首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 328 毫秒
1.
2.
This study should clarify the importance of morphology and stability of the mandibular gnathobases for the diet of Antarctic copepod species. The gnathobase morphology of the dominant copepod species Calanoides acutus, Calanus propinquus, Ctenocalanus citer, Rhincalanus gigas, Metridia gerlachei, Stephos longipes, Microcalanus pygmaeus and Paraeuchaeta antarctica from the Southern Ocean was investigated in detail by means of a scanning electron microscope. The mandibular gnathobases of C. acutus, C. propinquus and C. citer have relatively short and compact teeth. These species feed mainly on diatoms and are able to crack the silicious diatom frustules with their mandibular gnathobases by directed pressure. In contrast the teeth of the mandibular gnathobases of P. antarctica are very long and pointed. The nutrition of this species consists predominantly of other smaller copepod species. The motile prey can be held by skewering, using the gnathobases, and then eventually minced. The mandibular gnathobases of P. antarctica have notably more small bristles than those of the other investigated copepod species. These bristles are probably associated with receptors and could serve to locate the prey. The morphology of the gnathobases of R. gigas and M. gerlachei is between that of P. antarctica on the one side and that of C. acutus, C. propinquus and C. citer on the other. Based on the morphology of its gnathobases the copepod species S. longipes, which has to date been found to feed primarily on phytoplankton, mainly ice algae, must also be considered a zooplankton feeder. The investigation showed that M. pygmaeus has gnathobases with surprisingly long and pointed teeth, indicating that this species very probably feeds both on phyto- and on zooplankton organisms. While the mandibular gnathobases of the males of C. propinquus, R. gigas, M. gerlachei and S. longipes have the same morphology as the females of the respective species, in the other four investigated copepod species the males have reduced (C. acutus, C. citer and M. pygmaeus) or completely missing mandibular gnathobases (P. antarctica). The teeth of the gnathobases of all studied species with the exception of M. gerlachei consist of a different material than the remaining parts of the gnathobases. This material seems to be silicate, which probably enhances the stability of the gnathobase teeth.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

3.
Close to 50 species of marine Calanoid copepods have been reported to produce diapause eggs (Engel and Hirche in J Plankton Res 26:1083–1093, 2004); eggs that are viable but require a refractory phase before they hatch, sometimes after months. Diapause eggs are often described as morphologically different with respect to egg membrane ultrastructure and having a thicker egg shell with surface ornamentation as opposed to the smooth shell found in subitaneous eggs that hatch within days (Belmonte in J Mar Syst 15:35–39, 1998; Chen and Marcus in Mar Biol 127:587–597, 1997; Castro-Longoria in Crustaceana 74:225–236, 2001). Egg production rates, egg surface ornamentation, and hatching success were monitored in large aquaculture fish enclosures during winter with close to zero water temperatures (N57°). Surprisingly, all female copepods (Acartia spp.—presumably A. tonsa, and Centropages hamatus) produced eggs all through the winter with no obvious pattern with respect to light, temperature and food availability, and no diapause eggs were observed. However, individual females produced several categories of eggs with or without surface spines even within the same egg batch as evidenced by scanning electron microscopy (SEM). Four egg categories were distinguishable: ‘no spines’, smooth eggs; ‘short spines’, 5–15 μm long; ‘truncated spines’, with the spine tips cut-off <10 μm long; and ‘long spines’, up to 30 μm long. All egg categories remained unchanged with respect to surface structures from when we took them out of the incubation bottles until they hatched. In general, the frequency of ‘no spines’ was 10–40%, and most eggs were ornamented with ‘short-’ or ‘long spines’. Further, a given egg can be ornamented with all types of surface spines simultaneously, which might even be a fifth egg category. The different egg categories were all able to hatch within days when exposed to normoxic conditions suggesting that they were subitaneous.  相似文献   

4.
Reproduction and growth of the dominant copepods Calanus finmarchicus, C. glacialis, C. hyperboreus and Pseudocalanus minutus were studied on transects across the sea ice zone of the northern Barents Sea in May and June 1997. C. glacialis and C. finmarchicus were numerically dominant and also the largest component of the biomass. C. hyperboreus was rather rare. Moderate levels of phytoplankton and eventually high concentrations of ice algae supported maximum egg production rates of 53.6 and 48.5 eggs female–1 day–1 of C. glacialis in May and June, respectively. Results of incubation experiments were supported by a tremendous abundance of C. glacialis eggs in the water column ranging from 7×103 to 4.4×104 m–2 in May and from 9.8×103 to a maximum of 9.7×104 m–2 in June. In contrast, C. finmarchicus spawned only in the vicinity of the ice edge, at a maximum rate of 30 eggs female–1 day–1. Egg sacs of P. minutus were often observed in the preserved samples, but contained only few eggs, which may be due to loss during sampling. The presence of considerable concentrations of young stages in May and June indicated successful recruitment of C. glacialis and P. minutus. Back calculation using published stage duration estimates indicates March/April as the begin of the reproductive and growth period for these species under the first-year ice of the Barents Sea. Hence, secondary production in the study area starts at the same time as in open water regions and polynyas in the northern North Atlantic. Although the role of ice algae in the nutrition of copepods was not clarified here, the significant relationship between phytoplankton chlorophyll and egg production of C. glacialis suggests that high reproductive activity has already been achieved at moderate food concentrations.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

5.
Stable isotope (SI) ratios of carbon (δ13C) and nitrogen (δ15N) were measured in omnivorous and carnivorous deep-sea copepods of the families Euchaetidae and Aetideidae across the Atlantic sector of the Southern Ocean to establish their trophic positions. Due to high and variable C/N ratios related to differences in lipid content, δ13C was corrected using a lipid-normalisation model. δ15N signals ranged from 3.0–6.9‰ in mesopelagic species to 7.0–9.5‰ in bathypelagic congeners. Among the carnivorous Paraeuchaeta species, the epi- to mesopelagic species Paraeuchaeta antarctica had lower δ15N values than the mesopelagic P. rasa and bathypelagic P. barbata. The same trend was observed among omnivorous Aetideidae, but was not significant. In the most abundant species P. antarctica, individuals from the western Atlantic had higher δ13C and δ15N values than specimens at the eastern stations. These longitudinal changes in δ13C and δ15N values were attributed to regional differences in hydrography and sea surface temperature (SST), in particular related to a northward extension of the Antarctic Polar Front (APF) at the easternmost stations. The results indicate that even in a mesopelagic carnivorous species, the changes in surface stable isotope signatures are pronounced.  相似文献   

6.
A time series study of the copepods Calanus chilensis and Centropages brachiatus was carried out at the coastal upwelling zone of Mejillones (23°S, northern Chile), to analyze their annual life cycles in association with upwelling variation. These species co-exist in the upwelling zone. Weekly sampling of zooplankton and oceanographic variables including Chlorophyll-a and phytoplankton composition were obtained during January–December 2002 at a fixed station (ca. 90 m depth). Stages of abundances, their proportions, changes in body length of adult females, sex ratio and egg production rate (EPR), were used as proxies to examine copepods’ demography. Upwelling, assessed by weekly Ekman transport and oceanographic conditions, was intermittent throughout the year with lack of periodicity components. Populations of both copepod species did not correlate with these non-predictable upwelling events. C. chilensis reproduced year-round and the population showed ca. 15 peaks of adults with an average time interval between peaks of 20 days. C. brachiatus showed a similar life cycle, also having 15 peaks of adults at about 22 days of time intervals. Cross-correlation functions and spectral analysis showed that both populations correlated positively through time, but not in phase, evidencing a time lag for their reproductive cycles. The lag was also evident in their population abundances. Both species differ in their development rates and this may result in non-in phase life cycles. Our findings suggest that species-dependent attributes, such as development rates, modulated by adaptations to temperature, might impose constraints in the species life cycles determining the population cycles. Such attributes must be considered when modeling and understanding population dynamics and secondary production of copepods.  相似文献   

7.
The full-depth vertical distributions of males, females and juveniles of Lucicutia grandis and Calanoides carinatus are presented from the surface down to depths of 3,900 m in the central Arabian Sea at the end of the NE monsoon and the February and October inter-monsoonal periods. L. grandis is a steady component and C. carinatus is a temporal resident of the central Arabian Sea oxygen minimum zone. Maximum abundances of C. carinatus and L. grandis juveniles were found at depths around 600 m, whereas the center of the distribution of L. grandis adults was somewhat deeper at 950 m. Both copepods are indicator species which can help to understand the functioning of the mesopelagic Arabian Sea ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号