首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Various polyurethane (PU) foams were prepared by in situ reaction of isocyanate and soy-based polyol. The effects of wood fiber and microclay on the foam morphologies, mechanical properties and thermal behaviors of PU foams were investigated. NCO index had fundamental impacts on the influences of wood fiber and microclay on the performance of PU foams. The reinforcement behavior of flexible foams was different to that of both semi-rigid and rigid foams. Both fiber and microclay improved the compressive strength at a high NCO index of 140–250, and contributed to relative high decomposition temperatures. Unlike the compressive strength, the tensile strength was decreased due to the amount of hard polyurea formation from secondary reactions at the highest NCO level. In addition, wood fiber had different reinforcement mechanism from microclay. Wood fiber desired to form chemical bonds during foaming while microclay had potential to form physical insertions. This difference was expressed by the change of their thermal degradation temperature.  相似文献   

2.
In this study, polyethylene terephthalate (PET) waste from post-consumer soft-drink bottles and crude glycerol from the biodiesel industry were used for the preparation of polyols and polyurethane foams. PET waste was firstly depolymerized by the glycolysis of diethylene glycol. The glycolyzed PET oligomers were then reacted with crude glycerol at different weight ratios to produce polyols via a series of reactions, such as esterification, transesterification, condensation, and polycondensation. The polyols were characterized by titration, viscometry, gel permeation chromatography (GPC), and differential scanning calorimetry. Subsequently, polyurethane (PU) foams were made via the reaction between the produced polyols and polymeric methylene-4,4′-diphenyl diisocyanate and were characterized by mechanical testing, scanning electron microscopy, and thermogravimetric analysis. Polyols from crude glycerol and their PU foams were also prepared to compare properties with those of polyols and PU foams from PET and crude glycerol. The influence of aromatic segments existing in glycolyzed PET and glycerol content on the properties of the polyols and PU foams was investigated. It was found that aromatic segments of polyols from glycolyzed PET helped increase their molecular weights and improve thermal stability of PU foams, while high glycerol content in polyols increased the hydroxyl number of polyols and the density and compressive strength of PU foams.  相似文献   

3.
Cellulose nanocrystals (CNC) were isolated from sisal fibres and were incorporated in the form of an aqueous suspension to a waterborne polyurethane (WBPU) synthesized from components derived from natural sources using an aliphatic diisocyanate. Transparent nanocomposite films with different CNC contents were prepared using a casting method. The morphology, thermal behaviour and mechanical properties of the nanocomposite films were characterized. Homogeneous distribution of CNC in the WBPU, even at high CNC contents was observed, resulting in an increase of 100% in modulus for systems with 5 and 10 wt% of CNC, with high elongations around 650%.  相似文献   

4.
Vinyl acetate (VAc) monomer of different percentage was grafted onto the recycled polyethylene terephthalate (r-PET) films using gamma irradiation. The properties of these modified films were characterized by Fourier transform infrared spectroscopy (FTIR), mechanical properties testing (Tensile strength, Elongation at break), dynamic mechanical analysis (DMA) and thermo-gravimetric analysis (TGA). The Tensile Strength (TS) of the modified PET film increased by 132.25?% to the highest value of 50.12 MPa at 15% VAc monomer concentration at 3 kGy gamma dose, while the elongation at break (EB) decreased by 31.83?%. FTIR was used to investigate the molecular interaction of the modified films. TGA revealed that curve of the modified PET film shifted toward higher temperature region by 95?°C, which is very close to that of PET film made from virgin flakes. The results indicate that modified PET films of better mechanical and thermal properties were successfully prepared using VAc monomer grafting by gamma irradiation technique.  相似文献   

5.

In this study, the wheat gluten film was prepared. Heracleum persicum essence, magnesium oxide nanoparticles and polypyrrole were used to modify the structure of the wheat gluten film. Physicochemical properties of the prepared films such as thickness, solubility, moisture absorption ability, antioxidant properties, and electrical conductivity of the films were investigated. Also, the mechanical, structural and thermal properties of the films were investigated by techniques such as SEM, FTIR, XRD, TGA, DTA and tissue analysis. SEM images showed that the essence and polypyrrole strengthened the gluten film structure and made it more resistant to the passage of gases. FTIR spectra confirmed the electrostatic interactions between gluten and essence and polypyrrole. XRD spectra showed the amorphous structure of gluten film and its composites. The results of thermal analysis showed that polypyrrole greatly increased the thermal resistance of the film and the nanoparticles had little effect on the thermal resistance. Thickness, solubility, moisture content and ability to absorb moisture were further affected by the essential oil. The antioxidant and electrical conductivity of the film was greatly increased in the presence of all three additives of essence, magnesium oxide nanoparticles and polypyrrole. The gluten–essence–MgO–PPy (Glu–E–MgO–PPy) composite film had the most antioxidant properties. Glu–E–MgO–PPy film with important electrical conductivity and antioxidant properties has the potential to be used as an active and intelligent film in the packaging of perishable food products.

  相似文献   

6.
The green rigid polyurethane (PU) foam has been developed with 100 % soy polyol after optimization of formulation ingredients and lignin has been introduced and isocyanate content reduced in the green rigid PU foam. The cellulosic nanofibers have also been successfully incorporated and dispersed in green rigid PU foam to improve the rigidity. The influence of nano cellulose fiber modification (enzymatic treatment, hydrophobic modification with latex) on the foam density, open cell content, foam raise height, water vapor, and mechanical properties of rigid PU foam were studied. The foamed structures were examined using scanning electron microscopy to determine the cell size and shape due to the addition of cellulosic nanofibers. The odor test were performed to evaluate the odor concentration 100 % soyol based PU foam including lignin and nanofiber and compared to 100 % synthetic based polyol PU foam. The experimental results indicated that the compression and impact properties improved due to the modification of nano cellulosic fibers. The odor concentration level of nanofiber reinforced rigid PU foam reduced significantly compared to 100 % PU foam due to the replacing of isocyanate content. It can be said that with an appropriate combination of replacing isocyanate by lignin and addition of nanofiber, rigid PU foam properties could be improved.  相似文献   

7.
Thin films of gelatin were prepared by casting. Then the films were photocured and the mechanical properties were studied. The tensile strength of UV cured gelatin films showed about 10% enhancement than that of raw gelatin films. Minor amount of urea (1–5%) was used as additive in aqueous gelatin solution and films were prepared using same technique. Four formulations were prepared in methanol with 2-ethylhexyl acrylate in the presence of photoinitiator (darocur-1664). The films were soaked in the prepared formulations and then cured under UV radiation at different intensities (5–25 passes). Percentage of urea, monomer concentration, soaking time and radiation intensities were optimized with the extent of polymer loading, TS and elongation at break of the photocured film. The films containing 2% urea, cured with 3% EHA for 3 min at 15th UV pass showed the highest mechanical properties. A significant improvement of TS (31%) occurred when EHA (3%) was incorporated.  相似文献   

8.
Shellac (SL) films were prepared by casting and were grafted with various acrylic monomers of different functionalities using gamma radiation. Different formulations of shellac with varying concentrations (3, 5 and 7%) of these acrylic monomers such as 2-hydroxyethyl methacrylate (HEMA), 2-ethylhexyl acrylate (EHA) and 1,4-butanediol diacrylate (BDDA) in methanol were prepared. The pure shellac and other treated films were then irradiated under gamma radiation (Co-60) at different doses (0.5–5 kGy) at a dose rate of 3.5 kGy/h where 1 Gy = 1 J/kg = 100 rads. The mechanical properties like tensile strength (TS) and elongation at break (Eb) of the prepared films were studied. The mechanical properties of the irradiated shellac films demonstrated superior values. Among the formulations, shellac grafted with BDDA (SL-g-BDDA) showed the highest TS and Eb values which were 543 and 168% higher than those of raw shellac films, respectively. The water uptake behavior of raw and treated films was also studied. The raw film showed 11% water uptake but HEMA containing film showed 67%. In the soil burial test, HEMA containing shellac film was rapidly degraded than other raw, EHA and BDDA grafted films. Thermal properties indicated that grafting of acrylic monomers decreased the melting temperature of the pure shellac films.  相似文献   

9.
Organic–inorganic hybrid coatings based on poly(ε-caprolactone), poly(ethylene oxide) or poly(lactic acid) as organic phase and silica from tetraethoxysilane as inorganic phase were prepared by the sol–gel approach. Coatings were applied onto poly(lactic acid) films for food packaging in order to improve its barrier properties towards oxygen and water vapour. All the prepared coatings were dense, homogeneous layers characterized by a good adhesion to the substrate. The permeance of the coating layers resulted one order of magnitude lower than that of the uncoated poly(lactic acid) (PLA) film. The hydrophilic character of the coating did not permit to gain a significant decrease in the water vapour permeance. The perfect visual transparency of the coatings allows their application without worsening of the esthetical properties of the substrate PLA film.  相似文献   

10.
To decrease the usage of petroleum based materials, a kind of bio-resource based composite foams were developed with soy protein isolate (SPI) as reactive reinforcing filler in castor oil based polyurethane foams (PUF) prepared by self-rising method using water as a blowing agent. The resulting composite foams were evaluated for their morphology, density, mechanical and biodegradation properties, etc. Fourier transform infrared spectroscopy study exhibited characteristic peaks for SPI and PUF and indicated that the amino groups and hydroxyl groups on SPI reacted with polyphenyl polymethylene polyisocyanates (PAPI) to increase the crosslinking degrees of the composite foams. Densities of the resultant composites were found to increase with increasing SPI content. Mechanical properties of the samples were improved with the increase of SPI content. The compost tests further proved that the composite PUF had better biodegradability than neat PUF. Therefore, this research has provided a simple method of preparing the bio-resource based polyurethane foams, while exploring the potential of using SPI in polyurethane foam applications.  相似文献   

11.
Blends based on different ratios of starch (35–20%) and plasticizer (sugar; 0–15%) keeping the amount of poly(vinyl alcohol) (PVA) constant, were prepared in the form of thin films by casting solutions. The effects of gamma-irradiation on thermal, mechanical, and morphological properties were investigated. The studies of mechanical properties showed improved tensile strength (TS) (9.61 MPa) and elongation at break (EB) (409%) of the starch-PVA-sugar blend film containing 10% sugar. The mechanical testing of the irradiated film (irradiated at 200 Krad radiation dose) showed higher TS but lower EB than that of the non-radiated film. FTIR spectroscopy studies supported the molecular interactions among starch, PVA, and sugar in the blend films, that was improved by irradiation. Thermal properties of the film were also improved due to irradiation and confirmed by thermo-mechanical analysis (TMA), differential thermo-gravimetric analysis (DTG), differential thermal analysis (DTA), and thermo-gravimetric analysis (TGA). Surface of the films were examined by scanning electron microscope (SEM) image that supported the evidence of crosslinking obtained after gamma irradiation on the film. The water up-take and degradation test in soil of the film were also evaluated. In this study, sugar acted as a good plasticizing agent in starch/PVA blend films, which was significantly improved by gamma radiation and the prepared starch-PVA-sugar blend film could be used as biodegradable packaging materials.  相似文献   

12.
Natural polymer, chitosan was obtained from dried prawn shell waste through the preparation of chitin and was characterized. Thin film of chitosan was prepared by casting method from its 2% chitosan solution. Mechanical properties like tensile strength (TS), elongation at break (Eb) of chitosan film were studied. Five formulations were developed with 2-ethyl-2-hydroxy methyl-1,3-propandiol trimethacrylate (EHMPTMA), a trifunctional monomer and 2-ethylhexyl acrylate (EHA), a monofunctional monomer in the presence of photoinitiator Darocur-1664 (2%). The film was soaked in those monomer formulations in dissimilar soaking times and irradiated under UV-radiation at different radiation intensities for the improvement of the properties of chitosan film. The cured films were then subjected to various characterization tests like TS, Eb, polymer loading (PL), water absorbency, gel content etc. The formulation, containing 25% EHMPTMA and 73% EHA showed the best performance at 10th UV passes of UV radiation for 4 min soaking time.  相似文献   

13.
Journal of Polymers and the Environment - The study investigated the effect of lignocellulosic biomass filler decayed by brown-rot fungi on the preparation and properties of polyurethane (PU) foam....  相似文献   

14.
Organically modified montmorillonite clays were incorporated at a 5% loading level into film grade of poly-L-lactic acid (PLLA) using a variety of masterbatches based on either semi-crystalline or amorphous poly-(lactic acid), as well as biodegradable aromatic aliphatic polyester. The PLLA masterbatches and compounded formulations were prepared using a twin screw compounding extruder, while the films were prepared using a single screw cast film extruder. The thermal and mechanical properties of the films were examined in order to determine the effect of the clay and different carriers on the polymer–clay interactions. In the optimal case, when a PLLA-based masterbatch was used, the tensile modulus increased by 30%, elongation increased by 40%, and the cold crystallization temperature decreased by 15 °C, compared to neat PLLA. The properties improvement of PLLA films containing nano clays demonstrated the possibility to extend the range of biodegradable film applications, especially in the field of packaging.  相似文献   

15.
Biodegradable and ecologically friendly polymer materials attract great attention of many scientific groups in the world as they fit well in the sustainable development policy and are considered to be “a right thing to do” by the general public. Such polymers can be modified by the addition of different fillers, favorably of natural origin. In the paper we provide a comparison between composites based on two biodegradable polymers: poly(lactic acid)—biodegradable, natural stock polymer and poly(butylene succinate)—biodegradable polymer produced from fossil based materials. For each polymer we have prepared a series of composites with different fibres (natural: hemp and flax, and manmade: Cordenka) and different filler loadings. To fully characterize obtained materials thermal, mechanical and surface free energy measurements were performed, completed with morphology observations and an attempt to compare the experimental data for tensile measurements with values obtained using the modified rule of mixtures. The tensile results calculated using the modified rule of mixture for below 30% fibre loading are found to be fitting the experimental data. Composites mechanical properties and morphology were strongly affected by the type of fibre used and its loading, however thermal properties remained almost unchanged. In specific, Cordenka fibres tend to form bunches which presence greatly influences the mechanical properties but still our studies have shown clear advantage of manmade Cordenka fibres over the hemp and flax fibres when considering distribution and fibre–polymer interaction.  相似文献   

16.
Wang  Jun  Yang  Le  Li  Xiaolong  Luo  Zhu  Li  Jianjun  Xia  Xiaosong  Linghu  Changkai 《Journal of Polymers and the Environment》2022,30(3):1127-1140

Incompatible polypropylene (PP) and polyethylene (PE) are difficult to separate in mixed recycling streams such as waste plastic packaging, which makes polyolefin mixtures unsuitable for high-quality products. In this work, based on the free radical branching reaction, a co-branching reaction of isotactic polypropylene (iPP) and high-density polyethylene (HDPE) blends was carried out in the presence of the peroxide, free radical regulator and multifunctional acrylate monomer, and a star-like long-chain branching (LCB) copolymer was obtained. The effect of in situ compatibilization on the structures and mechanical properties of iPP/HDPE was investigated, and the compatibilization mechanism was discussed. Results showed that the mechanical properties of the modified blends were largely improved, and efficient in-situ compatibilization of iPP and HDPE could be taken place in a wide process window. Moreover, the sizes of the dispersed phase in the modified blends were clearly decreased, and the interfacial thickness increased. Compared with the pure iPP/HDPE blend, the initial crystallization temperature of iPP in the modified iPP/HDPE blend was increased, and long branched chains of the LCB copolymers were physically entangled with the chemical identical homopolymers or even participated in the crystallization of iPP and HDPE. Thanks to the in situ compatibilization strategy, the compatibility of iPP/HDPE was significantly improved.

  相似文献   

17.
Tartaric acid modified starch microparticles (TA-SM) previously obtained using the dry preparation technique were introduced as filler within glycerol plasticized-corn starch (GCS), the composites being prepared by casting process. The effects of cellulose addition within the TA-SM-GCS matrix on the structure, surface properties and water sorption, as well as mechanical and thermal properties of starch-based composite films were investigated. The water resistance and thermal stability were slightly improved through addition of high content of cellulose due to the inter-component H-bonding between components. The evaluation of mechanical properties evidenced a significant increase of the tensile strength of the composites with increasing the content level of cellulose.  相似文献   

18.
Aliphatic–aromatic polyols were synthesized by thiol–ene reactions (photochemical or thermal) using mercaptanized starting materials from bio-based compounds: limonene dimercaptan, thioglycerol, mercaptanized castor oil and isosorbide (3-mercaptopropyl) ether. Aromatic starting materials were phenols containing double bonds; ortho-allyl phenol (OAP, petrochemical-based) and eugenol (EUG, bio-based). The phenolic hydroxyl groups were blocked by alkoxylation with propylene oxide (PO) or glycidol (GLY) prior to use in thiol–ene reaction. The aromatic rings were attached to the mercaptans by reacting thiol groups with the double bonds of alkoxylated OAP (OAP–PO and OAP–GLY) and alkoxylated EUG (EUG–PO and EUG–GLY). These synthesized aliphatic–aromatic polyols were utilized for preparation of rigid polyurethane foams whose physical–mechanical properties were superior to those made only from bio-based aliphatic polyols. These rigid PU foams can be used in a wide range of applications; such as thermal insulation of freezers, buildings, pipes and storage tanks for food and chemical industries, as wood substitute, packaging materials and flotation materials.  相似文献   

19.
The current study focuses on the development of a formulation of polyester polyurethane (PEPU) samples using castor oil (CO) modified polyester polyol and partially biobased aliphatic isocyanate. The CO modified polyester polyol was synthesized employing transesterification reaction between CO and diethylene glycol in the presence litharge (PbO) catalyst. Subsequently, the modification of CO was confirmed using proton nuclear magnetic resonance (1HNMR) spectra analysis. In the next stage, the biobased polyester polyurethane nanocomposites (PEPUNC) were prepared by incorporating 3 wt% OMMT nanoclay within PEPU through in situ polymerization technique. The produced PEPU was confirmed by Fourier transform infrared spectroscopy (FTIR) and 1HNMR spectra analysis. Further, the degradation properties of developed PEPU subjected to soil-burial, UV exposure and hydrolytic-salt water medium were noted by FTIR spectroscopy. Corresponding weight loss, mechanical measurements and morphological studies through scanning electron microscopy (SEM) analysis were studied. The results showed that the addition of OMMT nanoclay within the PEPU matrix produces significant improvement in the degradation rate which indicated the susceptibility of OMMT nanoclay to humidity upon exposure to soil burial. The produced microorganisms from the soil resulted in significant chemical and morphological changes in the entire structure of the PEPU. Additionally, the highest degradation and percentage of weight loss was observed under soil burial as compared to UV exposure and hydrolytic-salt water medium.  相似文献   

20.
Polyurethane (PU) based on polycaprolactone (PCL) and 4,4′ diphenyl methylene diisocyanate (MDI) was synthesized using a two-step method. The PU obtained was then blended with various amounts of cellulose extracted from alfa stems to prepare composite materials. The influence of cellulose on the thermal and mechanical properties of different composites was demonstrated by means of several characterization techniques such as Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM)…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号