首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Marine sponges harbor dense and highly diverse bacterial communities, and some percentage of the microflora appears to be specialized for the sponge habitat. Bacterial diversity was examined in Chondrilla nucula Schmidt to test the hypothesis that some subset of sponge symbiont communities is highly similar regardless of the species of host or habitat requirements of the host. C. nucula was collected from a mangrove channel on Lower Matcumbe Key in the Florida Keys (25°53′N; 80°42′W) in August 1999. Domain-specific universal bacterial primers were used to amplify the 16S rDNA gene from genomic DNA that had been extracted from sponges and the surrounding water. An RFLP technique was used to assess diversity of sponge-associated and environmental bacterial communities. The clone library from C. nucula contained 21 operational taxonomic units (OTUs). None of the 53 OTUs from adjacent water samples were found in the C. nucula library indicating that a distinct community was present in the sponge. Sequence analysis indicated that C. nucula harbors a microbial community as diverse as the microbes from other sponges in different habitats around the world. Phylogenetic analysis placed several C. nucula clones in clades dominated by bacteria that appear to be sponge specialists (e.g., Acidobacteria, Bacteroidetes, and Cyanobacteria). Proportional representation of major bacterial taxonomic groups represented in symbiont communities was compared as a function of geographic location of sponge hosts. This study supports the hypothesis that sponges from different oceans existing in dissimilar habitats harbor closely related bacteria that are distinct from other bacterial lineages and appear specialized for residing within sponges.  相似文献   

2.
Although predation by fishes is thought to structure benthic invertebrate communities on coral reefs, evidence to support this claim has been difficult to obtain. We deployed an array of eight sponge species on Conch Reef (16 m depth) off Key Largo, Florida, USA, and used a remote video-camera to record fish activity near the array continuously during five daylight periods (6 h for 1 d, at least 11.5 h for 4 d) and one night period (11 h). Of the eight sponge species, four were from adjacent reefs (Agelas wiedenmayeri, Geodia neptuni, Aplysina fistularis, and Pseudaxinella lunaecharta), and four were from a nearby mangrove habitat (Chondrosia collectrix, Geodia gibberosa, Halichondria sp., andTedania ignis). Each species of reef sponge was chosen to match the corresponding mangrove species in form and color (black, brown, yellow, and red, respectively). Predation events only occurred during daylight hours. Tallies of the number of times fishes bit sponges revealed intense feeding by the expected species of sponge-eating fishes, such as the angelfishHolacanthus bermudensis, H. tricolor, andPomacanthus arcuatus, the cowfishLactophrys quadricornis, and the filefishCantherhines pullus, but surprisingly also by the parrotfishSparisoma aurofrenatum andS. chrysopterum. Of 35 301 bites recorded, 50.8% were taken by angelfish, 34.8% by parrotfish, and 13.7% by trunkfish and filefish. Mangrove sponges were preferred by all reef fishes; 96% of bites were taken from mangrove species, with angelfish preferringChondrosia collectrix and parrotfish preferringGeodia gibberosa. Fishes often bit the same sponge repetitively, and frequently consumed entire samples within 30 min of their deployment. Sponge color did not influence fish feeding. Two of the four mangrove sponge-species deployed on the array were also found living in cryptic habitats on adjacent reefs and were rapidly consumed by fishes when exposed. Our results demonstrate the importance of fish predation in controlling the distribution of sponges on Caribbean reefs.  相似文献   

3.
Spatial distribution and temporal variation of epibenthic assemblages of coralligenous biogenic rocky outcrops occurring in the northern Adriatic Sea (45°04′–45°24′N; 12°23′–12°43′E) were investigated by photographic sampling from 2003 to 2006 at 12 randomly selected sites. The dominant reef-forming organisms were the encrusting calcareous algae (Lithophyllum stictaeforme, Lithothamnion minervae and Peyssonnelia polymorpha), while the main bioeroders were boring sponges (Cliona viridis, C. celata, C. thoosina, C. rhodensis, Piona vastifica) and the bivalve Gastrochaena dubia. Composition of the assemblages varied thorough years and among sites. Spatial heterogeneity, at local and regional scale, prevailed over temporal variation. This variability was related both to the geo-morphological features of the outcrops and to environmental variables. Sites clearly differed in the percent cover of reef builder and bioeroder species while only limited temporal variation within site was found. Some taxa revealed complex intra-site temporal trends. These results provide valuable information on the diversity and variability of epibenthic assemblages of the northern Adriatic coralligenous reefs, essential for the management and conservation of these unique biogenic habitats.  相似文献   

4.
The Micronesian sponge Oceanapia sp. has an unusual growth form that consists of an irregular turnip-shaped base, which is buried in the substrate. One to several fistules, which protrude through the sand, are attached to the base of the sponge. On top of each fistule is a small fragile capitum. We examined whether this conspicuous red-colored sponge was chemically defended and if intraspecimen variation existed in the distribution of secondary metabolites between different parts of the sponge. Furthermore we assessed the deterrent properties of the secondary metabolites to generalist and more specialized fish predators. We also wanted to see if the optimal defense theory holds in the case of a marine invertebrate. According to the theory, organisms evolve and allocate defenses in a way that maximizes individual fitness, assuming that defenses are costly to the fitness of the organisms. We were able to evaluate this hypothesis, since the different sponge parts in Oceanapia sp. were at different risk to damage by predators and had a different value in terms of fitness loss to the sponge (the capitum probably plays a role in asexual propagation). Concentrations of crude organic extract increased from the base to the capitum of the sponge. The major secondary metabolites kuanoniamine C and D also showed a sharp increase from the basal root to the capitum. There was no difference in structural material or ash content between the base and the fistule of the sponge, but fiber and protein content were significantly higher in the fistule. The methanol fraction was highly deterrent in field feeding assays towards generalist reef fish at base concentration. It also deterred feeding by the spongivorous angelfish Pomacanthus imperator in laboratory feeding experiments at the same concentration. The field feeding assays with pure compounds showed that kuanoniamine C and D deterred feeding by natural assemblages of reef fishes at fistule concentrations, confirming their role as defensive agents. The intraspecimen variation of secondary metabolites in Oceanapia sp. supports the optimal defense theory by showing the highest concentrations in those parts of the sponge that are most visible to predators and are likely to be most important for inclusive fitness. Received: 5 May 1999 / Accepted: 16 September 1999  相似文献   

5.
The growth rates of two fish species, the winter flounder Pseudopleuronectes americanus (Walbaum) (19.3 to 42.6 mm total length, TL) and the tautog Tautogaonitis (Linnaeus) (23.9 to 55.9 mm TL), were used to evaluate habitat quality under and around municipal piers in the Hudson River estuary, USA. Growth rates were measured in a series of 10 d field caging-experiments conducted at two large piers in the summers of 1996 and 1997. Cages (0.64 m2) were deployed along␣transects that stretched from underneath the piers to beyond them, encompassing the pier edge (the transitional zone between the pier interior and the outside). Growth in weight (G w ) was determined at five locations along the transect, 40 m beneath the pier, 20 m beneath the pier, at the pier edge, 20 m beyond the pier edge, and 40 m beyond. Under piers, mean growth rates of winter flounder and tautogs were negative (xˉG W  = −0.02 d−1), and rates were comparable to laboratory-starved control fishes (xˉG W  = −0.02 d−1). In contrast, mean growth rates at pier edges and in open waters beyond piers were generally positive (xˉG W ranged from −0.001 to +0.05 d−1), with growth at pier edges often being more variable and less rapid than at open-water sites. Analyses of stomach contents upon retrieval of caged fishes revealed that dry weights of food were generally higher among fishes caged at open-water stations ( range = 0.02 to 0.72 mg dry wt) than at pier-edge ( range = 0.01 to 0.54 mg) or under-pier ( range = 0.03 to 0.11 mg) stations, although it was apparent that benthic prey were available at all stations on the transect. Our results indicate poor feeding conditions among fishes caged under piers, and suboptimal foraging among fishes caged at pier edges. Inadequate growth rates can lead to higher rates of mortality, and, based on these and other earlier experiments, we conclude that under-pier environments are poor-quality habitats for some species of juvenile fishes. Received: 12 March 1998 / Accepted: 9 November 1998  相似文献   

6.
The corallimorpharian Rhodactis rhodostoma (Ehrenberg, 1934) forms aggregations that dominate patches on some coral reef flats in the Red Sea. The outcomes and mechanisms of competition for space between this corallimorpharian and other sessile organisms are poorly understood. Polyps of R. rhodostoma were observed to overgrow zoanthids, hydrozoan corals, sponges and encrusting macroalgae on a fringing reef at Eilat, northern Red Sea. R. rhodostoma polyps also damaged, and in some cases overgrew, reef-building corals in the families Poritidae, Acroporidae and Pocilloporidae, most of which form branching colonies with small polyps that are subordinate in coral competitive hierarchies. In contrast, most stony corals in the families Faviidae and Mussidae had standoff interactions with R. rhodostoma, in which they prevented the corallimorpharians from damaging them or approaching closer than 1 to 3 cm. The latter corals are ranked at the top of competitive hierarchies for Indo-Pacific corals, and they form massive colonies of large polyps which may develop aggressive organs termed sweeper tentacles. Some soft corals that exude allelopathic chemicals also avoided overgrowth by the corallimorpharians. Tentacles along the oral disk margin of R. rhodostoma polyps were swollen and bulbous during contacts with cnidarians. These bulbous marginal tentacles had significantly thicker ectoderm and a higher proportion of holotrichous nematocysts than did the normally filiform marginal tentacles of R. rhodostoma polyps. It is concluded that, on the reef flat at Eilat, this corallimorpharian damages and overgrows a variety of sessile competitors, including branching stony corals, via the application of specialised marginal tentacles filled with penetrating nematocysts. R. rhodostoma is an intermediate competitor in the aggressive hierarchy among Indo-Pacific Anthozoa, including the reef-building corals. Received: 1 July 1998 / Accepted: 24 March 1999  相似文献   

7.
Marine bdellovibrios have not previously been reported from the southern hemisphere, and knowledge of their occurrence in marine ecosystems is rudimentary. This study examined quantitative and qualitative aspects of bdellovibrios parasitic to the bacterium Vibrio alginolyticus at each of three representative tropical marine habitats of the Great Barrier Reef. Bdellovibrios were found in the water column throughout a 12 mo period from May 1992 at a sandy beach, a mangrove and a fringing coral reef. Their abundance was correlated with water temperature (P<0.001) and was highest in summer, lowest in winter and intermediate in spring and autumn. Over the sampling period, bdellovibrios were most abundant at the mangrove habitat (36.6 ml-1) and least abundant at the reef (9.5 ml-1), but there was substantial variability in numbers at all habitats among seasons and months of the year. On some occasions no bdellovibrios were found in replicate samples from the beach and reef habitats, while on others the maximum detectable by the method used (180 ml-1) was sometimes found at the beach and mangrove habitats. Bdellovibrios within each habitat were uniformly distributed among sampling sites (P>0.05). They were more abundant in sub-surface than bottom waters in summer, but the reverse occurred in winter. Midwater samples usually had least bdellovibrios. Bdellovibrio numbers were significantly correlated with those of potential host bacteria—colony-forming bacteria at all habitats and total bacteria at the beach and reef habitats. Strain characteristics, primarily based on host range, indicated qualitative differences in bdellovibrio populations among habitats. Pseudomonas atlantica, P. aeruginosa, P. marina, Cytophaga marinoflava, Vibrio gazogenes, V. mimicus and a Spirillum-like bacterium were not parasitised by bdellovibrios from any habitat. Of the other 25 Vibrio spp. tested, most were parasitised by the majority of bdellovibrio strains from each habitat. Strain differences were principally with respect to parasitism of non-Vibrio bacteria. All strains required Na+ and grew at 35°C, but some failed to grow at 15°C.  相似文献   

8.
Established hypotheses state that the rate of predation on coral reef fish should be highest during crepuscular periods (dawn and dusk) intermediate diurnally, and lowest nocturnally. We examined the relative risk of predation on juvenile French grunts (Haemulon flavolineatum Desmarest) during diurnal, dusk, and nocturnal periods on the fore- and back-reef at Teague Bay, U.S. Virgin Islands in July and August 1996. Tethering-devices recorded the exact amount of time between attaching a prey fish to its tether and subsequent predation on the prey fish. As tethering of prey usually inflates the actual rate of predation, times from our tethering devices were used to establish only the relative predation risk among treatments. During 3-h diurnal and nocturnal tethering experiments, relative predation was significantly higher during the nocturnal period, and differences between side of reef were not significant. In 30-min tethering experiments, which included all three time periods, the relative predation risk was significantly higher during dusk and nocturnal periods than during the diurnal period. Relative predation was not significantly different between the dusk and nocturnal periods, or between side of reef during any time period. The unexpected finding that the diurnal period had the lowest relative risk of predation indicates that the timing of predation events on reefs, as well as the adaptive reasons for nocturnal larval settlement, may need to be re-examined. Received: 11 February 1997 / Accepted: 21 October 1998  相似文献   

9.
The growth of animals in most taxa has long been well described, but the phylum Porifera has remained a notable exception. The giant barrel sponge Xestospongia muta dominates Caribbean coral reef communities, where it is an important spatial competitor, increases habitat complexity, and filters seawater. It has been called the ‘redwood of the reef’ because of its size (often >1 m height and diameter) and presumed long life, but very little is known about its demography. Since 1997, we have established and monitored 12 permanent 16 m diameter circular transects on the reef slope off Key Largo, Florida, to study this important species. Over a 4.5-year interval, we measured the volume of 104 tagged sponges using digital images to determine growth rates of X. muta. Five models were fit to the cubed root of initial and final volume estimates to determine which best described growth. Additional measurements of 33 sponges were taken over 6-month intervals to examine the relationship between the spongocoel, or inner-osculum space, and sponge size, and to examine short-term growth dynamics. Sponge volumes ranged from 24.05 to 80,281.67 cm3. Growth was variable, and specific growth rates decreased with increasing sponge size. The mean specific growth rate was 0.52 ± 0.65 year−1, but sponges grew as fast or slow as 404 or 2% year−1. Negative growth rates occurred over short temporal scales and growth varied seasonally, significantly faster during the summer. No differences in specific growth rate were found between transects at three different depths (15, 20, 30 m) or at two different reef sites. Spongocoel volume was positively allometric with increasing sponge size and scaling between the vertical and horizontal dimensions of the sponge indicated that morphology changes from a frustum of a cone to cylindrical as volume increases. Growth of X. muta was best described by the general von Bertalanffy and Tanaka growth curves. The largest sponge within our transects (1.23 × 0.98 m height × diameter) was estimated to be 127 years old. Although age extrapolations for very large sponges are subject to more error, the largest sponges on Caribbean reefs may be in excess of 2,300 years, placing X. muta among the longest-lived animals on earth.  相似文献   

10.
The genetic structure of 12 reef populations of the soft coral Sinularia flexibilis (Octocorallia, Alcyoniidae) was studied along the Great Barrier Reef (GBR) at a maximum separation of 1,300 km to investigate the relative importance of sexual and asexual reproduction, genetic differentiation and gene flow among these populations. S. flexibilis is a widely distributed Indo-Pacific species and a gamete broadcaster that can form large aggregations of colonies on near-shore reefs of the GBR. Up to 60 individuals per reef were collected at a minimum sampling scale of 5 m at two sites per reef, from December 1998 to February 2000. Electrophoretic analyses of nine polymorphic allozymes indicated that genotypic frequencies in most populations and loci did not differ significantly from those expected from Hardy–Weinberg predictions. Analysis of multi-locus genotypes indicated a high number of unique genotypes (N go) relative to the number of individuals sampled (N) in each reef population (range of 0.69–0.95). The maximum number of individuals likely to have been produced sexually (N*) was similar to the number of individuals sampled (i.e. N*:N ˜ 1), suggesting that even repeated genotypes may have been produced sexually. These results demonstrated a dominant role of sexual reproduction in these populations at the scale sampled. Significant genetic differentiation between some populations indicated that gene flow is restricted between some reefs (F ST=0.026, 95% CI= 0.011 − 0.045) and even between sites within reefs (F ST=0.041, 95% CI=0.027 − 0.055). Nevertheless, there was no relationship between geographic separation and genetic differentiation. Analyses comparing groups of populations showed no significant differentiation on a north-south gradient in the GBR. The pattern in the number of significant differences in gene frequencies in pairwise population comparisons, however, suggested that gene flow may be more restricted among inner-shelf reef populations near to the coast than among mid/outer-shelf populations further from the coast. Received: 10 July 2000 / Accepted: 5 October 2000  相似文献   

11.
Besides diatoms Demospongiae are the most important consumers of dissolved silica in the sea. They can play an important role for the silica budget especially in the shallow water areas of the Baltic Sea. The dependence of the silica uptake rate on the silica concentration of the seawater was measured for the sponge Halichondria panicea (Pallas, 1766). The sponges were collected in Kiel Bight. The uptake conformed to Michaelis–Menten kinetics with a half-saturation constant of 46.41 μM and a saturated uptake rate of 19.33 μmol h−1 g−1 ( p < 0.01). In the red algae zone of Kiel Bight the sponges depend on silica supply from the surrounding waters and may be silica-limited rather than food-limited in growth. Because of the much faster uptake of silica by diatoms and their lower saturation point, as well as the difference in spatial distribution of the two main silica consumers, a competition for silica between sponges and diatoms seems unlikely. Received: 21 June 1997 / Accepted: 15 July 1997  相似文献   

12.
The 1998 bleaching event and its aftermath on a coral reef in Belize   总被引:5,自引:0,他引:5  
Widespread thermal anomalies in 1997-1998, due primarily to regional effects of the El Niño-Southern Oscillation and possibly augmented by global warming, caused severe coral bleaching worldwide. Corals in all habitats along the Belizean barrier reef bleached as a result of elevated sea temperatures in the summer and fall of 1998, and in fore-reef habitats of the outer barrier reef and offshore platforms they showed signs of recovery in 1999. In contrast, coral populations on reefs in the central shelf lagoon died off catastrophically. Based on an analysis of reef cores, this was the first bleaching-induced mass coral mortality in the central lagoon in at least the last 3,000 years. Satellite data for the Channel Cay reef complex, the most intensively studied of the lagoonal reefs, revealed a prolonged period of elevated sea-surface temperatures (SSTs) in the late summer and early fall of 1998. From 18 September to 1 October 1998, anomalies around this reef averaged +2.2°C, peaking at 4.0°C above the local HotSpot threshold. In situ temperature records from a nearby site corroborated the observation that the late summer and early fall of 1998 were extraordinarily warm compared to other years. The lettuce coral, Agaricia tenuifolia, which was the dominant occupant of space on reef slopes in the central lagoon, was nearly eradicated at Channel Cay between October 1998 and January 1999. Although the loss of Ag. tenuifolia opened extensive areas of carbonate substrate for colonization, coral cover remained extremely low and coral recruitment was depressed through March 2001. High densities of the sea urchin Echinometra viridis kept the cover of fleshy and filamentous macroalgae to low levels, but the cover of an encrusting sponge, Chondrilla cf. nucula, increased. Further increases in sponge cover will impede the recovery of Ag. tenuifolia and other coral species by decreasing the availability of substrate for recruitment and growth. If coral populations are depressed on a long-term basis, the vertical accretion of skeletal carbonates at Channel Cay will slow or cease over the coming decades, a time during which global-warming scenarios predict accelerated sea-level rise.  相似文献   

13.
In this study eight different species of barnacles were found within nine species of sponges from the Red Sea. This brings to 11 the number of sponge-symbiotic barnacles reported from the Red Sea, two of these are new Acasta species (not described herein) and one (A. tzetlini Kolbasov) is a new record for this sea. This number is much higher than that of symbiotic barnacles found within sponges from either the N. Atlantic (2) or the Mediterranean (4). Two possible explanations for this are the presence of numerous predators in coral reefs and scarcity of available substrate for settlement. These factors can lead to high incidence of symbiotic relationships. Of the nine sponge species, only one (Suberites cf. clavatus) had previously been known to contain barnacles. Even at the family level, this is the first record of symbiotic barnacles in two out of the seven sponge families (Latrunculiidae, Theonellidae). Our present findings strengthen the apparent rule that the wider the openings in a barnacle shell, the fewer the host taxa with which it will associate, usually from one or two closely related families, and the more frequent it will associate with elastic sponges. Most Neoacasta laevigata found on Carteriospongia foliascens were located on the same side as the sponge's ostia, i.e. facing the incoming water. This adaptation allows the barnacles to catch more suspended particles from the water, provides them with more oxygen and prevents their exposure to discharged sponge waste. The highest density of barnacles observed on one face of a “leaf ” (with ostia) was 0.389 barnacles cm−2 (one barnacle per 2.57 cm2) and on average 0.181 ± 0.68, while the average on the other side was only 0.068 ± 0.52 barnacles cm−2. As indicated by the Morisita index, these barnacles most frequently (58%, n = 12) had a clumped spatial distribution (while the rest were randomly distributed), as is to be expected from such sessile organisms with internal fertilization via copulation. The presence of N. laevigata induced the growth of secondary perpendicular projections of its host C. foliascens. Of the N. laevigata examined, 17% brooded 324 ± 41 embryos each, of 286 ± 17 μm total length; only 5.7% (n = 123) were found to be dead. Size distribution analysis of skeletal elements from dead barnacles showed them to be significantly larger than the skeletal elements of the population of live barnacles ( p < 0.05). Received: 26 June 1998 / Accepted: 1 December 1998  相似文献   

14.
Late larvae of the serranid coral trout Plectropomus leopardus (Lacepède), captured in light traps, were released during the day both in open water and adjacent to two reefs, and their behaviour was observed by divers at Lizard Island, northern Great Barrier Reef. Coral trout larvae (n = 110) were present in light-trap catches from 18 November to 3 December 1997, including new moon (30 November). The swimming speed of larvae in open water or when swimming away from reefs was significantly greater (mean 17.9 cm s−1) than the speed of larvae swimming towards or over reefs (mean 7.2 cm s−1). Near reefs, larvae swam at average depths of 2.7 to 4.2 m, avoiding 0 to 2 m. In open water, swimming depth varied with location: larvae >1 km east of Lizard Island swam steeply downward to >20 m in 2 to 4 min; larvae >1 km west oscillated between 2.6 and 13 m; larvae 100 to 200 m east of Lizard Island oscillated between 0.8 and 15 m. Nearly all larvae swam directionally in open water and near reefs. In open water, the average swimming direction of all larvae was towards the island, and 80% (4 of 5) swam directionally (p < 0.05, Rayleigh's test). Larvae swam directionally over the reef while looking for settlement sites. The frequency of behaviours by larvae differed between two reefs of different exposure and morphology. Depending on site, 26 to 32% of larvae released adjacent to reefs swam to open water: of these, some initially swam towards or over the reef before swimming offshore. In some cases, offshore-swimming seemed to be due to the presence of predators, but usually no obvious cause was observed. Depending on the reef, 49 to 64% of the larvae settled. Non-predatory reef residents aggressively approached 19% of settlers. Between 5 and 17% of the larvae were eaten while approaching the reef or attempting to settle, primarily by lizardfishes but also by wrasses, groupers and snappers. A higher percentage of larvae settled in the second week of our study than in the first. Average time to settlement was short (138 s ± 33 SE), but some larvae took up to 15 min to settle. Average settlement depth was 7.5 to 9.9 m, and differed between locations. No settlement took place on reef flats or at depths <4.2 m. Larvae did not appear to be selective about settlement substrate, but settled most frequently on live and dead hard coral. Late-stage larvae of coral trout are capable swimmers with considerable control over speed, depth and direction. Habitat selection, avoidance of predators and settlement seem to rely on vision. Received: 7 July 1998 / Accepted: 26 January 1999  相似文献   

15.
A. S. Grutter 《Marine Biology》1999,135(3):545-552
The dynamics of infestation by parasitic juveniles of gnathiid isopods were investigated at Lizard Island in the summer of 1997/1998 to determine when, and at what rate, they infest fishes. Variation in gnathiid abundance on wild-caught fish (Hemigymnus melapterus) between dawn and sunset was examined, and unparasitized H. melapterus in cages were exposed to gnathiids in the field for 4 h (8 h for fish sampled at 06:00 h) at five different times of the day and night (10:00, 14:00, 18:00, 22:00, 06:00 hrs) on three reefs. To control for any potential effect of the cleaner-fish Labroides dimidiatus, which consumes large numbers of gnathiids each day, sampling was carried out on reefs from which all cleaner-fish had been removed. Gnathiid abundance decreased during the day. Standardized abundance per wild-caught fish was 1.9 times higher at dawn than at sunset. Gnathiids successfully infested fish in cages. Sixty-one percent of the fish in cages were infested with ≥1 gnathiids, with 51% of the fish having between 1 and 4 gnathiids after 4 h exposure. Gnathiids infested fish both day and night. The log10 (abundance +1) of gnathiids per caged fish varied significantly between time periods, with higher gnathiid numbers on fish sampled at 18:00, 22:00, and 06:00 hrs than on fish sampled at 10:00 and 14:00 hrs. In contrast to gnathiid abundance on wild-caught fish, the number of gnathiids on caged fish sampled at sunset was as high as that at dawn. The estimated mean (SE) cumulative number of gnathiids per caged fish [mean size = 13.7 cm (±0.25)] per day was 7.8 (1.1); this is similar to the estimated mean number of 7.3 gnathiids on similar-sized wild-caught fish at 6:00 hrs. The high infestation rate of gnathiids on caged fish in the late afternoon contrasted with the low numbers on wild-caught fish at this time, suggesting that factors other than infestation behaviour may be responsible for the low numbers of gnathiids on wild-caught fish in the afternoon. Received: 19 August 1998 / Accepted: 1 June 1999  相似文献   

16.
We examined recruitment and ontogenetic habitat shifts of the yellow snapper Lutjanus argentiventris in the Gulf of California, by conducting surveys and collections in multiple mangrove sites and major marine coastal habitats from 1998 to 2007. Over 1,167 juvenile individuals were collected and 516 otoliths were aged to describe the temporal pattern of the settlement. L. argentiventris recruits in mangroves, where juveniles remain until they are approximately 100 mm in length or 300-days-old. Back-calculated settlement dates and underwater surveys indicated a major recruitment peak during September and October, around 8 days before and after the full moon. The majority of mangrove sites in the Gulf of California had a similar L. argentiventris average size at the beginning of the settlement season for the cohort of 2003; although there were significant differences in individual sizes at the end of the nursery stage. When sub-adults leave mangroves, they live in shallow rocky reefs and later become abundant in deeper rocky reefs. The density of migratory individuals (10–20 cm SL) decreased exponentially as the distance between a reef and a nearby mangrove site increased. This finding has important implications for local fishery regulations and coastal management plans.  相似文献   

17.
The relationship between sponge size, habitat and shape was studied in the encrusting sponge Crambe crambe (Schmidt, 1862), which is distributed widely throughout the shallow Mediterranean littoral. Examination of sponge patches in shaded and well-illuminated habitats showed that the degree of peripheral irregularity of the edges of a patch is directly related to patch size. This relationship is valid only for sponges of >100 mm2 in area. Photophilic and sciaphilous sponges display different growth forms. The pattern of growth is interpreted in terms of competition for space. The directional growth of sciaphilous sponges may be due to the presence of dominant neighbours that are good space competitors, and the irregular growth of photophilic sponges to the absence of such neighbours.  相似文献   

18.
Moerisia lyonsi Boulenger (Hydrozoa) medusae and benthic polyps were found at 0 to 5‰ salinity in the Choptank River subestuary of Chesapeake Bay, USA. This species was introduced to the bay at least 30 years before 1996. Medusae and polyps of M. lyonsi are very small and inconspicuous, and may occur widely, but unnoticed, in oligohaline waters of the Chesapeake Bay system and in other estuaries. Medusae consumed copepod nauplii and adults, but not barnacle nauplii, polychaete and ctenophore larvae or tintinnids, in laboratory experiments. Predation rates on copepods by medusae increased with increasing medusa diameter and prey densities. Feeding rates on copepod nauplii were higher than on adults and showed no saturation over the range of prey densities tested (1 to 64 prey l−1). By contrast, predation on copepod adults was maximum (1 copepod medusa−1 h−1) at 32 and 64 copepods l−1. Unexpectedly, M. lyonsi colonized mesocosms at the Horn Point Laboratory during the spring and summer in 4 years (1994 to 1997), and reached extremely high densities (up to 13.6 medusae l−1). Densities of copepod adults and nauplii were low when medusa densities were high, and estimated predation effects suggested that M. lyonsi predation limited copepod populations in the mesocosms. Polyps of M. lyonsi asexually produced both polyp buds and medusae. Rates of asexual reproduction increased with increasing prey availability, from an average total during a 38 d experiment of 9.5 buds polyp−1 when each polyp was fed 1 copepod d−1, to an average total of 146.7 buds polyp−1 when fed 8 copepods d−1. The maximum daily production measured was 8 polyp buds and 22 medusae polyp−1. The colonizing potential of this hydrozoan is great, given the high rates of asexual reproduction, fairly wide salinity tolerance, and existence of a cyst stage. Received: 29 October 1998 / Accepted: 3 March 1999  相似文献   

19.
B. Rinkevich 《Marine Biology》2000,136(5):807-812
“Gardening” of denuded coral reef habitats is a novel restoration approach in which sexual and asexual recruits are used. The present study aimed at the evaluation of the potentiality for restoration use of different types of small fragments subcloned from the Red Sea coral species Stylophora pistillata. In situ short-term (24 h, 45Ca method) and long-term (1 year, alizarin Red S vital staining) experiments revealed high variation (up to 70%) in growth rates between up-growing branches of a specific genet, and that tip ratios in dichotomous branches (n = 880) differ significantly between newly formed and older branches, further emphasizing the within-colony genetic background for spatial configuration. Small, isolated branches (<4 cm) revealed high survivorship (up to 90%, 1 year) and up to 20–30% (1 year, single- vs. dichotomous-tip branches, respectively) growth, showing that small-sized branches are suitable for restoration purposes. Results differed significantly between genets. Total length added for dichotomous-tip branches was in general at least twice that recorded for single tips of a specific genet. Restoration protocols may be applied either by sacrificing whole large colonies via pruning high numbers of small fragments or, by pruning only a few small branches from each one of many genets. An in situ “nursery period” of approximately 8 years is predicted for S. pistillata small fragments. Received: 17 August 1999 / Accepted: 15 February 2000  相似文献   

20.
In the Red Sea, the zooxanthellate sponge Cliona vastifica (Hancock) is mainly present at >15 m depth or in shaded areas. To test whether its scarcity in unshaded areas of shallower waters is linked to the functional inefficiency of its photosymbionts at high irradiances, sponges were transferred from 30 m to a six times higher light regime at 12 m depth, and then returned to their original location. During this time, photosynthetic responses to irradiance were measured as rapid light curves (RLCs) in situ by pulse amplitude modulated (PAM) fluorometry using a portable underwater device, and samples were taken for microscopic determinations of zooxanthellar abundance. The zooxanthellae harboured by this sponge adapted to the higher irradiance at 12 m by increasing both their light saturation points and relative photosynthetic electron transport rates (ETRs). The ETRs at light saturation increased almost fourfold within 15–20 days of transfer to the shallower water, and decreased back to almost their original values after the sponges were returned to 30 m depth. This, as well as the fact that the photosynthetic light responses within an individual sponge were in accordance with the irradiance incident to specific surfaces, shows that these photosymbionts are highly adaptable to various irradiances. There was no significant change in the number of zooxanthellae per sponge area throughout these experiments, and the different photosynthetic responses were likely due to adaptations of the photosynthetic apparatus within each zooxanthella. In conclusion, it seems that parameters other than the hypothesised inability of the photosymbionts to adapt adequately to high light conditions are the cause of C. vastifica's rareness in unshaded shallow areas of the Red Sea. Received: 25 April 2000 / Accepted: 13 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号