首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

This article describes a novel flat plate heat-pipe solar collector, namely, the hybrid heat-pipe solar collector. An analytical model has been developed to calculate the collector efficiency as well as simulate the heat transfer processes occurring in the collector. The effects of heat pipes/absorber, top cover, flue gas channel geometry, and flue gas temperature and flow rate, on the collector efficiency were investigated based on three modes of operation, i.e., solar only operation, solar/exhaust gas combined, and solar, exhaust gas and boiler combined. Experimental testing of the collector was also carried out for each of these modes of operation under real climatic conditions. The results were used to estimate the efficiency of the collector and determine the relation between the efficiency and general external parameter. The modeling and experimental results were compared and a correlation factor was used to modify the theoretical predictions. It was found that the efficiency of the collector was increased by about 20–30% compared to a conventional flat-plate heat pipe solar collector.  相似文献   

2.
This paper describes a methodology used for designing louvered fins. Louvered fins are commonly used in many compact heat exchangers to increase the surface area and initiate new boundary layer growth. Detailed measurements can be accomplished with computational models of these louvered fins to gain a better understanding of the flow field and heat distribution. The particular louver geometry studies for this work have a louver angle of 23° and fin count of 17 fpi.

The flow and heat transfer characteristics for three-dimensional mixed convection flows in a radiator flat tube with louvered fins are analyzed numerically. A three-dimensional model is developed to investigate flow and conjugate heat transfer in the copper-based car radiator. The model was produced with the commercial program FLUENT. The theoretical model has been developed and validated by comparing the predictions of the model with available experimental data. The thermal performance and temperature distribution for the louvered fins were analyzed and a procedure for optimizing the geometrical design parameter is presented.

One fin specification among the various flat tube exchangers is recommended by first considering the heat transfer and pressure drop. The effects of variation of coolant flow conditions and external air conditions on the flow and the thermal characteristics for the selected radiator are investigated also. The results will be used as fundamental data for tube design by suggesting specifications for car radiator tubes.  相似文献   

3.
ABSTRACT

Al2O3/water nanofluid has been numerically examined for the first time with different nanoparticle shapes including, cylindrical, blade, brick, platelet and spherical, on the flat and triangular-corrugated impinging surfaces. The volume fractions of 1.0%, 2.0% and 3.0% nanoparticles have been used. The Reynolds number is between 100–500 depending on the slot diameter. The finite volume method is utilized to determine the governing equations. The study is analyzed to determine how the flow features, heat transfer features and entropy production were affected by the diversity of nanoparticle shape, nanoparticle volume fraction, and shape of impinging surface. Darcy friction factor and Nusselt number are studied in detail for different conditions. The temperature contours are presented in the case of different nanoparticle volume fractions, nanoparticle shapes and both impinging surfaces. The results of the study suggest that the nanoparticle shape of the platelet shows the highest heat transfer development due to the thinner thermal boundary layer. Heat transfer augments with increasing volume fraction of nanoparticles. In addition, the study is consistent with the results of the literature on heat transfer and flow properties.  相似文献   

4.
ABSTRACT

In this study, a three-dimension (3D) computational model was proposed to investigate the flow and heat transfer characteristics of the intake grilles of two different fuel cell vehicles. The models of the intake grilles were constructed according to the actual sizes of two vehicles, namely, Roewe 950 and Toyota Mirai, considering the heat dissipation unit to simplify the heat transfer model of the vehicle. The results showed that relative to Roewe 950, Mirai intake air flow rate was approximately 10% higher, the heat transfer capacity was approximately 7% higher, and the intake grille area was larger. The coolant outlet temperature of Mirai was lower than that of Roewe 950, which was beneficial for the long term and stable operation of a fuel cell. This comparative study provided guidance for the intake grille and radiator design of fuel cell vehicles. The only difference between fuel cell vehicles on the market and conventional vehicles was that in the former, the internal combustion engine was replaced with a fuel cell stack, which had insufficient heat transfer capacity because of the reducing temperature difference. Increasing the intake grille area and the heat exchange capacity of the radiator were the key issues for the development of fuel cell vehicles. In this study, an optimal window opening angle of the radiator fin of 23° provided a maximal heat transfer coefficient.  相似文献   

5.
ABSTRACT

This paper discusses about the effect of feeder height and heat flux on the heat transfer characteristics of horizontal tube falling film evaporation in the thermal regimes. In order to investigate this, a two- dimensional CFD model was developed to perform simulation and results were compared and validated with published data available in the literature. Heat transfer co-efficients in the thermal regimes were determined from the CFD simulation and the results were recorded, analyzed and validated with the mathematical models available in the literature. The novelty of the current study is to predict the commencement of the fully developed thermal region over the tube from the simulation model under varying feeder height and heat flux. An effort was also made to measure the liquid film thickness around the tube from the CFD model in the thermal regimes. It is observed that angle of thermally developing region contracts and fully developed thermal region extends with the increase of the feeder height and heat flux. It is observed from the study that increase of heat flux by 10 kW/m2 resulted in increase of heat transfer co-efficient value by 10–12% average in thermally developing region and 12–15% average in fully developed region. Thinnest liquid film thickness observed between 85 and 127°angle. Shifting of thinnest region of liquid film upward from the mid tube with the increase of the feeder height and heat flux is noted.  相似文献   

6.
Pd-based membranes have been studied for pure hydrogen separation from syngas: in particular, a mathematical model of a Pd membrane for hydrogen separation has been developed.This model can be used in process and assessment studies of the parameters which characterize the mass transfer phenomena (such as: hydrogen permeability, surface coverage and limiting step). By coupling the permeation and water gas shift reaction kinetics, it can also be used to evaluate the performances of the membrane reactor. Further, it can be helpful to evaluate the best assembly and sizing of a H2/CO2 separation system.The model takes into account the kinetics of H2 adsorption/desorption on Pd surface, the H2 permeation into the palladium bulk and in the porous layer, and the kinetics of CO, CO2, H2O, O2, H2S competitive adsorption/desorption on Pd surface. It is also comprehensive of flux equations and bulk mass, momentum and energy balance.The results released by the model were compared to the experimental data during both the transient phase and the steady state conditions. A satisfactory agreement between model and experimental data was found.  相似文献   

7.
This paper describes a mathematical model for the pyrolysis of a small dry pine wood cylinder. The computational domain is axisymmetric and involves the heating chamber, with the wood cylinder vertically situated in the centre of the chamber. The model simulates the laminar flow around the particle and the laminar flow inside the wood/char matrix by applying a two-phase transport model where the solid wood/char matrix acts as one phase and the various gases produced from the pyrolysis process is assembled in the other phase.

Convective, conductive and thermal radiation transfer modes are included in the model. A two-step pyrolysis reaction scheme is used for the modelling of the conversion from wood to tar and gas. Both the thermal conductivity and the permeability of the wood/char matrix are modelled anisotropically in order to capture the directional differences in heat and mass transport, existing in real wood.

Results from simulations are compared with measurements from literature for the centre core solid temperature and the conversion from wood to char, tar and pyrolysis gas in the particle during heating. The results show very good agreement with the measured temperature profile. The simulated conversion profile shows an overall good agreement with the measurements, however with discrepancies in the early stage of the process. Besides the successful validation with the experimental data, it provides us with all the details of the distribution of the migrating pyrolysis gas and tar, the temperature, the velocity flow field and pressure in the wood/char cylinder.  相似文献   

8.
The effect of heat resistance and heat leakage on the optimal performance of finite time heat engines is investigated in this paperbased on a generalized heat transfer law q ∞ Δ(Tn). The analytical relation between optimal power output and efficiency for steady-state flow irreversible heat engines is derived. The analysis includes the optimal performance characteristics of several types of heat engines with different loss item and different heat transfer laws. A numerical example is provided for illustrating the power output versus efficiency characteristics. Results shown that the heat transfer law does affect the performance of these heat engines.  相似文献   

9.
ABSTRACT: The fate of contaminants in large water bodies is highly influenced by the transfer of flow and solutes across the water sediment interface. In this paper, an analytical model is presented where flow in both sediment bed and open channel is coupled at the interface through a boundary layer occupying the upper part of the sediment bed. The presence of this layer allows not only the capture of the inertia effects through a drag term in the generalized Darcy's equation, but also the specification of different soil parameters for the two porous zones. The flow is advective and driven by wave action along the water surface. The resulting system is solved for the pressure and flux in each sediment layer. The generated transport velocity fields are linked to a random walk simulation that is used to examine the trajectories of solute particles. Comparison of these trajectories against experimental tracer tests suggests a pattern very similar to the one attributed to the presence of surface mounds. The results clearly show the significance of the boundary layer and the drag term for soil with high permeability and the impact of both the thickness of the boundary layer and the length of the gravity wave relative to the depth of the water channel on the transport and exchange across the interface. The paper also examines the sensitivity of the mass exchange to the permeability of the two porous zones.  相似文献   

10.
ABSTRACT

A diesel particulate filter (DPF) can effectively reduce the exhaust emissions of particulate matter (PM) and meet emission regulations. We report herein an experimental-numerical study to investigate the soot capture and regeneration behavior in a commonly used DPF. Simulations are performed using the AVL FIRE software that considers a fairly detailed DPF model. The model is validated using measured pressure drop history during soot capture, and temperature history during regeneration from a parallel experimental study using a diesel engine equipped with a DPF. Then, a detailed numerical study is performed to examine the soot capture and heat regeneration processes, and characterize the effects of various parameters on these processes and on DPF performance. Results indicate that the pressure drop during soot loading can be reduced by increasing the CPSI (channels per square inch), minimizing the amount of residual soot in each regeneration cycle, and using moderate gas flow rates. The DPF regeneration performance is characterized in terms of the rates of temperature rise and soot oxidation. Results indicate that these rates are enhanced, as the oxygen content in the exhaust stream is increased to about 12%, the rate of thermal heating is moderately increased, and as the exhaust gas flow rate is increased. Thus, the regeneration efficiency can be significantly improving by optimizing these parameters.  相似文献   

11.
Abstract

In this article, the convective heat transfer coefficients of various agricultural products were investigated under open sun drying conditions. Data obtained from open sun drying experiments for eight agricultural products, namely, mulberry, strawberry, apple, garlic, potato, pumpkin, eggplant, and onion were used to determine values of convective heat transfer coefficient. The value of convective heat transfer coefficient was determined as 1.861 W/m2°C for mulberry, 6.691 W/m2°C for strawberry, 11.323 W/m2°C for apple, 1.136 W/m2°C for garlic, 8.224 W/m2°C for potato, 8.613 W/m2°C for pumpkin, 6.981 W/m2°C for eggplant, and 6.767 W/m2°C for onion. The experimental error in terms of percent uncertainty was also calculated.  相似文献   

12.
ABSTRACT

Aquaculture raceway temperature has a direct impact on the aquatic specie being reared. In regions that undergo significant seasonal temperature variations, the thermal management of the raceway temperature becomes a challenge, directly impacting the production yield. This study investigates a novel approach to regulate the raceway temperature in a sustainable way by utilizing geothermal energy. A numerical energy model was developed to simulate heat transfer in a geothermal system encompassing both the individual borehole heat exchangers and their thermal interactions. Simulations were conducted for different configurations of the geothermal system over a complete seasonal cycle. Results show that flow rate, number of boreholes and the borehole spacing influence the temperature of the fluid at the raceway inlet. An increase in the number of boreholes provided better thermal regulation but an increase in the flow rate through the boreholes provided less thermal regulation. A borehole spacing of 6 m was found to be appropriate to reduce thermal interference. It was also observed that an increase in the fraction of the fluid passed through the geothermal system enhances the overall thermal regulation, with higher thermal regulation at lower flow rates. Results show that when 100% of the fluid passed through a 64 boreholes geothermal system, the average regulated raceway inlet temperature was 23% higher in winter months and 16% lower in summer months at the flow rate of 21.5 L/s compared to than at 43 L/s.  相似文献   

13.
ABSTRACT

In this study, the combined thermodynamic and dynamic model of a new concept of gamma type free-piston Stirling engine is conducted. The engine consists of two identical displacer cylinders, a power cylinder, a linear alternator, and three-cushion pistons. Two displacer cylinders are symmetrically positioned on each side of the power cylinder for minimizing the rotational vibrations. Hydrogen is used as the working gas and the effect of gas temperature on the specific heat capacity is considered. The analysis carried out in this study involves the prediction of the thermodynamic-dynamic performance characteristics of the engine. In the thermodynamic section of the analysis, the working space of the engine is divided into 31 nodal volumes and the gas pressures in nodal volumes are assumed to be equal to each other. The conservation of mass and energy equations is obtained for each nodal volume. Instantaneous gas temperatures of nodal volumes are calculated by the first law of thermodynamics given for the unsteady open systems. The dynamic section of the analysis involves the motion equations of displacer, power and cushion pistons. The motion equations are derived using the Newton method. In the calculations done for variable specific heat capacity, it has been determined that there is 1% cyclic work reduction compared to the constant heat capacity. It is estimated that the maximum effective power that can be produced by the linear alternator will be around 1.6 kW. The working frequency range of the proposed engine is found to be suitable to generate electrical power.  相似文献   

14.
ABSTRACT

An eQUEST model was developed to conduct a simulation study of a natural gas engine-driven heat pump (GEHP) for an office building in Woodstock, Ontario, Canada. Prior to the installation of the GEHP, the heating and cooling demands of the office building were provided by rooftop units (RTUs), comprising of natural gas heater and electric air conditioner. Energy consumption for both GEHP and RTUs were monitored for operation in alternating months. These recorded energy consumptions along with weather data were used in the regression analysis. The developed eQUEST models were validated and calibrated with the regression analysis results with respect to the ASHRAE Guideline 14–2014. The eventual models were then applied to investigate the potential annual energy consumption, greenhouse gas (GHG) emission and energy cost savings achieved by using the GEHP in Woodstock, and other cities in Canada, particularly in Ontario.  相似文献   

15.
Laminar flows are investigated in single and double parallel serpentine channels mounted on a porous media and it is found that significant convective transport occurs in porous media for practical fuel cell conditions. This transport increases with increasing flow Reynolds number, with decreasing land width, and most significantly with increasing channel length.

Increasing the number of parallel channels significantly decreases the pressure drop across the fuel cell, but also significantly decreases the magnitude of convective transport in the porous media. Increased parasitic loads must be put in the context of the change in electrochemical performance.

This paper presents both data and a methodology for beginning to think about flow field design from a hydrodynamic perspective.  相似文献   

16.
ABSTRACT

Refrigerant pressure drop and temperature change in pipes are normally ignored in the thermodynamic analysis of traditional vehicle air conditioning system, this will result in serious errors. In this Paper, pressure drop and temperature difference are simulated in different pipes of electric vehicle (EV) heat pump system to analysis the effects of pipes in the actual EV heat pump system. The results indicate that the greater the mass flow, the faster pressure drop increases, the temperature difference decreases. Pressure drop of saturated liquid refrigerant is smaller than that of saturated gas refrigerant at the same saturation pressure and mass flow rate. The higher the refrigerant pressure (no phase change), the slower pressure drop decreases, the faster the temperature difference decreases. Pressure drop decreases with the increment of bending angle of the pipe. For EV heat pump system, suitable valves and less branches are helpful for energy saving of the system. Shortening the pipe between compressor and condenser can reduce temperature change obviously. Pressure drop per unit length in the pipe between evaporator and compressor is large especially in heating mode because of lower refrigerant density. It even reaches to over 100 times of that in the pipe between condenser and throttle valve in heating mode and has negative effects on the performance of the system. If the evaporator is closer to the compressor and the number of branches is less, then pressure drop will decrease a lot, which will be advantageous for energy saving of the heat pump system.  相似文献   

17.
This study presents a comparison of different concepts for delivering combined heat and power (CHP) to a refinery in Norway. A reference case of producing high pressure steam from natural gas in boilers and electricity in a combined cycle power plant, is compared to a: (1) natural gas fueled CHP without any CO2 capture; (2) hydrogen fueled CHP with hydrogen produced from steam methane reforming (SMR); (3) hydrogen fueled CHP with hydrogen produced from autothermal reforming (ATR); and finally (4) natural gas fueled CHP with postcombustion CO2 removal. The options are compared on the basis of first law efficiency, emissions of CO2 and a simplified cash flow evaluation. Results show that in terms of efficiency the standard natural gas fueled CHP performs better than the reference case as well as the options with carbon capture. The low carbon options in turn offer lower emissions of greenhouse gases while maintaining the same efficiency as the reference case. The cash flow analysis shows that for any option, a certain mix of prices is required to produce a positive cash flow. As expected, the relationship between natural gas price and electricity price affects all options. Also the value of heat and CO2 emissions plays an important role.  相似文献   

18.
A model is developed to predict the evaporative heat transfer coefficient in a horizontal tube-falling evaporator and has been applied to evaluate overall performance of a desalination unit. Performance variation with different parameters like operation temperature, type of water distribution system, mass flow rate of distilled water inside the exchanger are analyzed. It has been observed that the model is able to predict the trends of heat transfer characteristics of the evaporator reasonably well. However, at low liquid film flow rate conditions, the model overpredicts the heat transfer characteristics marginally. In order to improve the evaporative exchanger performance, it is observed that preheating of the liquid film before injection into the evaporator is desirable. Calculations are also performed to estimate the value of overall heat transfer coefficient for a typical desalination unit.  相似文献   

19.
The performance of the designed tilted wick solar water distillation-cum-drying unit has been tested at water flow rates of 50 and 65 ml/min in the distillation unit. Effect of water flow rates on the heat transfer coefficients of distillation and drying unit for drying ginger has been evaluated. The energy and exergy efficiency of the distillation system have also been evaluated. Average distillates of 2.36 and 2.2 l/m2 were collected from the tilted wick solar still at flow rates of 50 and 65 ml/min, respectively. Large variation in convective and evaporative heat transfer coefficients of distillation unit has been observed at given water flow rates. Water flow rate in the distillation unit significantly affects the performance of the drying unit. Average convective heat transfer coefficients of 6.56 and 3.75 W/m2 oC have been observed for drying ginger at flow rates of 50 and 65 ml/min, respectively. Energy and exergy efficiency of the distillation unit have been found to be nearly 19% and 0.9%, respectively. Experimental uncertainty has also been evaluated for distillation and drying units. The distillate cost for the developed distillation-cum-drying unit is calculated as $0.03729/l along with dried ginger of about 2.5 kg/m2/day.  相似文献   

20.
The present investigation involves theories, simulations and experiments on deposit layers on super-heater tubes in a circulating fluidised bed in Västerås in Sweden. Simulation of particle trajectories in the vicinity of two super-heater tubes is conducted in a Eulerian-Lagrangian mode for the flue gas and the ash particles from the combustion process. Particle impingements on the tubes are investigated for different particle sizes. Measurements of the buildup of deposit layers in the super-heater environment are conducted using a deposit probe. Deposit layer growth and growth rate is analysed for different probe temperatures, as well as the aspect of sintering on the probe ring surface. Analysis of the probe deposit material and deposits from the super-heaters and from textile filters are chemically analysed. The temperature dependence of the deposit materials viscosity is predicted from the chemical analysis of the samples. A model is included to simulate the effect of the deposit layer thickness on the tube heat exchange. The results from the particle trajectory simulations show that particle larger than 10 mm will mainly impinge on the front of the first tube and that smaller particles are more dispersed due to turbulence and thermophorectic forces, enabling a more even impingement on the whole surface of the tubes. The probe deposit layer growth measurements show significant temperature dependence. The deposit material sintering and distribution is proven to be dependent on; temperature, particle size and exposure time. The stickiness of the deposit material is shown to be dependent on the SiO2 and alkali relation in the samples, estimated through a viscosity model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号