首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
塞浦路斯持罗多斯(Troodos)蛇绿岩内新鲜绿帘石化斜长花岗岩石英中流体包裹体的显微测温分析结果表明,斜长花岗岩体内普遍存在着温度>400—500℃的富卤水流体(46—56 ep.wt%NaCl)。沿着已愈合的微裂隙分布的高盐度含Fe包裹体在温度400—500℃条件下通过石盐溶解而均一化。液相为主的低盐度(2—7wt%NaCl)次生流体包裹体在所研究的斜长花岗岩和辉长岩样品中到处可见。低盐度包裹体的未经校正的均一温度为200—400℃。 石英内高盐度流体或者显示了热液海水发生相分离,或者代表了在未校正的400—500℃温度下出容的岩浆热水相。卤水和汽相经迁移和分离进入靠近正在结晶的斜长花岗岩体边部的裂隙中,结果,富Fe卤水在深部热液系统的高温地段优先被捕获。 上部深成岩在200—400℃温度下产生破裂,使得海水渗透到裂隙内,并使斜长花岗岩普遍发生蚀变。与次生矿物的形成有关的水化反应和(或)相分离流体的混入使得流体的盐度比海水高一倍。  相似文献   

2.
正在开采的罗达尔基拉金矿床以及废弃的特里温福和玛丽亚·何塞法金矿山位于西班牙东南部阿尔梅里亚以东约40km的卡沃-德加塔山火山区内。罗达尔基拉的金矿化主要受破火山口构造控制,而特里温福和玛丽亚·何塞法的脉构造则未受到这种控制。特里温福和玛丽亚·何塞法的围岩蚀变的特征是泥质蚀变(伊利石/绢云母、高岭石)。在特里温福,金矿化脉构造周围的蚀变分带为前进泥质蚀变(多孔石英、明矾石、叶蜡石、迪开石)到泥质蚀变到区域性发育的绿磐岩化。对所有这三个矿山的包裹体研究均表明,金是在170—250℃温度下从低盐度流体(2—5eq.wt% NaCl)中沉淀的。然而,罗达尔基拉的热液体系是由次生流体源供给的。高盐度的含石盐和(或)钾石盐、富液相和以蒸气相为主的含CO_2流体包裹体被认为是岩浆成因的。深部的高硫化作用矿石矿物组合(铜蓝、硫砷铜矿、砷黝铜矿)和部分前进泥质蚀变可能与这些流体有关。因此,使罗达尔基拉金矿床归属于酸式硫酸盐或高硫化型浅成热液金矿床的这些特征的一部分,源于代表斑岩环境是典型的岩浆成因流体,而所有这三个地点的金矿化与可能是海洋成因的低盐度流体有关。  相似文献   

3.
梅杰克里克金矿田的矿化脉主要由石英和碳酸盐脉组成,伴有Au,Au-Ag碲化物和贱金属硫化物,围岩为硅化、绢云母化岩墙或布雷德伍德花岗岩体的花岗闪长岩。流体包裹体研究揭示,沉淀作用是在350~380℃温度范围内由低盐度流体发生的。重要的Au-Ag碲化物矿化作用发生于155℃温度时。矿物沉淀是由于初始富CO_2含水流体中液相CO_2的分离造成的。所观察到的泥质蚀变是沸腾带上酸淋滤作用的结果。矿化作用属于浅成热液性质,可能是在热液对流体系存在时形成的。我们推断,毗邻的埃顿-亚尔瓦尔裂谷带中具有形成类似的浅成热液金矿床的条件。  相似文献   

4.
山东沂南金矿床流体包裹体特征及地质意义   总被引:3,自引:0,他引:3  
本文从流体包裹体出发,讨论了沂南金矿床的成矿物质来源和成矿机制。各成矿阶段的矽卡岩矿物、石英和方解石中流体包裹体岩相学和显微测温研究结果表明,包裹体主要类型有气液水包裹体、含子矿物多相包裹体、CO2-H2O包裹体和晶质熔体包裹体,其中熔体包裹体在较早期的石榴石、绿帘石和石英中发育。Ⅰ、Ⅱ成矿阶段的成矿流体具有高温和高盐度的特征,均一温度分别为430~520℃、340~430℃,盐度分别为56.7 wt%NaCl2、2.2~53.5 wt%NaCl,代表铁矿化时的流体特征;Ⅲ成矿阶段流体具有中低温(190~250℃)、盐度范围变化较大(6.45~53.5 wt%NaCl)的特征,代表了Cu,Au矿化时的流体活动情况;Ⅳ成矿阶段包裹体均一温度100~190℃,盐度为2.07~15.76 wt%NaCl。根据不同类型包裹体共生组合及流体演化特征,认为流体的不混溶性是导致大量金属沉淀的主要原因,岩浆热液在成矿流体中占主导地位。  相似文献   

5.
金矿化的主岩为纽芬兰岛怀特湾西部拉特灵布鲁克地区的新元古代叶片状花岗岩类岩石。金矿化与硫化物有关,并以矿脉、断裂充填和浸染的形式产出。伴生的热液蚀变是在两个热液阶段中发生的。在第一阶段钾蚀变期间,主岩花岗闪长岩由于受热液作用而大面积地转变为具花岗岩成分的岩石,这种转变是通过斜长石和镁铁矿物与热液流体的渗透反应而形成微斜长石和绢云母来完成的。第二阶段钠蚀变局限于断裂、岩脉和球壁,叠置在第一阶段蚀变岩石和未蚀变岩石上。蚀变岩都富含K、Na、Au、As、S和CO_2,稍富含W、Sb和Bi,但亏损重稀土元素。金矿化和蚀变作用一直延伸到不整合上覆的始寒武纪至寒武纪沉积岩中。蚀变岩和矿石组合体均未发生变形,这说明矿化是在该地区阿卡德变形之后发生的,因此属于志留纪或更晚的事件。两个阶段蚀变幕被认为属于同一热液事件,该事件导致了该大面积低品位矿床的形成。富CO_2流体沿着几个主地质构造通过地壳进行循环,从各种岩石中把一些元素淋滤出来,并把这些元素再沉积在花岗岩类岩石和上覆沉积岩内的断裂和岩脉中。第一阶段流体起初沿着颗粒边界渗透,将主岩转变成具花岗岩成分的岩石。在第二阶段期间,随着破碎作用、钠长石化以及硫化物和金的沉积作用的发生,a_(Na~+)/a_K~+/比值和或温度也?  相似文献   

6.
全义金银矿山的银金矿-方铅矿-闪锌矿矿化沉淀在三期石英和方解石脉中,沉淀温度为180°—350℃,流体为中等盐度(4—14当量%NaCl)。沸腾的迹象表明压力小于150bar,相当于700m深的静岩压或1800m深的静水压。Au-Ag的沉淀很可能是沸腾及温度下降的结果。硫化物的硫同位素组成表明硫为火成来源(其δ~(34)S值接近4‰)。成矿流体中氢、氧同位素的测定值和计算值说明,流体中含有大量的大气降水。把全义Au-Ag矿床与类似的白垩纪浅的Au-Ag矿床和侏罗纪较深的Au矿床系统相比较,可以发现,朝鲜Au-Ag脉型床矿的深度和水/岩比呈负相关关系。这说明,那些与花岗岩有关的含金热液系统在岩浆期后演化过程中有明显的差异,可能表现出Au和Ag从冷却的火成侵入体中分离的方式。  相似文献   

7.
圣迈克尔山(St.Michel's Mount)和克利加黑德(Gligga Head)矿床是英格兰西南部康沃尔(Cornwall)地区W-Sn矿化的典型范例。矿化由石英、黑钨矿、锡石以及席状脉中数量不等的贱金属硫化物组成。有关的蚀变包括云英岩化和泥岩化。在圣迈克尔山和克利加黑德,矿石矿物(黑钨矿和锡石)与石英同时沉淀的结构证据一般是不明确的。前人的研究表明,石英与黑钨矿是连生的,但没有提及二者之间的成因关系。本研究对黑钨矿、锡石和石英中的流体包裹体进行了显微测温。在红外显微镜下观察了黑钨矿中的包裹体,在可见光下观察了锡石和石英中的包裹体。 圣迈克尔山石英中原生包裹体的平均均一温度为311℃,黑钨矿中原生包裹体的平均均一温度为369℃。石英中原生包裹体的平均盐度为7.3 eq.wt%NaCl,黑钨矿中原生包裹体的平均盐度为4.2eq.wt%NaCl。克利加黑德不同矿物中原生包裹体的平均均一温度为:锡石,352℃;黑钨矿,324℃;石英,295℃。流体包裹体的平均盐度为:锡石,5.3 eq.wt%NaCl;黑钨矿,3.9 eq.wt%NaCl;石英,6.0 eq.wt%NaCl。各矿物之间均一温度测量值数量级的变化不能说明流体被捕获时温度的变化,因而必定是由矿物的沉淀温度的实际变化造成的。这些数据表明,矿石矿物(黑钨矿和锡石)比与之共生的石英早沉淀,尽管缺乏明  相似文献   

8.
魁北克马德莱娜铜矿床的容矿岩石为黑云母角页岩,与麦克杰里格尔花岗岩杂岩体相邻,由网脉状矿体组成,从中心向外呈现出斑铜矿-黄铜矿到黄铜矿-磁黄铁矿的分带现象。矿化早于接触变质主期,与黑云母、钙硅酸盐脉及其蚀变组合伴生。绿泥石-白云母蚀变及石英-碳酸盐脉晚于矿化。脉石英含有低、高盐度的含水包裹体、CO_2-CH_4含水包裹体及无水的流体包裹体。等容线投影图表明,矿床形成于400—600℃,1—2kbar。低的冰熔化温度、低共熔温度表明,某些含水包裹体含钙高。本文建立了以下流体演化模式,即高盐度的正岩浆流体与富含有机质的页岩反应形成富含CH_4和N_2的流体,导致黑云母蚀变。在局部地区,正岩浆流体与钙质层反应,释放出CO_2,使流体中钙质增加,因而导致钙硅酸盐蚀变。主要由地层水形成的低盐度流体,导致了绿泥石-白云母蚀变及石英-碳酸盐脉的形成。从矿化中心向外,水/岩比值降低,从而导致温度和(或)Cu/Fe比降低以及a_(H_2S)增加,这被用来解释硫化物矿物的分带现象。  相似文献   

9.
陕西老厂铅锌矿床是一个与海相火山岩有关的块状硫化物矿床。老厂铅锌矿床石英流体包裹体的均一温度为93.3~396.5℃,平均值为235.9℃;盐度为0.4~22.5wt%NaCl,平均值为9.9wt%NaCl。原生流体包裹体均一温度测定结果表明其具有近似正态分布的特点;石英流体包裹体的盐度表明,其不成正态分布,且盐度较低。老厂矿床δDV-SMOW‰和δ18 OH2O‰的组成关系反映了其成矿流体为混合热液来源。  相似文献   

10.
丽州金-银矿区位于汉城东南约60km的朝鲜半岛前寒武纪京畿变质岩带内。该矿区的矿山沿含金热液石英脉分布,这些石英脉穿切了早元古代眼球状片麻岩和中生代花岗岩。矿化分三个阶段(Ⅰ阶段、Ⅱ阶段和碳酸盐阶段),这三个阶段的矿化均充填早期的断层角砾岩带。流体包裹体资料表明,含硫化物-石英的Ⅰ和Ⅱ阶段从早期高温(约350℃)演化至后期较低温度(约180℃)。成矿后的碳酸盐阶段的流体包裹体资料反映出热液流体的温度更低(220—190℃),盐度更低(4—5当量%NaCl)。 流体包裹体和稳定同位素证据证明,银金矿、辉铜银矿、辉银矿、方铅矿和闪锌矿在温度为285—185℃时,从盐度为14.0—2.6当量%NaCl的流体中沉淀出来。流体包裹体的沸腾证据说明,Ⅰ和Ⅱ阶段矿化期间压力小于100bar,相当于深度为500的岩石静压力和1250m的静水压力。 Ⅰ阶段硫化物的硫同位素组成随共生时间而系统地减少,算出的δ~(34)S_(H_2S)值从7.7‰降至0.7‰。流体的硫酸盐/硫化物比值的逐渐增大很可能是由于沸腾时H_2S的丢失以及温度的降低造成的。不仅使δ~(34)S_(H_2S)值随时间而系统地减少,而且可能也导致金因Au(HO)_2~-分解而沉淀。 丽州矿区热液流体的氢和氧同位素值与以大气降水为主一致,而接近于未交换的大气降水值。这些值与南朝鲜其他?  相似文献   

11.
罗德奥-德洛斯莫耶斯稀土元素(REE)和钍矿床位于阿根廷中部东潘帕所草原山脉(Sierras Pampeanas)南段拉斯查克拉斯-波德拉斯科罗拉达斯岩基的花岗质岩石中。矿化产于沿复式岩基东北边缘展布的长条形碱长花岗岩(白岗岩)岩体(2km×0.6km)中。白岗岩周围的岩石主要是羔云二长花岗岩。白岗岩及其内分布有限的石英碱长正长岩都是由二长花岗岩的晚期结晶相通过热液蚀变而形成的。REE矿物主要是铈族矿物,包括铈硅磷灰石和褐帘石,这两种矿物在局部都被氟碳铈矿或水氟碳钙钍矿交代。这些矿物与石英、萤石、霓辉石、榍石和Fe-Ti氧化物一起呈团块状产于细晶质-似伟晶质石英碱长正长岩中。铀钍石与第二世代萤石和少量Mn-Ba氧化物一起(但没有见到铈矿化),呈团块状产于白岗岩中,或者产于石英充填的晶洞中。 石英和萤石中的流体包裹体研究表明,开放系统流体的运移和流体与容矿岩石二长花岗岩的相互作用具有复杂的历史。使REE矿化、石英沉淀、二长花岗岩蚀变为白岗岩和石英碱长正长岩的流体具有较高的温度(石英中流体包裹体的均一温度为356—535℃),中等的盐度(15-25 eq.wt%NaCl)。萤石中原生包裹体和次生包裹体中存在的CO_2-H_2O混合流体(X_(co)。=0.13—0.07),是引起氟碳铈矿交代铈硅磷石灰-褐帘石,方解石交代榍石、?  相似文献   

12.
本文研究了金在100MPa、温度呈梯度曲线变化条件下,在一些岩石柱(砂岩、泥质页岩、碳泥质页岩、石灰岩和花岗岩)中的重新分配。在以蒸馏水作为初始流体的系统中,未见金的明显再分配。在有NaCl参予的硅酸盐岩石柱中,金发生再分配,同时转移到“碳酸盐地障”中。在硅酸盐-碳酸盐岩石柱中,即使有NaCl参予,金也不发生再分配。在使用现代海洋沉积物的实验中,金的再分配是由于保存在沉积物中海水的氯化物水解所致。在“碳酸盐层”和岩石柱的低温带,随着有机质含量的增高,岩石中的活化金再沉淀形成自然金。  相似文献   

13.
<正> 地质概况诺奇峰花岗岩岩株的地质情况在Nabelek等的原稿中已作了详细描述,因而在此仅提出一个简要的总结。该岩株是侏罗纪时侵入于成互层的寒武纪灰岩和泥质板岩的,侵位深度约为4—6km。该岩株为一由花岗岩和两种不同的石英二长岩侵入体组成的复式岩体。穿插关系表明,花岗岩侵入在先,接着是石英二长岩  相似文献   

14.
吉拉拜金矿位于新疆布尔津县北约 40km处的哈巴河黑云母斜长花岗岩体内北西向断裂带中 ,研究表明该金矿为石英脉型金矿 ,稀土元素研究表明 ,矿化蚀变岩石与黑云母斜长花岗岩具有相似的变化特征 ,流体包裹体均一测温表明成矿温度为 12 0~ 36 0℃ ,有两个峰值 ,一个峰值位于 2 70~ 30 0℃范围 ,另一峰值位于 15 0~ 2 30℃范围内 ,表明岩浆期后热液和断裂活动对成矿均起作用。含金脉石英的氢氧同位素组成研究表明 ,矿化早阶段 ,成矿热液中以变质热液及岩浆热液为主 ,随着矿化作用的后移 ,成矿溶液中自然会加入越来越多的大气降水 ,导致其氢氧同位素组成向大气降水线方向漂移。研究结果显示 ,哈巴河岩体为该金矿提供成矿物质 ,成矿流体是由哈巴河岩体的岩浆期后热液、动力变质热液及大气降水共同组成 ,北西向断裂带是这些成矿热液的运移通道。该北西向断裂带为逆冲压扭性质。该逆冲压扭断裂中的局部弱应力部位是成矿物质有利的沉淀富集场所。吉拉拜金矿床含金石英脉就是沿北西向逆冲压扭性断层中局部张性部位产出。哈巴河岩体中北西向断裂带及其中的石英脉都很发育 ,具有很好的找矿前景  相似文献   

15.
新疆多拉纳萨依金矿床位于阿尔泰克兰海西褶皱带玛尔卡库里大断裂的西南侧,西与苏联矿区阿尔泰之列宁诺戈尔斯克—孜里亚诺夫斯克构造成矿亚带相接。地层为中泥盆统托克萨雷组浅变质岩,大致呈南北走向的长条状分布在三个斜长花岗岩侵入体之间,并有许多钠长斑岩岩脉穿插。主要构造线方向为北北东,向西倾斜。金矿体赋存在沿断裂带侵入于灰岩中的石英钠长岩(或钠长石化斜长花岗岩)中。蚀变围岩主要为千糜岩化、白云母化的石英钠长岩。石英脉中金的品位虽然较高,但工业储量主要赋存于蚀变围岩中。自然金主要以显微和次显微状独立矿物被包裹于黄铁矿等矿物中,成色很高(932—967),其中的少量元素为银、汞和铋。为与斜长花岗岩有关的岩浆期后高—中温热液充填—交代矿床。  相似文献   

16.
《资源调查与环境》2016,(2):136-146
赣南是我国钨矿床最密集的地区,尤以石英脉型钨矿最为发育。本文通过分析近年来该区石英脉型钨矿流体包裹体类型、流体包裹体特征、显微测温、激光拉曼光谱等方面的最新成果,结合碳、氢、氧及锶同位素的研究成果,探讨赣南石英脉型钨矿的流体特征,重点探讨石英脉型钨矿形成过程中的流体演化。认为赣南石英脉型钨矿成矿流体主要来源于岩浆水,流体演化始于高温高盐度的岩浆—热液过渡阶段,与黑钨矿沉淀密切相关的流体温度主要集中于260~360℃,盐度主要集中于4~9wt%NaCl eq.,属中—低盐度、富含SiO_2、挥发组分及多种成矿元素的热液体系;矿质主要以流体沸腾和混合作用为主,自然冷却仅为少数矿床的主要矿石沉淀机制。  相似文献   

17.
为了阐明金矿化与蛇绿岩杂岩中地幔橄榄岩的共生关系,对三个地区(利古里亚、摩洛哥、沙特阿拉伯)产出的滑石菱镁片岩(碳酸盐化超镁铁岩)进行评述。滑石菱镁片岩的金含量一般是伴生超镁铁岩(5 ppb Au)的5—20倍,虽然也发育有含金量为1—10ppm的富金带。较高的金含量与硫化物或钴砷化物的矿化有关,或者与晚期含黄铁矿或毒砂的石英脉有关。与蛇纹岩的形成一样,形成滑石菱镁片岩的超镁铁岩碳酸盐化作用,似乎是在中温条件下(150—300℃)Na、Cl卤水的热液蚀变结果,这些卤水起源于地幔物质与海水的相互作用。金是从蛇纹石化超镁铁岩的不透明矿物中析出的。在热液系统演化过程中,金随富含CO_2、S、As、Cl、Na、K和B的流体沿构造接触带迁移,当该流体运移到还原和碱性环境时,金与石英,硫化物和砷化物一起沉淀。因此,滑石菱镁片岩应成为金矿勘探的新目标。  相似文献   

18.
江西西华山钨矿床流体包裹体特征及成矿流体来源   总被引:1,自引:0,他引:1  
本文对江西西华山钨矿床的石英流体包裹体进行了岩相学和显微测温分析,研究了石英流体包裹体的气、液相组分及碳、氢、氧同位素特征。结果表明,石英中流体包裹体十分发育,包裹体类型有NaCl-H2O(盐水)包裹体(Ⅰ)和CO2-H2O包裹体(Ⅱ),且以前者为主。包裹体均一温度在200℃~280℃,平均249.5℃;盐度为7.89%~13.95%,平均10.73%;成矿流体密度为0.628g/cm3~0.895g/cm3,平均0.795g/cm3,属低盐度低密度范畴;压力平均值为64.01MPa,对应的成矿深度平均值为6.45km。成矿热液气相成分以H2O为主,CO2含量低;液相成分阴阳离子浓度都很低,相对富钠和氯,流体离子类型大致呈Na+-K+-Cl--SO42-型。成矿流体基本来自岩浆水,部分可能有变质水的加入;流体中碳主要由岩浆水提供,少数由地幔源提供。  相似文献   

19.
芒特埃斯特尔侵入体具有呈特殊圆形-椭圆形的、同心带状的线性构造带,该构造带金含量很高(在裂隙构造中金品位一般为ppm级,但偶尔可大于31.104g/t)。研究表明,盐度极高的流体(达75wt%NaCl+KCl)与矿化具有时间和空间上的联系。推测认为,致使该侵入体中产生矿化构造的卤水,或者由岩浆结晶时的出熔而形成,或者由低温热液阶段的相分离而产生。  相似文献   

20.
湘西南兰蓉岩体为一加里东期小侵入体,由黑云母二长花岗岩和二云母二长花岗岩组成。(443.5±8.1)Ma的锆石SHRIMP U-Pb年龄表明花岗岩形成于早志留世早期。主量元素组成表明岩体总体属钙碱性-高钾钙碱性系列强过铝质花岗岩类。该侵入体Ba、(Ta+Nb)、Sr、P、Ti强烈亏损,Rb、(Th+U+K)、(La+Ce)、Nd、(Zr+Hf+Sm)、(Y+Yb+Lu)等相对富集;稀土元素含量较高、轻稀土富集明显、Eu显著亏损;ISr值为0.71299,εSr(t)值为120,εNd(t)值为-8.11和-8.89,t2DM为1.82和1.84Ga。C/MF-A/MF图解显示其源岩为泥质岩和砂屑岩。上述地球化学特征表明兰蓉岩体为陆壳碎屑岩石部分熔融形成的S型花岗岩。基于岩石成因、构造环境判别以及区域构造演化过程,推断兰蓉岩体的具体形成机制为:奥陶纪末—志留纪初的北流运动(板内造山运动)导致地壳增厚、升温,尔后在挤压减弱、应力松弛的后碰撞-减压构造环境下,中、上地壳酸性岩石发生部分熔融并向上侵位而形成兰蓉岩体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号