首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate change is one of the main factors that will affect biodiversity in the future and may even cause species extinctions. We suggest a methodology to derive a general relationship between biodiversity change and global warming. In conjunction with other pressure relationships, our relationship can help to assess the combined effect of different pressures to overall biodiversity change and indicate areas that are most at risk. We use a combination of an integrated environmental model (IMAGE) and climate envelope models for European plant species for several climate change scenarios to estimate changes in mean stable area of species and species turnover. We show that if global temperature increases, then both species turnover will increase, and mean stable area of species will decrease in all biomes. The most dramatic changes will occur in Northern Europe, where more than 35% of the species composition in 2100 will be new for that region, and in Southern Europe, where up to 25% of the species now present will have disappeared under the climatic circumstances forecasted for 2100. In Mediterranean scrubland and natural grassland/steppe systems, arctic and tundra systems species turnover is high, indicating major changes in species composition in these ecosystems. The mean stable area of species decreases mostly in Mediterranean scrubland, grassland/steppe systems and warm mixed forests.  相似文献   

2.
为揭示李仙江流域LUCC和气候变化对径流变化的影响,基于SWAT模型,通过设置不同情景,定量分析了不同土地利用类型和气候要素对流域内径流的影响,并结合RCP4.5、RCP8.5两种气候情景对流域未来径流的变化进行了预估。结果显示:(1) SWAT模型在李仙江流域径流模拟中具有很好的适用性,可以用SWAT模型进行流域的径流模拟,率定期的模型参数R2、Ens分别达到0.74、0.73,验证期的模型参数R2、Ens分别达到0.63、0.63;(2) 单一土地利用情景显示,将农业用地转化为林地或草地,均会导致流域径流量的减少,而将林地转化为草地则会引起流域径流量的增加,农业用地、林地、草地三者对径流增加贡献顺序为农业用地>草地>林地。(3) 2006~2015年间李仙江流域的LUCC引起的月均径流增加幅度小于气候变化引起的月均径流减少幅度,李仙江径流的变化由气候变化主导。(4) 在RCP4.5和RCP8.5两种气候情景下,2021~2050年间李仙江流域径流均呈减少趋势,减少的速率分别为3.6和2.15亿m3/10 a,这与1971~2015年间,流域实测径流减速为6.7亿m3/10 a的变化趋势一致,但这两种情景下,径流的减少趋势有所降低,分别为1971~2015年减速的53.7%、32.1%。  相似文献   

3.
The Welsh Government is committed to reduce greenhouse gas (GHG) emissions from agricultural systems and combat the effects of future climate change. In this study, the ECOSSE model was applied spatially to estimate GHG and soil organic carbon (SOC) fluxes from three major land uses (grass, arable and forest) in Wales. The aims of the simulations were: (1) to estimate the annual net GHG balance for Wales; (2) to investigate the efficiency of the reduced nitrogen (N) fertilizer goal of the sustainable land management scheme (Glastir), through which the Welsh Government offers financial support to farmers and land managers on GHG flux reduction; and (3) to investigate the effects of future climate change on the emissions of GHG and plant net primary production (NPP). Three climate scenarios were studied: baseline (1961–1990) and low and high emission climate scenarios (2015–2050). Results reveal that grassland and cropland are the major nitrous oxide (N2O) emitters and consequently emit more GHG to the atmosphere than forests. The overall average simulated annual net GHG balance for Wales under baseline climate (1961–1990) is equivalent to 0.2 t CO2e ha?1 y?1 which gives an estimate of total annual net flux for Wales of 0.34 Mt CO2e y?1. Reducing N fertilizer by 20 and 40 % could reduce annual net GHG fluxes by 7 and 25 %, respectively. If the current N fertilizer application rate continues, predicted climate change by the year 2050 would not significantly affect GHG emissions or NPP from soils in Wales.  相似文献   

4.
Central and Eastern European countries are a hotspot area when analyzing the impacts of climate change on agricultural and environmental sectors. This paper conducts a socio-economic evaluation of climate risks on crop production in Hungary, using panel data models. The region has a special location in the Carpathian basin, where the spatial distribution of precipitation varies highly from humid conditions in the western part to semiarid conditions in eastern Hungary. Under current conditions, crop systems are mainly rainfed, and water licences are massively underexploited. However, water stress projected by climate change scenarios could completely change this situation. In the near future (2021–2050), most of the crops examined could have better climatic conditions, while at the end of the century (2071–2100), lower yields are expected. Adaptation strategies must be based on an integrated evaluation which links economic and climatic aspects, and since the results show important differences in the case of individual systems, it is clear that the response has to be crop and region specific.  相似文献   

5.
In this study, we describe a spatially explicit scenario analysis of global change effects on the potential future trade-offs and conflicts between agriculture, energy generation, and grassland and wetland conservation in North Dakota (ND), USA. Integrated scenarios combining global policy, oil security, and climate change were applied to North Dakota using a spatial multi-criteria analysis shell. Spatial data describing climate changes and grassland, wetland, cropland, and energy distributions were used to characterize the geographical environment. The final multi-criteria framework examined the potential trade-offs between climate change, agricultural expansion, and energy generation resulting from global change scenarios on one hand, and the current footprint of wetlands and grasslands for six regions of ND that capture the major climate gradients and differences in land use. The results suggest that the tension between regional climate changes that may limit agricultural expansion, and global changes in food and energy security and commodity prices that favor agricultural expansion, may focus a zone of potential pressure on grasslands and wetland conversion in central ND and the Prairie Pothole Region. The balance between conservation programs, commodity prices, and land parcel productivity may determine grassland conversion, while wetland outcomes may almost totally depend upon regional climate change.  相似文献   

6.
This study estimates the consequences of climate change on cropland with and without implementation of adaptation measures, paying special attention to the maintenance of soil organic carbon (C) stocks. We examine the possibility for regional sustainable agricultural management practice that combines both maintenance and gain in soil carbon level with profit maximization. Future scenarios of Regional Agricultural Production Systems (RAPS) were constructed for 2000–2070 based on linking the effects of global climate change, predicted change in productivity parameters for the main agricultural crops, land-use and soil database parameters. The RAPS were used to examine profitability and feasibility of alternative agricultural scenarios, based on an economic model. A number of recommendations for decision making were proposed based on an assessment of the efficiency of adaptation in animal husbandry and in the crop production sector, after analysis of current percentage of perennial grass in rotation in comparison with future economic scenarios. Figures in color are available at  相似文献   

7.
Livestock systems play an important role in the livelihoods of many rural communities in Sub-Saharan Africa while being responsible for an important share of human-induced greenhouse gas emissions. This study aimed to evaluate the potential for adoption of climate smart agricultural practices in Sub-Saharan livestock systems, related to the improvement in feed, animal husbandry, and grassland management. These practices present productivity and mitigation benefits and in some cases may also contribute to enhance resilience. In this study, we used a data set of 1538 farm households across nine Sub-Saharan countries. A mixed logit model was used to assess the influence on adoption and to estimate the probability of adoption. Our results show that there seems to be stronger influence of physical and financial capitals on adoption than the other capitals. Different types of capitals influence the uptake of different agricultural practices. Yet the probability of adoption would change across countries. The results of this study could help to refine adoption estimates calculated through global or regional modelling approaches and to inform the design of policies to better target investments in order to foster adoption.  相似文献   

8.
气候变化对江苏省经济的影响研究   总被引:4,自引:1,他引:3  
利用经济学上的“投入-产出”分析方法,结合气候变化对农业产量影响的计算机模拟系统,研究了当气候变化影响农业生产和产量时,江苏省农业产值的变化及与农业部门相联系的国民经济各个部门产出量的变化。考虑江苏省的经济发展速度和产业结构,预测了未来不同的气候变化情景下,为使经济发展达到预期目标,社会需对各经济部门追加的资金投入量及各经济部门之间相互投入量的变化,提出了适应气候变化的相应对策。研究结果反映了国民经济各部门之间及部门与整体的相互联系,从而对制定区域经济平衡发展规划提供了理论依据和建议。  相似文献   

9.
利用经济学上的“投入—产出”分析方法 ,结合气候变化对农业产量影响的计算机模拟系统 ,研究了当气候变化影响农业生产和产量时 ,江苏省农业产值的变化及与农业部门相联系的国民经济各个部门产出量的变化。考虑江苏省的经济发展速度和产业结构 ,预测了未来不同气候变化情景下 ,为使经济发展达到预期目标 ,社会需对各经济部门追加的资金投入量及各经济部门之间相互投入量的变化 ,提出了适应气候变化的相应对策。研究结果反映了国民经济各部门之间及部门与整体的相互联系 ,从而对制定区域经济平衡发展规划提供了理论依据和建议。  相似文献   

10.
In this paper, we assess climate change impacts on an intensively managed grassland system at the Swiss Plateau using the process-based grassland model PROGRASS. Taking the CO2 fertilization into account, we find increasing yield levels (in the range of 10–24%) and sharp increases in production risks for an illustrative climate change scenario that suggests a marked increase in temperature and decrease in summer rainfall. Climate change–induced increases in the coefficients of variation of grassland yields are in the range of 21 and 50%. This finding underpins that additional risk management strategies are needed to cope with climate-change impacts on grassland production. The outputs from the grassland model are evaluated economically using certainty equivalents, i.e., accounting for mean quasi rents and production risks. To identify potential risk management strategies under current and future climatic conditions, we consider adjustments of production intensity and farm-level yield insurance. The impact of climate change on production intensities is found to be ambiguous: farmers’ will increase intensity under unconstrained production conditions, but will decrease production intensity in the presence of a cross-compliance scheme. Our results also show that the considered insurance scheme is a powerful tool to manage climate risks in grassland production under current and future conditions because it can reduce the coefficients of variation of quasi rents by up to 50%. However, we find that direct payments tend to reduce farmers’ incentives to use such insurance scheme.  相似文献   

11.
This study aims to investigate the effect of the impact mechanism of climate change on the livestock production at small watershed level and county level with the Multi-level Model(MLM)in Qinghai Province.The result indicated that the gross livestock output value was greatly influenced by the climatic factors of the small watershed level.Higher temperature promoted also by the increase of precipitation,relative humidity and sunshine duration was found to be beneficial to the development of livestock production,except in some areas where temperature rise restrained the development of local livestock production to some degree when exceeding a certain level;besides,the impact of the socioeconomic factors on the livestock output value is obvious at the county level.The gross economic output measured with GDP has some inhibitory effects on the reinvestment of livestock production,while population growth promotes development of livestock production to some degree.The results not only provide scientific basis for the management of livestock production in Qinghai Province,but also provide reference for formulating the policies and adaptation measures targeted at climate change to promote the sustainable development of livestock production in other regions.  相似文献   

12.
This study aims to implement the empirical analysis of the effects of the adaptive measures on the income of herdsmen in the context of the climate change with the positive mathematical programming(PMP)model.The survey was first implemented in three counties in the Three Headwaters Region.Finally the measures and recommendations suitable for the economic development in the ecologically fragile areas were proposed.The main conclusions are as follows:priority can be given to the measures to prevent the damage from rats and the engineering measures for pasture maintenance in Zeku County,where the geological conditions and grass quality are inferior,while the fiscal subsidy can be prioritized in Tongde County where the grassland area is relatively less.These recommendations can not only provide good reference for the protection of grassland resources,but they also lay a foundation for the implementation of more suitable measures to help the herdsmen in the ecologically fragile areas to adapt to the climate change.  相似文献   

13.
Climate change adaptation is an important part of addressing climate warming. Inner Mongolia grassland is a sensitive and vulnerable area of climate and an important region for adaptation to climate change. New climate change adaptation approaches with nomadic culture characteristics should be exploded in the context of climate warming. In this paper, the different utilization pattern of grassland in different regions, the different modes of production and management and historical culture were analyzed first in Nenjiang–West Liaohe plain and Ke’erqin region, Inner Mongolia Plateau and Ordos Plateau. Then, nomadic culture on the grassland was discussed from the productivity to biodiversity, from local livestock variety to resource-used system. Finally, new approaches of climate change adaptation with inheriting the essence of nomadic culture were proposed, including protecting biodiversity and using resources reasonably, performing a practice of grazing suspension–rotational grazing system, fencing degenerated grassland to facilitate its growth, founding new farming and husbandry system on the grassland, and establishing an incentive mechanism favorable to grassland and ethical cultural protection.  相似文献   

14.
We used a stochastic production function method together with a farm-level dataset covering 18 farms over a 23-year period to assess the role that soil and water conservation practices play in affecting the climate change impacts on potato yield in northwestern New Brunswick, Canada. Our analysis accounted for the yield effects of farm inputs, farm technologies, farm-specific factors, seasonal climatic variables, soil and water conservation practices, and a series of interaction terms between soil and water conservation practices and climatic variables. Regression results were used in combination with three climate change scenarios developed by the Intergovernmental Panel on Climate Change (A2, A1B, B1) and four general circulation model predictions over three 30-year time periods (2011–2040, 2041–2070, and 2071–2100) to estimate a range of potato yield projections over these time periods. Results show that accounting for soil and water conservation practices in climate–yield relationships increased the impacts of climate change on potato yield, with yield increases of up to 38 % by the 2071–2100 period. These findings provide evidence that adoption of soil and water conservation practices can help boost potato production in a changing Canadian climate.  相似文献   

15.
This study investigates future impacts of global warming on climate and extreme climate events in Nigeria, the most populous African country that depends on rain-fed agriculture. Past and future climate simulations from 9 GCMs were downscaled (using a statistical model) and analyzed for the study. The study considers the impacts of two emission scenarios (B1 and A2) on the future climates (2046–2065 and 2081–2100) over ecological zones in Nigeria. The model evaluation shows that the downscaling adds values to the GCMs simulation, and the results capture all the important climatic features over the country. The model projections show that both B1 and A2 scenarios change the future climate over Nigeria. They significantly increase the temperature over all the ecological zones, with greatest warming (between 1 and 4 °C) over the Sudan (short grass) Savanna in March. The warming, which increases the occurrence of extreme temperature and heat wave events over the entire country, enhances the frequency of the extreme rainfall events in the south and southeast and reduces the annual rainfall over the northeast. Since heavy rains and floods are major problems in the south and southeast, and drought is major problem in the northeast, the global warming may further aggravate these environmental problems in future. These could have negative impacts on agriculture and further threaten livelihood and food security in the rapidly growing country. Hence, there is need for further studies on adaptation and mitigation strategies to address the impacts of global warming in Nigeria.  相似文献   

16.
为探讨草地生态系统人工干预对区域经济福利的影响,揭示其间的内在规律,选取草地围栏、畜棚建设、草地灭鼠和人工草地建设作为草地生态系统人工干预的重要指标,以人均GDP、农牧民人均收入、人均肉产品产量作为反映区域经济福利指标,并以黄河源区为研究案例,利用回归分析法和SPSS软件建立人工干预和经济福利指标之间的相互关系。结果表明:以畜牧经济为主导的黄河源区,草地围栏、人工草地、畜棚建设与人均GDP、农牧民人均收入、居民人均肉产量均具有较高相关性,草地生态系统人工必要干预对经济福利具有重要的影响;且人工草地、畜棚、围栏单位面积变化对人均GDP、人均收入、人均肉产量具有较高的敏感性,其敏感性依此递减;灭鼠面积除对人均牛羊肉产量具有弱相关外,对人均GDP、农牧民人均收入也具有较高的相关性和敏感性。〖  相似文献   

17.
The Yellow River source region is located in the hinterland of the Qinghai-Tibetan Plateau, and has a sensitive response to global change due to its unique cryosphere processes. Any slight changes in natural elements and human activity can have a magnified effect on grassland ecosystem, animal husbandry, and pastoral livelihoods since its economy is exclusively dominated by grassland animal husbandry. Because snow disaster has been one of the major natural disasters in the source region, it is crucial to explore the economic impact of snow disaster on animal husbandry and identify effective adaptation measures. A nonlinear model of meat production was established in relation to snow disaster, grassland productivity, and disaster prevention by introducing a snow level index, and selecting three key indicators of grassland productivity and disaster prevention, including grass growing season precipitation concentration, sown grassland area, and warm barn area. This is an inverse of negative correlation, less meat when there is more snow. Per unit increase in snow level in the source region led to a decrease of 0.213 units in meat production. However, production losses caused by the snow disaster could be effectively suppressed by the increase in scale and intensity of sown grassland and warm barn construction. Per unit increase in sown grassland and warm barn area led to an increase of 0.240 and 0.610 units in meat production, respectively. The effects of sown grassland and warm barn area in reducing snow damage at different snow levels were analyzed. Snow disaster adaptation in the source region should include acceleration of the construction of meteorological disaster prevention and mitigation system, to ensure balanced forage supply between winter and spring, to prioritize the development of warm barn, and reduce the proportion of self-financed construction warm barn to encourage active participation of pastoralists, and to develop insurance mechanism for livestock.  相似文献   

18.
We analyze longtime series of annual snout positions of several valley glaciers in the northwestern Italian Alps, together with a high-resolution gridded dataset of temperature and precipitation available for the last 50 years. Glacier snout fluctuations are on average negative during this time span, albeit with a period of glacier advance between about 1970 and 1990. To determine which climatic variables best correlate with glacier snout fluctuations, we consider a large set of seasonal predictors, based on our climatic dataset, and determine the most significant drivers by a stepwise regression technique. This in-depth screening indicates that the average glacier snout fluctuations strongly respond to summer temperature and winter precipitation variations, with a delay of 5 and 10 year, respectively. Snout fluctuations display also a significant (albeit weak) response to concurrent (same year) spring temperature and precipitation conditions. A linear regressive model based on these four climatic variables explains up to 93 % of the variance, which becomes 89 % when only the two delayed variables are taken into account. When employed for out-of-sample projections, the empirical model displays high prediction skill, and it is thus used to estimate the average glacier response to different climate change scenarios (RCP4.5, RCP8.5, A1B), using both global and regional climate models. In all cases, glacier snout fluctuations display a negative trend, and the glaciers of this region display an accelerated retreat, leading to a further regression of the snout position. By 2050, the retreat is estimated to be between about 300 and 400 m with respect to the current position. Glacier regression is more intense for the RCP8.5 and A1B scenarios, as it could be expected from the higher severity of these emission pathways.  相似文献   

19.
利用川西高原31个气象观测站1961~2012年的观测资料,采用线性趋势法、Mann-Kendall突变检测法和Morlet小波分析方法,详细分析了川西北高原畜牧业界限温度0℃初日、5℃终日及0℃初日至5℃终日之间畜牧气候资源的变化特征。结果表明:(1)川西北高原稳定通过0℃初日及5℃终日在区域上有很大差异,主要受海拔高度、纬度的影响。(2)畜牧气候资源的年际变化总体呈增加趋势,但区域变化不均;(3)各要素年代际变化不同,积温在各个年代都比前一年代增加,而日照时数则呈现出一增两减一增的趋势,降水量的年代际变化型式与日照相反,呈现一减两增一减的趋势;(4)各因素突变特征明显,突变的时间主要出现在20世纪80年代,不同因素的突变类型不同;(5)畜牧业气候资源存在明显的周期性变化,各要素变化周期长短不一致,尤其是降水量以4a左右的短周期振荡为主。  相似文献   

20.
Corals and coral-associated species are highly vulnerable to the emerging effects of global climate change. The widespread degradation of coral reefs, which will be accelerated by climate change, jeopardizes the goods and services that tropical nations derive from reef ecosystems. However, climate change impacts to reef social–ecological systems can also be bi-directional. For example, some climate impacts, such as storms and sea level rise, can directly impact societies, with repercussions for how they interact with the environment. This study identifies the multiple impact pathways within coral reef social–ecological systems arising from four key climatic drivers: increased sea surface temperature, severe tropical storms, sea level rise and ocean acidification. We develop a novel framework for investigating climate change impacts in social–ecological systems, which helps to highlight the diverse impacts that must be considered in order to develop a more complete understanding of the impacts of climate change, as well as developing appropriate management actions to mitigate climate change impacts on coral reef and people.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号