首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
从活性污泥中筛选适宜洗毛废水的生物絮凝剂,并用筛选的生物絮凝进行洗毛废水生物絮凝实验。实验结果表明,当300 mL废水中生物絮凝剂投加量为5 mL、温度为20℃左右、pH值为9、反应时间45 min,搅拌采用先快速搅拌5 min后慢速搅拌40 min的条件下絮凝效果最好,对COD和SS去除率可达80%以上。  相似文献   

2.
采用响应面分析法对聚合氯化铝(PAC)与污泥生产的微生物絮凝剂复配处理涂料废水的过程进行了优化,设定的响应值为COD和色度去除率。实验分别拟合了关于COD去除率和色度去除率的二次模型,根据响应值的分布情况,确定涂料废水的最佳絮凝条件为微生物絮凝剂浓度47 mg/L,PAC浓度39 mg/L,pH为8.2,CaCl2浓度0.38 g/L,搅拌速度210 r/min。最佳絮凝条件下,微生物絮凝剂对涂料废水中COD和色度的去除率分别达到77.6%和68.9%。  相似文献   

3.
洗毛废水是一种高浓度有机废水,含固率高,主要成分是羊毛脂、羧酸盐和土杂,由于强极性物质的存在和胶体强的负电性,导致洗毛废水形成稳定的乳化体系.本试验通过加入硫酸改变洗毛废水的有机组成,降低体系的Zeta电位,破坏体系的稳定性,从而使得有机物发生凝聚沉降,达到去除COD的目的.硫酸加入量达到0.2%或以上时对洗毛废水中SS的自然沉降性、絮凝性和极性有很大影响,比阻从远大于9.81×1013m/kg,下降为5.54×1010m/kg,COD去除率达到86.8%,SS去除率达到98%.因此,洗毛废水加酸处理后通过机械脱水,实现固液分离,以降低原废水的色度和大幅降低COD的方式,是可供考虑的处理工艺.  相似文献   

4.
本试验较系统地研究了红、白松去皮废材硫酸盐法制浆,洗浆废水化学絮凝特征、工艺技术条件、絮凝效果以及化学污泥浓缩、脱水技术。实验室试验及中间扩大试验表明,洗浆废水化学絮凝处理,能有效地去除废水中有色物质(去除率约为80—90%)、细小纤维等悬浮物质(去除率为90%以上)以及耗氧物质(COD_(cr)去除率为50—70%)。处理过程中,絮凝剂添加量及废水pH值是主要控制参数。最适宜的添加量随废水污染负荷而异,可通过试验求得。对于COD_(cr)=700毫克/升洗浆废水,硫酸铝用量以300—400ppm为宜;处理前最好将pH值调节至6.0—7.0;反应时间及环境温度对絮凝效果亦有一定影响。反应时间由3分钟增加至18分钟,絮凝效果略有改善;温度由20℃降至2~3℃,对絮凝效果只有少量影响;化学污泥的浓缩、脱水问题是制浆废水絮凝处理的关键。研究表明,稀污泥采用国产(比如江苏丹阳、吉林辽源)非离子型聚丙烯酰胺(分子量为300—500万)改性产品,用量3—5ppm(对处理稀污泥计),能十分明显地改善污泥的沉降性能和过滤性能,其效果与日本三洋化成Sanfloc系列产品可比。絮凝处理药剂总费用约为0.08元/吨废水。化学污泥的处理及回收,正在进行研究。  相似文献   

5.
以选取微生物絮凝剂的廉价培养基为研究目的,从活性污泥中筛选微生物絮凝剂产生菌,选取白醋废水为廉价培养基代替发酵培养基对菌种进行培养,通过单因素培养条件优化,考察了不同体积分数废水、外加碳源、外加氮源、培养时间和pH值对微生物絮凝剂产生菌的絮凝率的影响,通过P-B筛选与响应面分析相结合用于优化白醋培养基培养条件,并对实际造纸废水进行处理研究。实验结果表明,经过预处理灭菌后,单独以白醋废水作为廉价培养基,最适条件为体积分数80%、转速140 r·min~(-1)、培养时间48 h、温度32℃、pH 6.88、磷酸氢二钾4.08 g·L~(-1)、氯化铵2.39 g·L~(-1),并对造纸废水加以处理,絮凝率达96.77%,COD去除率56.13%,色度去除率95.60%。因此,利用白醋废水作为微生物絮凝剂的替代培养基是完全可行的,并且可以用于实际废水的处理,达到以废治废的目的。  相似文献   

6.
用糖蜜废水取代葡萄糖作为发酵培养基中的碳源和能源培养微生物絮凝剂产生菌Pseudomonas alcaligenesPS-25。通过单因素试验和正交试验得到该菌株产絮凝剂的最佳培养条件:糖蜜废水COD浓度5 000 mg/L、培养基初始pH值6.5、接种量5%(体积比)、温度30℃、培养时间为72 h、摇床转速160 r/min,在此条件下,PS-25所产絮凝剂对高岭土悬浊液絮凝率达96.75%,并且对多种废水都有较好的净化效果,对废水中浊度和色度的去除率分别在90%和80%以上,COD去除率在73.60%~91.10%。研究表明,用糖蜜废水培养PS-25生产微生物絮凝剂处理废水是完全可行的,从而实现废物的资源化利用。  相似文献   

7.
丙烯酰胺改性壳聚糖絮凝剂处理焦化废水   总被引:1,自引:0,他引:1  
合成了丙烯酰胺改性壳聚糖絮凝剂;用该絮凝剂处理了A/O工艺处理后的焦化废水.考察了pH值、絮凝剂用量及搅拌时间对去除污染物的影响.实验结果表明,当絮凝剂用量为50.0 mg·L-1,絮凝pH值为6.5,絮凝搅拌时间为12 min,COD、F-和色度的去除率分别达到64.7%、93.2%和75%;丙烯酰胺改性壳聚糖絮凝剂对焦化废水的深度处理效果优于聚合硫酸铁和聚合氯化铝絮凝剂.  相似文献   

8.
通过在养猪场废水中加入絮凝剂和助凝剂,并采用微波辐射的方法,研究了微波辅助絮凝对养猪场废水的前处理效果,考察了单一絮凝、单一微波和絮凝微波联用3种条件下对COD和NH+4-N的去除效果。结果表明,硫酸亚铁是较为合适的絮凝剂,当投加量为50mg/L时,COD和NH+4-N的去除率分别为23.5%和25.1%;投加助凝剂对提高絮凝效果有一定的作用,但并不明显;敏化剂投加量为5g/L、微波辐射时间为30s的条件下,COD和NH+4-N的去除率分别可达到48.4%和25.2%;和单一絮凝、单一微波相比,絮凝微波联用对养猪场废水COD和NH+4-N的去除率提高不是很明显,建议工程中不必联用。  相似文献   

9.
简单芽孢杆菌产高效微生物絮凝剂   总被引:3,自引:1,他引:2  
通过从绿化植物根际土壤和污水处理厂的活性污泥中分离筛选絮凝剂产生菌,得到一株稳定高效的微生物絮凝剂产生菌PS1,根据形态学特征、生理生化实验以及16S rDNA序列分析将其鉴定为简单芽孢杆菌(Bacillus simplex)。对菌株PS1产生絮凝剂的最佳培养时间、絮凝活性分布以及pH、CaCl2、絮凝剂投量对絮凝效果的影响进行了研究,并考察了其对实际废水的絮凝效果。结果表明,菌株PS1产絮凝剂的最佳培养时间为36 h,产生的絮凝活性物质全部存在于发酵液离心后的上清液中;当pH为7.0~8.5、CaC12投量为0.25~0.35 g/L、发酵液投加量的体积分数为1.5%~2.5%时,菌株PS1发酵液对4 g/L的高岭土悬浊液的絮凝效果最佳,絮凝率达到97%。菌株PS1所产絮凝剂对城市污水、啤酒废水、淀粉废水、医院废水的絮凝率可达90%以上。  相似文献   

10.
混凝絮凝法去除腐质酸的研究   总被引:6,自引:0,他引:6  
进行了混凝絮凝法去除水中腐殖酸的研究,结果表明,同传统的絮凝剂相比,微生物絮凝剂不仅用量少,去除效果好(去除率可达60%),而且不产生二次污染,可应用于废水特别是给水中腐殖酸的去除工艺中,对絮凝剂的絮凝机理进行了初步研究,研究表明,微生物絮凝剂去除腐殖酸主要是通过架桥完成的,不同于A12(SO4)3的电中和机理。  相似文献   

11.
混凝法深度处理废纸造纸废水实验研究   总被引:4,自引:2,他引:2  
按照烧杯实验方法,重点考察了pH值、混凝剂种类和投加量等因素对生化处理后废纸造纸废水混凝处理效果的影响。实验结果表明:PAC作为混凝剂,PAM作为助凝剂联合处理该废水时,能够取得较好的去浊率、SS、色度和COD去除率。混凝沉淀最佳运行条件为:废水pH为6.5,含铝量10%的PAC和2 g/L的PAM投加量分别为1 mL/L、0.5 mL/L,浊度从35 NTU降低到1 NTU,去除率达97.1%,SS从30 mg/L降低到7 mg/L,去除率达76.7%,色度从64倍降低到18倍,去除率达71.9%,COD从95 mg/L降低到44.8 mg/L,去除率可达52.8%,取得了较好的去除效果,达到国家造纸废水新排放标准限值。  相似文献   

12.
高锰酸盐复合药剂强化混凝改善再生水景观湖水质研究   总被引:1,自引:0,他引:1  
实验通过投加助凝剂以强化混凝沉淀过程,从而达到去除再生水景观水中的藻类。以PAC为混凝剂,高锰酸盐复合药剂(PPC)为预氧化助凝剂,通过烧杯实验确定PPC、PAC同时投加,最佳投量分别为1 mg/L、60 mg/L。生产性实验中,机械加速澄清池强化混凝对TP、叶绿素、藻密度的去除率分别为54%、32.3%和35.4%,湖水中TP、TN逐渐降低分别由4.9 mg/L、23 mg/L降至0.72 mg/L、10.3 mg/L。PPC提高了混凝沉淀对藻类的去除效果,改善了再生水景观湖水质,降低水中氮磷营养盐的含量。  相似文献   

13.
接种菌剂和外加能源对污泥生物干化效果的影响   总被引:1,自引:0,他引:1  
采用自主设计的试验装置,研究了接种菌剂和外加能源对城市污水处理厂脱水污泥生物干化效果的影响。结果表明:(1)试验7d,添加接种菌剂的物料升温累积值为66.0℃.d,比不添加接种菌剂(18.3℃.d)大261%;添加接种菌剂物料的水分去除率(27.33%)比不添加接种菌剂(18.56%)提高了8.77百分点;添加接种菌剂物料的挥发性固体(VS)降解率(20.90%)比不添加接种菌剂(12.31%)高8.59百分点;添加接种菌剂物料的减重率(18.67%)比不添加接种菌剂(10.80%)高7.87百分点。(2)试验8d,添加外加能源的升温累积值(69.5℃.d)比不加外加能源(46.2℃.d)大50.43%;添加外加能源物料的水分去除率(33.50%)比不加外加能源(28.56%)高4.94百分点;添加外加能源的物料VS降解率(22.62%)比不加外加能源(19.67%)高2.95百分点;添加外加能源物料的减重率(19.56%)比不加外加能源(17.87%)高1.69百分点。  相似文献   

14.
脱木素工艺为中小制浆企业的黑液治理提供了新的方法。系统中酸化纤维污泥减小碱木素胶粒间的斥力 ,吸附废水中已析出的木质素和细小纤维 ;酸破坏了系统中胶体的水化膜 ,增大了胶体的粒径 ;混凝剂中和胶体表面电荷 ,增加颗粒间的接触机会 ,同时发挥了絮凝沉降的作用。该工艺与传统工艺相比 ,减少了酸及混凝剂的用量 ,木素沉降速度快。当试验废水pH =5、绝干纤维污泥与进水CODCr质量之比为 1.1、硫酸铝投加量为 160mg/L时 ,CODCr去除率高于 63 %。  相似文献   

15.
通过A-O工艺对印染废水的降解处理,研究了不同污泥活性下微生物疏水比率和COD去除率的变化规律.结果表明,污泥活性指标ATP浓度与微生物疏水性之间存在一定关系,并对COD去除率产生一定的影响.缺氧污泥的活性指标ATP浓度在0.38~0.77 mg/L范围时,污泥微生物的疏水性最好且疏水比率最高值为84%,COD的去除率最高,为70.01%;好氧污泥的活性指标ATP浓度在0.86~2.17 mg/L范围时,污泥微生物的疏水性最好,疏水比率最高值为75%,COD的去除率最高为96.2%.  相似文献   

16.
ASBR厌氧氨氧化反应器的快速启动及脱氮原理分析   总被引:3,自引:1,他引:2  
以城市生活污水为基本水质进行配水,采用ASBR研究了厌氧氨氧化反应器的快速启动过程及脱氮性能。实验条件如下:T为(35±1)℃、HRT为24 h、pH为7.2~7.5,进水NH4+-N、NO2--N浓度为40~160 mg/L,TN负荷为0.08~0.34 kg TN/(m3.d),按2∶1比例混合接种好氧短程硝化污泥和厌氧氨氧化污泥,经49 d运行成功启动厌氧氨氧化反应器,并实现稳定运行。实验结果表明:稳定运行期NH4+-N、NO2--N去除率分别达96%和98%;NH4+-N、NO2--N去除量与NO3--N生成量比值为1∶1.05∶0.29,较为接近理论值;成功启动的反应器出水pH高于进水;系统TN去除率平均值为79.7%;反应器内存在反硝化与厌氧氨氧化的协同作用,实现了部分COD去除;污泥由深棕色絮状变成红褐色颗粒状,经SEM扫描电镜观察污泥菌群种类单一,多为球状菌,有漏斗状缺口,具有典型氨氧化菌形态特征。  相似文献   

17.
Fenton氧化技术处理稠油污染土壤   总被引:2,自引:0,他引:2  
利用Fenton氧化技术对稠油污染土壤进行氧化处理,分析对后续微生物修复的促进作用。向1 000 g石油类含量为8%的稠油污染土壤中加入10.0 mL 18 mmol/L Fe2+溶液与10.0 mL 30%H2O2,反应时间为2 h。氧化处理后土壤中石油烃的总去除率可达到31.38%,胶质去除率为45.22%,沥青质去除率为51.26%,胶质的分子量由1 841下降到1 472,沥青质的分子量由5 831下降到5 073。Fenton氧化可使土壤酶活、各类微生物的数量及呼吸强度有不同程度的下降,但在氧化后30 d内,土壤各类微生物数量都超过了原有水平,其中细菌数量最高达到9.84×105CFU/g,是氧化前的数量的1.57倍。以上实验结果表明,Fenton氧化可以有效去除土壤中胶质和沥青质,并且使土壤中微生物的生长速率加快。因此,Fenton氧化能够促进后续的微生物修复。  相似文献   

18.
混凝-超滤短流程工艺处理北方水库原水   总被引:1,自引:0,他引:1  
采用混凝-超滤膜短流程工艺对大伙房水库原水进行处理,考察其除污染性能和膜污染情况,并对该短流程工艺参数进行优化。结果表明,当利用超滤膜直接过滤原水时,膜污染较重,并且对污染物质的去除率较低;而采用混凝.超滤短流程工艺时,膜污染得到一定程度上的缓解;当絮凝剂投加量为7mg/L、膜清洗周期为30min时,对浊度、CODMn和UV254的去除率分别为95.61%、40.42%和37.12%,出水水质能够满足生活饮用水卫生标准。  相似文献   

19.
为了控制污水脱氮中N2O排放,在不同曝气强度下研究了好氧硝化段同时硝化反硝化(SND)系统的N2O排放特性,并采用PCR—DGGE技术分析微生物群落特征。结果发现,随着曝气强度的增强,系统总氮去除率下降,但脱氮中N2O—N所占比例则上升,实验中从低到高3个曝气强度下,总氮去除率分别为80.01%、65.28%和58.62%,脱氮中N2O—N所占的比例为1.89%、7.84%和9.20%。PCR—DGGE分析显示,和低曝气强度下相比中、高曝气强度下系统微生物群落发生明显变化,但中曝气强度和高曝气强度下系统微生物群落表现出较高相似性。这表明,不同曝气强度下系统N2O排放受到氮素转化和微生物群落变化的影响。适宜曝气强度不仅提高总氮去除率,还可有效控制N2O排放。  相似文献   

20.
Tan TW  Ng HY  Ong SL 《Chemosphere》2008,70(3):387-396
The effect of mean cell residence time (MCRT) (5, 8.3, 16.7, and 33.3d) on domestic wastewater treatment performance had been investigated using four bench-scale pre-denitrification submerged membrane bioreactors (MBR) operated in parallel. The 33.3-d MCRT MBR had the lowest microbial activities in terms of specific oxygen uptake rate, specific denitrification rate and observed sludge yield. Excellent COD removal efficiency (more than 95%) and nitrification (more than 97%) were observed in all the four MBRs investigated. Even though high nitrification can be achieved in all the MBRs, total nitrogen (TN) removal efficiency was found to be affected by MCRT with a maximum of 77% at 33.3-d MCRT. Better TN removal efficiency achieved in the 33.3-d MCRT MBR was due to the combined effect of high mixed liquor concentration and lower dissolved oxygen concentration in the recycled mixed liquor. A comparison of terminal-restriction fragment length polymorphisms (T-RFLP) fingerprints based on 16S rRNA and nirS gene revealed that the microbial communities of 5- and 8.3-d MCRT are grouped under the same branch while 16.7- and 33.3-d MCRT are grouped in another branch. T-RFLP based on amoA gene shows that members from the Nitrosomonas genus were more dominant under shorter MCRT operating environment. Clustering analysis did not show any correlation with the organic and nitrogen removal performance obtained in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号