in steep, dissected shale up lands indicated that an average of 1.25 Mg/ha/year of sediment is produced by that landform unit Carefully designed and located basin plugs can be used effectively to trap sediment, water, and salt from dissected shale uplands.  相似文献   

14.
The effect of the addition of spent mushroom substrate (SMS) to the soil as an amendment on the distribution and/or fate of copper from a copper-based fungicide applied to a vineyard soil in La Rioja (N. Spain) was studied. The study was carried out on experimental plots amended or not with SMS at rates of 40 and 100 t ha(-1). The variation in total Cu content in the topsoil (0-10 cm) and in the soil profile (0-50 cm), and the distribution of Cu in different fractions of the topsoil were studied as a function of the dose of Cu added (5 and 10 kg ha(-1)) and of the time elapsed since application (0-12 months). In addition, the changes in the chemical properties (solid organic carbon (OC), dissolved organic carbon (DOC) and pH) of the soils were studied. A greater capacity for Cu retention by the amended soils than by the unamended one was observed only when the fungicide was applied at the high dose. No effect of the amendment rate was noted on this retention capacity. The metal content in the topsoil decreased over time in step with the disappearance of the OC in the amended soil due to its oxidation, mineralization and/or leaching. This decrease in total Cu content was possibly due to the formation of soluble Cu complexes with the DOC, which facilitated its transport through the soil. A re-distribution of Cu in the different soil fractions was also observed over time, mainly from the organic to the residual fraction. The results obtained indicate that the increase in OC due to the application of SMS at the rates used does not lead to any significant increase in the persistence of Cu in the soil over time. Of greater interest would be the assessment of the risk for groundwater quality, owing to possible leaching of the fungicide enhanced by the SMS when SMS and Cu-based fungicides are jointly applied to vineyard soils.  相似文献   

15.
ABSTRACT: Variation of in situ measured saturated hydraulic conductivity (KS) with stand age was examined in drained and intensively managed loblolly pine (Pinus taeda L.) plantations on very poorly drained Bayboro loam soils. Stand ages studied were 1-year-old and 14-years old. No differences in Ks values were found between the stand ages. In addition, no differences in core measured soil properties were found between the stand ages, indicating that there were no differences in the pore structure of the soil matrix. There was large variation of Ks within stands and between stands within ages. The mean within stand Ks values ranged from 0.66 cm/hr to 4.85 cm/hr. The frequency of tests exhibiting pipe flow through large non-capillary voids was significantly greater in the older stands; however, the continuity of the voids in the soil, and whether or not non-Darcy type flow would occur in a saturated profile, could not be determined.  相似文献   

16.
ABSTRACT: Soil infiltration capacity and interrill erosion are significantly influenced by soil frost on western rangelands which are characterized by cold winters and numerous freeze-thaw cycles. However, little is known about the variable influence of this phenomenon. Infiltration and interrill erosion were measured within a sagebrush-grass plant community during the winter, spring, and summer of 1989. Significant spatial and temporal differences in infiltration capacity and interrill erosion were found for shrub coppice dune and dune interspace soils. Infiltration was generally higher for coppice dune soils compared to interspace soils throughout the year. Infiltration capacity for both soils was lowest early in the year when the soil was frozen or saturated, then increased as the soil dried in the spring and summer. Interrill erosion was consistently lower for coppice dune soils compared to interspace soils. Erosion from interspace soils was greatest during a 19-day period in late winter characterized by diurnal freeze-thaw cycles, saturated surface soil conditions, and soil slaking.  相似文献   

17.
ABSTRACT: Detailed measurements of soil moisture and ET in semiarid forest environments have not been widely reported in the literature. In this study, soil moisture and water balance components were measured over a four‐year period on a semiarid ponderosa pine hillslope, with evapotranspiration (ET) determined as the residual of measured precipitation, runoff, and change in soil moisture storage. ET accounts for approximately 95 percent of the water budget and has a distinctly bimodal annual pattern, with peaks occurring after spring snowmelt and during the late summer monsoon season, periods that coincide with high soil moisture. Weekly growing season ET rates determined by the hillslope water balance are found to be invariably below calculated potential rates. Normalized ET rates are linearly correlated (r2= 0.62) with soil moisture; therefore, a simple linear relation is proposed. Growing season soil moisture dynamics were modeled based on this relation. Results are in fair agreement (r2= 0.63) with the observed soil moisture data over the four growing seasons; however, for two dry summers with little surface runoff, much better results (r2 > 0.90) were obtained.  相似文献   

18.
四川省环境中的汞   总被引:5,自引:0,他引:5  
熊定国  廖激 《四川环境》1994,13(1):46-49
本文较系统地报道了四川省地面水环境(河,湖原水,过滤水,沉积物),土壤,大气降水及生物-鱼体中的含量及分布特点,得出四川省环境中的汞与国内外相比属于罗低水平,地面水环境中汞的含量及溶解态汞由川东南向川西北递减,土壤中汞的含量与土壤类型,成土母质,降水条件等相关,鱼类对河水中汞有较强的富集能力,大气降水是四川省环境中汞的来源之一。文章还研究了汞的水环境容量,指出汞是四川省水环境较为脆弱的重要因素之一  相似文献   

19.
Large area soil moisture estimations are required to describe input to cloud prediction models, rainfall distribution models, and global crop yield models. Satellite mounted microwave sensor systems that as yet can only detect moisture at the surface have been suggested as a means of acquiring large area estimates. Relations previously discovered between microwave emission at the 1.55 cm wavelength and surface moisture as represented by an antecedent precipitation index were used to provide a pseudo infiltration estimation. Infiltration estimates based on surface wetness on a daily basis were then used to calculate the soil moisture in the surface 0–23 cm of the soil by use of a modified antecedent precipitation index. Reasonably good results were obtained (R2= 0.7162) when predicted soil moisture for the surface 23 cm was compared to measured moisture. Where the technique was modified to use only an estimate of surface moisture each three days an R2 value of 0.7116 resulted for the same data set. Correlations between predicted and actual soil moisture fall off rapidly for repeat observations more than three days apart. The algorithms developed in this study may be used over relatively flat agricultural lands to provide improved estimates of soil moisture to a depth greater than the depth of penetration for the sensor.  相似文献   

20.
ABSTRACT: The geographical distribution of well water specific electrical conductivity and nitrate levels in a 932 km2 ground water quality study area in the Fresno-Clovis, California, indicated that frequently areas of lower ground water salinity were also areas of relatively greater soil and aquifer permeability. From these observations and certain assumptions we hypothesized that the quality of the well water should be better in areas with permeable soils and geological formations. Correlation and multiple linear regression analysis supported this hypothesis for well water salinity. However, well water nitrate levels were significantly negatively correlated with only the estimated equivalent specific yield of the aquifer system. The multiple R2 values of the most significant multiple linear regression models showed that only a fourth to a third of the variability in well water specific electric conductivity and nitrate levels could be ascribed to the effects of the hydrogeological parameters considered with more than 90 percent confidence. This indicates that three-fourths to two-thirds of the variability in ground water salinity and nitrate levels may be related to land use. Thus, there is considerable room for land use management techniques to improve ground water quality and reduce its variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号