首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
ABSTRACT: Data from a recent survey conducted by the Adirondack Lake Survey Corporation were used to evaluate the influence of lake surface area on the acid-base status of lakes in Adirondack State Park, New York. Acid neutralizing capacity (ANC) in the small lakes (< 4 ha) occurred more frequently at extreme values (> 200, < 0 μeq L?1), whereas larger lakes tended to be intermediate in ANC. Consequently, acidic (ANC ≤ 0) and low-pH lakes were typically small. The small lakes also exhibited lower Ca2+ concentration and higher dissolved organic carbon than did larger lakes. Lakes ≥ 4 ha were only half as likely to be acidic as were lakes ≥ 1 ha in area. These data illustrate the dependence of lake chemistry on lake surface area and the importance of the lower lake area limit for a statistical survey of lake water chemistry.  相似文献   

2.
A map of summer total phosphorus in lakes was compiled recently for a three-state area of the upper Midwest for purposes of identifying regional patterns of total phosphorus in lakes and attainable lake trophic state. Spatial patterns in total phosphorus from approximately 3000 lakes were studied in conjunction with maps of geographic characteristics that tend to affect phosphorus balance in lakes to identify regions of similarity in phosphorus concentrations in lakes or similarity in the mosaic of values as compared to adjacent areas. While degrees of relative homogeneity are apparent at many scales, the map was designed at a scale that would yield regions with sufficient homogeneity to be useful for lake management throughout the area. In this study, data from 210 lakes in a 1560-mi2 area in northwestern Wisconsin, sampled by the Wisconsin Department of Natural Resources in the spring of 1988 (subsequent to the compilation of the phosphorus map), were examined to: (1) substantiate the existence of the regions depicted on the map in northwest Wisconsin, (2) determine the nature and relative precision of the regional boundaries, (3) determine the relative importance of natural and anthropogenic watershed characteristics, lake types, lake area, and lake depth in explaining within-region differences in lake phosphorus, and (4) demonstrate how the regions might be used by local lake managers.  相似文献   

3.
ABSTRACT: The Landsat‐Muitispectral Scanner (MSS) data were used to measure lake area fluctuations (1972–1989) for 130 ground‐water dominated lakes in the Western Lakes Region of the Nebraska Sand Hills. In general, the pattern shown in lake area hydrographs was similar to that for in‐situ lake elevations. In‐situ lake‐elevation data verify that remote monitoring of surface‐area fluctuations, even at relatively coarse spatial resolution, is not only practical and useful, but also it elucidates the hydrologic characteristics of groundwater‐dominated lakes of the Sand Hills. The apparent differences in behavior between lakes in the northern and southern portions of the study area may be related to both their location in the regional ground water system and the substantial local hydrologic complexity.  相似文献   

4.
ABSTRACT: We surveyed over 2000 lakes in the State of Massachusetts (1983–1984) to examine the spatial variations in their acid-base chemistry. Our survey differed from previous surveys by including small lakes and nonpristine urban lakes. For samples collected in October 1983 and 1984, the median acid neutralizing capacity (ANC) was 184 μeq L?1 and 5.9 percent were acidic (ANC≤O). Small lakes (<4 ha) were more likely to be acidic than large lakes. Generally, sulfate was the dominant acidifying agent, although organic anions were dominant in some of the lakes in the Cape Cod Region. The ionic composition of the lakes showed strong regional patterns which appear to be related to geology and human population density. An analysis of variance of ANC shows the six regional categories in the state explain 51 percent of the variance, while a combined general linear model of lake drainage type, color, elevation, size, silica, and hydrogen ion deposition could explain only 4.9 percent of the variation in ANC. Calcium rich, high ionic strength lakes were present in the marble bedrock in the west, and relatively dilute lakes dominated by sodium and chloride were found near the coast. Chloride concentrations were also related to population density, suggesting road salt as a likely contributing source.  相似文献   

5.
A map of summer total phosphorus in lakes has been compiled for Minnesota, Wisconsin, and Michigan to clarify regional patterns in attainable lake trophic state. Total phosphorus was used as a measure of lake trophic state because: (1) phosphorus plays a central role in controlling the overall fertility of most lakes, (2) total phosphorus values are available for a great number of lakes, and (3) phosphorus is measured in a consistent manner. The maps were compiled using patterns of total phosphorus data and observed associations between these data and geographic characteristics including physiography, land use, geology, and soils. Regions depicted on the map represent areas of similarity in phosphorus concentrations in lakes, or similarity in the mosaic of values, as compared to adjacent areas. Within each region, differences in total phosphorus can be compared to natural and anthropogenic factors to determine the types of lakes representative of each region, the factors associated with differences in quality, and the realistically attainable phosphorus levels for each type of lake.  相似文献   

6.
ABSTRACT Two lakes having similar soil types were studied to determine the effects of age and water fluctuations on plankton, benthos and fish populations. Bluff Lake is an older man-made lake which is drawn down in the mid-summer. Oktibbeha County Lake is a young lake and the water levels are maintained. Chemistry data from the two lakes indicate that their chemical properties are very similar. Neither lake would be considered very fertile. Net plankton populations in Bluff Lake and Oktibbeha County Lake were comparable when analyzed on a number of organisms per liter basis. Fluctuations of water levels did not seem to have an effect on the net plankton populations. The benthic population in Bluff Lake is slightly higher than that found in Oktibbeha County Lake. This is true for both numbers and weight per square meter. The species composition of benthic organisms in the two lakes were similar. Based on one-acre samples from each lake, Bluff Lake has a more balanced fish population than does Oktibbeha County Lake. Neither, however, seems to support populations of game fish in which a high percentage of these are in the available or harvestable range. Both lakes contain high populations of gizzard shad.  相似文献   

7.
Establishing baseline hydrologic characteristics for lakes in the United States (U.S.) is critical to evaluate changes to lake hydrology. We used the U.S. Environmental Protection Agency National Lakes Assessment 2007 and 2012 surveys to assess hydrologic characteristics of a population of ~45,000 lakes in the conterminous U.S. based on probability samples of ~1,000 lakes/yr distributed across nine ecoregions. Lake hydrologic study variables include water‐level drawdown (i.e., vertical decline and horizontal littoral exposure) and two water stable isotope‐derived parameters: evaporation‐to‐inflow (E:I) and water residence time. We present (1) national and regional distributions of the study variables for both natural and man‐made lakes and (2) differences in these characteristics between 2007 and 2012. In 2007, 59% of the population of U.S. lakes had Greater than normal or Excessive drawdown relative to water levels in ecoregional reference lakes with minimal human disturbances; whereas in 2012, only 20% of lakes were significantly drawn down beyond normal ranges. Water isotope‐derived variables did not differ significantly between survey years in contrast to drawdown. Median E:I was 20% indicating that flow‐through processes dominated lake water regimes. For 75% of U.S. lakes, water residence time was less than one year and was longer in natural vs. man‐made lakes. Our study provides baseline ranges to assess local and regional lake hydrologic status and inform management decisions in changing environmental conditions.  相似文献   

8.
ABSTRACT: The Basin Characteristics System (BCS) has been developed to quantify characteristics of a drainage basin. The first of four main BCS processing steps creates four geographic information system (GIS) digital maps representing the drainage divide, the drainage network, elevation contours, and the basin length. The drainage divide and basin length are manually digitized from 1:250,000-scale topographic maps. The drainage network is extracted using GIS software from 1:100,000-scale digital line graph data. The elevation contours are generated using GIS software from 1:250,000-scale digital elevation model data. The second and third steps use software developed to assign attributes to specific features in three of the four digital maps and analyze the four maps to quantify 24 morphometric basin characteristics. The fourth step quantifies two climatic characteristics from digitized State maps of precipitation data. Compared to manual methods of measurement, the BCS provides a reduction in the time required to quantify the 26 basin characteristics. Comparison tests indicate the BCS measurements are not significantly different from manual topographic-map measurements for 11 of 12 primary drainage-basin characteristics. Tests indicate the BCS significantly underestimates basin slope. Comparison-measurement differences for basin slope, main channel slope, and basin relief appear to be due to limitations in the digital elevation model data.  相似文献   

9.
ABSTRACT: Dilution/flushing has been documented as an effective restoration technique to restore eutrophic Moses and Green Lakes in Washington State. The dilution water added to both lakes was low in nitrogen and phosphorus content relative to the lake or normal input water. Consequently, lake nutrient content dropped predictably. Dilution or flushing rates were about ten times normal during the spring-summer periods in Moses Lake and three times normal on an annual basis in Green Lake. Improvement in quality (nutrients, algae, and transparency) was on the order of 50 percent in Moses Lake and even greater in Green Lake. The facilities for supplying dilution water were largely in place for the cited lakes; thus, costs for water transport were minimal. Available facilities, and therefore, costs, for water transport would usually vary greatly, however. Achieving maximum benefit from the technique may be more limited by availability of low nutrient water rather than facilities costs. Quality improvement may occur from physical effects of algal cell washout and water column instability if only high nutrient water is available.  相似文献   

10.
A large 20‐year database on water clarity for all Minnesota lakes ≥8 ha was analyzed statistically for spatial distributions, temporal trends, and relationships with in‐lake and watershed factors that potentially affect lake clarity. The database includes Landsat‐based water clarity estimates expressed in terms of Secchi depth (SDLandsat), an integrative measure of water quality, for more than 10,500 lakes for time periods centered around 1985, 1990, 1995, 2000, and 2005. Minnesota lake clarity is lower (more turbid) in the south and southwest and clearer in the north and northeast; this pattern is evident at the levels of individual lakes and ecoregions. Temporal trends in clarity were detected in ~11% of the lakes: 4.6% had improving clarity and 6.2% had decreasing clarity. Ecoregions in southern and western Minnesota, where agriculture is the predominant land use, had higher percentages of lakes with decreasing clarity than the rest of the state, and small and shallow lakes had higher percentages of decreasing clarity trends than large and deep lakes. The mean SDLandsat statewide remained stable from 1985 to 2005 but decreased in ecoregions dominated by agricultural land use. Deep lakes had higher clarity than shallow lakes statewide and for lakes grouped by land cover. SDLandsat decreased as the percentage of agriculture and/or urban area increased at county and catchment levels and it increased with increasing forested land.  相似文献   

11.
ABSTRACT. Flooding along the Mississippi River and some of its tributaries was detected by the multispectral scanner (MSS) on the Earth Resources Technology Satellite (ERTS-1) on at least three orbits during the spring of 1973. The ERTS data provided the first opportunity for mapping the regional extent of flooding at the time of the imagery. Special optical data processing techniques were used to produce a variety of multispectral color composites enhancing flood-plain details. One of these, a 2-color composite of near infrared bands 6 and 7, was enlarged and registered to 1:250,000-scale topographic maps and used as the basis for preparation of flood image maps. Two specially filtered 3-color composites of MSS bands 5, 6, and 7 and 4, 5, and 7 were prepared to aid in the interpretation of the data. The extent of the flooding was vividly depicted on a single image by 2-color temporal composites produced on the additive-color viewer using band 7 flood data superimposed on pre-flood band 7 images. On May 24, when the floodwaters at St. Louis receded to bankfull stage, imagery was again obtained by ERTS. Analysis of temporal data composites of the pre-flood and post-flood band 7 images indicate that changes in surface reflectance characteristics caused by the flooding can be delineated, thus making it possible to map the overall area flooded without the necessity of a real-time system to track and image the peak flood waves. Regional planning and disaster relief agencies such as the Corps of Engineers, Office of Emergency Preparedness, Soil Conservation Service, interstate river basin commissions and state agencies, as well as private lending and insurance institutions, have indicated strong potential applications for ERTS image-maps of flood-prone areas.  相似文献   

12.
To assess environmental risks of wood ash, limnological effects of ash application to the drainage basins of two small, humic lakes and one reference lake in southern Finland were examined in this three-year study. Treated areas corresponded to 12 and 19% of the total catchment and the amount of wood ash added was 6400 kg ha(-1). Immediate effects of wood ash on lake water were investigated in three tank experiments each lasting 1.5 wk. In tank experiments, addition of wood ash increased pH, alkalinity, conductivity, and Ca and P concentrations of humic lake water, while growth of phytoplankton decreased. After wood ash application to the subcatchments, pH, alkalinity, conductivity, and concentrations of K+, SO4(2-), and Cl- slightly increased, both in inflowing waters and in the lakes, but no increased leaching of Ca, N, or P from the treated subcatchments occurred. Phytoplankton biomass increased in both experimental lakes in comparison with the reference lake. In the lake with 19% application rate to the catchment, zooplankton biomass also increased. The results indicate that, over the short term, a small-scale ash treatment to a forested drainage basin will not necessarily cause significant changes in the water quality of boreal humic lakes, but at higher application rates, changes in water chemistry and biology are more evident.  相似文献   

13.
ABSTRACT: Artificial aeration is used to prevent winter fish kills due to oxygen depletion in ice-covered lakes. Conventional aeration by air bubble plumes and other techniques usually mixes the water column and produces hazardous open water in the ice cover. A non-mixing winter lake aeration system which creates a fish refuge was designed and field tested to oxygenate the water and maintain water temperature stratification in a lake such that no open water is created. The system uses a cascade aerator and has a design discharge and dissolved oxygen input rate of 85 1/s and 70 kg/d, respectively. Aerated water is discharged near mid-depth with minimum disturbance of the ambient water through a specially designed diffuser. The system was tested in a shallow 3 m deep lake of 17 ha surface area during two winters and was found to perform as expected. Significant photosynthetic production of dissolved oxygen under the ice-cover was also observed during snow-free periods.  相似文献   

14.
ABSTRACT: A comparison of municipal wastewater treatment plant (WWTP) and nonpoint source nutrient loads to Wisconsin's 14,927 inland lakes was performed. Only 65 of the 2,925 Wisconsin lakes having surface areas of at least eight ha and a maximum depth of at least 2.4 m had one or more WWTP's located within 40 km upstream; 99 of Wisconsin's 477 WWTP's were identified to be upstream of these 65 lakes. WWTP total nitrogen and total phosphorus loads to these 65 lakes were estimated using per capita influent loads and removal efficiencies based on wastewater treatment types. Nonpoint source nutrient loads were calculated utilizing nutrient export coefficients derived specifically for Wisconsin. Total nitrogen inputs to the lakes were dominated by nonpoint sources. The effectiveness of various phosphorus control programs to produce water quality improvements visible to the public was estimated to be as follows (going from most to least effective): municipal phosphorus removal and agricultural reductions, municipal phosphorus removal alone, agricultural reduction plus phosphate detergent ban, agricultural reductions alone, and phosphate detergent ban alone. The last option would not be expected to produce water quality improvement visible to the public in any Wisconsin lakes. The differences between the distributions in Wisconsin of population and inland lakes highlights the need to consider regional characteristics in any statewide water quality management plan.  相似文献   

15.
Regional Representativeness of Swedish Reference Lakes   总被引:1,自引:1,他引:0  
/ Recent focus has been placed on ecoregion delineations for providing an appropriate framework for monitoring and assessment of region-specific attainable water/habitat quality. Using an ecoregion approach to stratify variance, this study was conducted to determine whether earlier (subjectively) selected Swedish reference lakes may be considered as regionally representative reference sites when compared with a randomly selected lake population. Predictive modeling by discriminant function analysis with lakes classified by ecoregion and lake surface area and six physicochemical variables showed that the greater majority of reference lakes may be considered as regionally representative. The highest proportion of lake "misclassifications" occurred in the boreonemoral ecoregion, a relatively diverse ecoregion of southern Sweden. This apparent bias may be in part be due to the criteria used in selecting regional reference lakes. In the earlier selection of reference lakes emphasis was placed on lakes not being adversely affected by land usage or pollutant discharges, consequently forest lakes were often overrepresented and sites in agricultural areas underrepresented in the selected reference sites. As a complement to predictive modeling, PCA ordination showed the placement of reference lakes within the random lake population and indicated where reference sites might be missing along potentially important ecological gradients. KEY WORDS: Regionalization; Ecoregion; Representativeness; Reference; Ordination; Modeling; Temperate lakes  相似文献   

16.
Abstract: Water resources are limited in many areas of the North Slope, Alaska, particularly during winter. Water is used by the oil industry for ice road construction and maintenance, drilling and facility operations, and potable water supplies. The coastal plain between Teshekpuk Lake, in the National Petroleum Reserve‐Alaska (NPR‐A) and the Colville River has numerous shallow lakes, but further south in the northern foothills of the Brooks Range, and east to the Canning River, lakes are fewer. While many oil and gas lease sales have been conducted, or are proposed, access to the leases may be limited because of the lack of available water for ice road construction. Ice roads are the main means by which exploration is conducted in the Arctic, putting a stress on freshwater bodies that do not freeze to the lakebed in winter. Lakes that do not freeze to the lakebed also serve as overwintering habitat for fish. The purpose of this paper is to report on the potential distribution of water bodies that may provide overwinter water in selected areas from Teshekpuk Lake to the Canning River. The project used synthetic aperture radar (SAR) imagery to search for the presence of water in lakes in March 2006. In the Kuparuk and Canning SAR images, 52 and 61% of lakes were frozen to their beds by March 2006, accounting for 49 and 57% of the lake area in these study regions. Conversely, only 2% of the lakes in the Teshekpuk region were frozen to the bottom by March 2006. Unfrozen water was more available because of deeper and more numerous lakes in the Teshekpuk Lake region (west) than in the Canning River area (east). While only specific SAR tiles were analyzed herein, the method will be a useful tool for land managers who seek to evaluate the potential for ice road construction across the Arctic.  相似文献   

17.
Arp, C.D., B.M. Jones, M. Whitman, A. Larsen, and F.E. Urban, 2010. Lake Temperature and Ice Cover Regimes in the Alaskan Subarctic and Arctic: Integrated Monitoring, Remote Sensing, and Modeling. Journal of the American Water Resources Association (JAWRA) 46(4): 777-791. DOI: 10.1111/j.1752-1688.2010.00451.x Abstract: Lake surface regimes are fundamental attributes of lake ecosystems and their interaction with the land and atmosphere. High latitudes may be particularly sensitive to climate change, however, adequate baselines for these lakes are often lacking. In this study, we couple monitoring, remote sensing, and modeling techniques to generate baseline datasets of lake surface temperature and ice cover in the Alaskan Subarctic and Arctic. No detectable trends were observed during this study period, but a number of interesting patterns were noted among lakes and between regions. The largest Arctic lake was relatively unresponsive to air temperature, while the largest Subarctic lake was very responsive likely because it is fed by glacial runoff. Mean late summer water temperatures were higher than air temperatures with differences ranging from 1.7 to 5.4°C in Subarctic lakes and from 2.4 to 3.2°C in Arctic lakes. The warmest mean summer water temperature in both regions was in 2004, with the exception of Subarctic glacially fed lake that was highest in 2005. Ice-out timing had high coherence within regions and years, typically occurring in late May in Subarctic and in early-July in Arctic lakes. Ice-on timing was more dependent on lake size and depth, often varying among lakes within a region. Such analyses provide an important baseline of lake surface regimes at a time when there is increasing interest in high-latitude water ecosystems and resources during an uncertain climate future.  相似文献   

18.
ABSTRACT: Lake Chapala, whose primary tributary is the Río Lerma, is the largest freshwater lake in Mexico and for the past 95 years has maintained an average storage capacity close to 6,700 Mm3. Starting hi the early 1970s, the Lerma-Chapala basin rapidly industrialized. In response to these upstream anthropogenic activities, the fisheries, aesthetics, and water quality of Lake Chapala have decreased as a consequence of the increasing chemical and biologic pollutants mainly from the Río Lerma. Additionally, the growth of Guadalajara has resulted in increasing potable water demands on the lake to satisfy a population currently greater than 4.5 million. During the 1980s, the outflow and water losses from the lake substantially exceeded the inflow and other water contributions. In this paper, the recent behavior of the hydrologic and bathymetric parameters of Lake Chapala are summarized and some important physical stresses on the system are identified. The focus of this work is the 1934–1989 period, and it is shown that starting around 1980 some of the main contributors to the lake water balance were severely perturbed and the lake reached its second lowest recorded level. The disturbances of the system are so severe that the entire regional ecosystem could be irreversibly affected in the near future.  相似文献   

19.
ABSTRACT: Lake Chapala is the largest natural water body in Mexico and also one of the most important shallow lakes in Latin America. For the past several years it has suffered various environmental problems such as the upstream overuse of water, contamination, and sedimentation. For the past 10 years the lake has had less than 50 percent of its historical water level over the past century. No criteria are reported in the literature that establish a water storage volume that will guarantee water quality conditions necessary for the survival of the lake. After determining the behavior of total solids concentrations in relation to the variations in the lake's depth, we proposed a minimum water column height of 5.0 m, representing a storage volume of about 5,000 Mm3. This volume would result in the recommended water quality standards for total dissolved solids. Calculated distribution maps show that the total solids concentration in the lake has increased since the end of the 1970s. The solids are primarily concentrated in the eastern part of the lake, as a consequence of the high solids discharged from the Lerma River, its main tributary.  相似文献   

20.
Abstract: Lakes are important water resources on the North Slope of Alaska. Freshwater is required for oilfield production as well as exploration, which occurs largely on ice roads and pads. Since most North Slope lakes are shallow, the quantity and quality of the water under ice at the end of winter are important environmental management issues. Currently, water‐use permits are a function of the presence of overwintering fish populations, and their sensitivity to low oxygen concentrations. Sampling of five North Slope lakes during the winter of 2004‐2005 shed some light on the winter chemistry of four lakes that were used as water supplies and one undisturbed lake. Field analysis was conducted for oxygen, conductivity, pH, and temperature throughout the lake depth, as well as ice thickness and water depth. Water samples were retrieved from the lakes and analyzed for Na, Ca, K, Mg, Fe, dissolved‐organic carbon, and alkalinity in the laboratory. Lake properties, rather than pumping, were the best predictors of oxygen depletion, with the highest dissolved‐oxygen levels maintained in the lake with the lowest concentration of constituents. Volume weighted mean dissolved‐oxygen concentrations ranged from 4 to 94% of saturation in March. Dissolved oxygen and specific conductance data suggested that the lakes began to refresh in May.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号