首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acid mine drainage (AMD), which contains high concentrations of sulphate and dissolved metals, is a serious environmental problem. It can be treated in situ by sulphate reducing bacteria (SRB), but effectiveness of the treatment process depends on the organic substrate chosen to supply the bacteria's carbon source. Six natural organic materials were characterized in order to investigate how well these promote sulphate reduction and metal precipitation by SRB. Maple wood chips, sphagnum peat moss, leaf compost, conifer compost, poultry manure and conifer sawdust were investigated in terms of their carbon (TOC, TIC, DOC) and nitrogen (TKN) content, as well as their easily available substances content (EAS). Single substrates, ethanol, a mixture of leaf compost (30% w/w), poultry manure (18% w/w), and maple wood chips (2% w/w), and the same mixture spiked with formaldehyde were then tested in a 70-day batch experiment to evaluate their performance in sulphate reduction and metal removal from synthetic AMD. Metal removal efficiency in batch reactors was as high as 100% for Fe, 99% for Mn, 99% for Cd, 99% for Ni, and 94% for Zn depending on reactive mixtures. Early metal removal (0-12d) was attributed to the precipitation of (oxy)hydroxides and carbonate minerals. The lowest metal and sulphate removal efficiency was found in the reactor containing poultry manure as the single carbon source despite its high DOC and EAS content. The mixture of organic materials was most effective in promoting sulphate reduction, followed by ethanol and maple wood chips, and single natural organic substrates generally showed low reactivity. Formaldehyde (0.015% (w/v)) provided only temporary bacterial inhibition. Although characterization of substrates on an individual basis provided insight on their chemical make-up, it did not give a clear indication of their ability to promote sulphate reduction and metal removal.  相似文献   

2.
Recycling EDTA solutions used to remediate metal-polluted soils   总被引:7,自引:0,他引:7  
The objective of this research was to investigate the recycling of ethylenediamine-tetraacetic acid (EDTA) used for the removal of trace metals from contaminated soils. We successfully used Na2S combined with Ca(OH)2 to precipitate the trace metals allowing us to recycle the EDTA. The results of batch and column leaching experiments show that both Ca-EDTA and Na-EDTA are powerful chelating agents with a similar soil remediation potential. The major advantage of Ca-EDTA is the preservation of soil organic matter. We found that Na2S was capable of separating the metals Cd, Cu and Pb from EDTA; however, the precipitation of Zn required the addition of Ca(OH)2. After reusing the reclaimed EDTA seven times, over a 14-day period, EDTA reagent losses ranged from 19.5% to 23.5%. Successive washing cycles enhanced the removal of trace metals from contaminated soils. The metal sulfide precipitates contain high concentrations of metals and could potentially be recycled.  相似文献   

3.
The stability of Mn oxides, and the potential for mobilization of associated trace metals, were assessed by simulating the onset of microbially-mediated reducing conditions in a continuous-flow column experiment. The column had previously been used for an in situ chemical oxidation (ISCO) experiment in which trichloroethylene was reacted with permanganate in the presence of aqueous trace metals, which produced Mn oxyhydroxides (MnO(x)) that sequestered the trace metals and coated the column sand. The column influent solution represented the incursion of ambient groundwater containing dissolved organic carbon (DOC) into an ISCO treatment zone. The influx of DOC-containing groundwater initiated a series of cation-exchange, surface-complexation and reductive-dissolution reactions that controlled the release of aqueous metals from the system. Peak concentrations in the effluent occurred in the order Na, Mo, Cr, Zn, K, Mn, Fe, Pb, Mg, Ni, Cu and Ca. Manganese release from the column was controlled by a combination of cation exchange, reductive dissolution and precipitation of rhodochrosite. The trend in Fe concentrations was similar to that of Mn, and also resulted from a combination of reductive dissolution and cation exchange. Cation exchange and/or surface-complexation were the primary mechanisms controlling Cu, Ni, Mo and Pb release to solution, while Zn and Cr concentrations did not display coherent trends. Although metal release from the treatment zone was evident in the data, concentrations of trace metals remained below 0.05 mg L(-1) with the exception of Mo which reached concentrations on the order of 1 mg L(-1). The establishment of anaerobic conditions in ISCO-treated aquifers may result in a prolonged flux of aqueous Mn(II), but with the exception of MoO(4)(2-), it is unlikely that trace metals sequestered with MnO(x) during ISCO will be released to the groundwater in elevated concentrations.  相似文献   

4.
Wilkin RT  McNeil MS 《Chemosphere》2003,53(7):715-725
This study examines the applicability and limitations of granular zero-valent iron for the treatment of water impacted by mine wastes. Rates of acid-neutralization and of metal (Cu, Cd, Ni, Zn, Hg, Al, and Mn) and metalloid (As) uptake were determined in batch systems using simulated mine drainage (initial pH 2.3-4.5; total dissolved solids 14000-16000 mgl(-1)). Metal removal from solution and acid-neutralization occurred simultaneously and were most rapid during the initial 24 h of reaction. Reaction half-lives ranged from 1.50+/-0.09 h for Al to 8.15+/-0.36 h for Zn. Geochemical model results indicate that metal removal is most effective in solutions that are highly undersaturated with respect to pure-metal hydroxides suggesting that adsorption is the initial and most rapid metal uptake mechanism. Continued adsorption onto or co-precipitation with iron corrosion products are secondary metal uptake processes. Sulfate green rust was identified as the primary iron corrosion product, which is shown to be the result of elevated [SO(4)(2-)]/[HCO(3)(-)] ratios in solution. Reversibility studies indicate that zero-valent iron will retain metals after shifts in redox states are imposed, but that remobilization of metals may occur after the acid-neutralization capacity of the material is exhausted.  相似文献   

5.
Long-term column experiments were conducted under different geochemical conditions to estimate the longevity of Fe 0 permeable reactive barriers (PRBs) treating hexavalent chromium (Cr(VI)). Secondary carbonate minerals were precipitated, and their effects on the performance, such as differences in the mechanism for Cr removal and the changes in system hydraulics, were assessed. Sequestration of Cr(VI) occurred primarily by precipitation of Fe(III)-Cr(III) (oxy)hydroxides. Trace amounts of Cr were observed in iron hydroxy carbonate presumably due to substitution of Cr3+ for Fe3+. The formation of Fe(III)-Cr(III) (oxy)hydroxide greatly decreased the reactivity of the Fe 0 and thus resulted in migration of the Cr removal front. Carbonate minerals did not appear to contribute to further passivation with regard to reactivity toward Cr removal; rather, the column receiving high contents of dissolved calcium carbonate showed slightly enhanced Cr removal by means of a higher corrosion rate of Fe 0 and because of sequestration by an iron hydroxy carbonate. Precipitation of carbonates, however, governed other geochemical parameters. The porosity and hydraulic conductivity in the column receiving high contents of dissolved calcium carbonate did not indicate a great loss in system permeability because the accumulation of carbonates declined as the Fe 0 was passivated over time. However, the accumulated carbonates and associated Fe(III)-Cr(III) (oxy)hydroxide could cause problems because the presence of these solids resulted in a decline in flow rate after about 1400 pore volumes of operation.  相似文献   

6.
Spiking of sediment with metal cations that readily hydrolyse causes the sediment pH to decrease. Displaced iron and manganese also oxidise and hydrolyse, further lowering sediment pH. The lower pH of metal-spiked sediments requires a subsequent sediment neutralisation. This research compared the pH adjustment of Cu- and Zn-spiked sediments using single and multiple additions of 1M NaOH. Sediment pH, redox potential, and porewater metal concentrations were monitored over 40 days. Depth profiles were also measured to investigate stratification. A single pH adjustment to pH 7 and 8 initially counteracted the pH change caused by metal additions, however, pH continued to decrease slowly thereafter. Multiple pH adjustments diminished porewater Cu, Zn and Fe concentrations to a greater extent than a single pH adjustment, but the ongoing oxidative precipitation of porewater metals continued to consume OH(-) ions and impede pH maintenance. Displacement of high iron(II) concentrations and the opposing rates of iron(II) oxidative precipitation and bacterially-mediated iron(II) production, affected the partitioning of the added metals between the sediment and pore water. Despite similar pH over the spiked-metal concentration gradient following pH adjustment, sediments spiked with higher metal concentrations produced lower porewater Fe concentrations, possibly due to toxicity to iron(III) oxyhydroxide reducing bacteria. Distinct stratification of redox potential and dissolved Fe and Cu developed over a depth of 6cm during the 40-day equilibration period. Recommendations are provided on methods for preparing metal-spiked sediments in which the partitioning of metals between dissolved and particulate phases better resembles that of in situ (field) metal-contaminated sediments.  相似文献   

7.
A large number of filter materials, organic and inorganic, for removal of heavy metals in mine drainage have been reviewed. Bark, chitin, chitosan, commercial ion exchangers, dairy manure compost, lignite, peat, rice husks, vegetal compost, and yeast are examples of organic materials, while bio-carbons, calcareous shale, dolomite, fly ash, limestone, olivine, steel slag materials and zeolites are examples of inorganic materials. The majority of these filter materials have been investigated in laboratory studies, based on various experimental set-ups (batch and/or column tests) and different conditions. A few materials, for instance steel slag materials, have also been subjects to field investigations under real-life conditions. The results from these investigations show that steel slag materials have the potential to remove heavy metals under different conditions. Ion exchange has been suggested as the major metal removal mechanisms not only for steel slag but also for lignite. Other suggested removal mechanisms have also been identified. Adsorption has been suggested important for activated carbon, precipitation for chitosan and sulphate reduction for olivine. General findings indicate that the results with regard to metal removal vary due to experimental set ups, composition of mine drainage and properties of filter materials and the discrepancies between studies renders normalisation of data difficult. However, the literature reveals that Fe, Zn, Pb, Hg and Al are removed to a large extent. Further investigations, especially under real-life conditions, are however necessary in order to find suitable filter materials for treatment of mine drainage.  相似文献   

8.
动电修复不同形态重金属污染土壤效果研究   总被引:2,自引:0,他引:2  
以钢铁厂附近废地的重金属土壤为对象,研究了动电修复技术去除重金属效果与其各化学形态的关系,讨论了电能消耗。结果表明,同一种重金属,其动电去除效率顺序为交换态碳酸盐结合态Fe-Mn氧化结合态有机结合态残留态,即吸附性越弱的形态,其去除率越高,如交换态去除率95%;吸附性越强的形态,其去除率越低,如有机态和残留态去除率低于29%;对于不同重金属,高移动性和弱吸附性的重金属较弱移动性和强吸附性的重金属去除效果好,即各形态的Cd、Cu和Zn的去除率明显高于相应形态Pb的去除率;能耗分析表明,实验时间超过96 h后,在电能有较大消耗的同时,重金属去除率却提高不明显。  相似文献   

9.
The concentrations of Cd, Co, Cu, Ni, Pb, Zn, Fe and Mn in different inorganic fertilizers (urea, calcium superphosphate, iron sulphate and copper sulphate) and in pesticides (two herbicides and one fungicide) are evaluated together with the contribution of these metals in soils from their use. The study was made in rice farming areas to the north of Albufera Natural Park (Valencia, Spain). The results obtained show that superphosphate is the fertilizer that contains the highest concentrations of Cd, Co, Cu and Zn as impurities. Copper sulphate and iron sulphate have the most significant concentrations of Pb, and are the only fertilizers in which Ni was detected. The three pesticides analysed show similar Cd contents and the highest levels of Fe, Mn, Zn, Pb and Ni are found in the herbicides. The most significant additions of heavy metals as impurities that soil receives from agricultural practices, are Mn, Zn, Co and Pb. Three contamination indexes have been applied to provide a basis for comparison of potential heavy metal toxicity. These results denote the potential toxicity of heavy metals in the studied soils.  相似文献   

10.
Core sediments from Mullipallam Creek of Muthupet mangroves on the southeast coast of India were analyzed for texture, CaCO(3), organic carbon, sulfur and acid leachable trace metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn and Cd). Textural analysis reveals a predominance of mud while CaCO(3) indicates dissolution in the upper half of the core, and reprecipitation of carbonates in reduction zones. Trace metals are diagenetically modified and anthropogenic processes control Pb and, to some extent, Ni, Zn and Fe. A distinct event is identified at 90 cm suggesting a change in deposition. Strong relationship of trace metals with Fe indicates that they are associated with Fe-oxyhydroxides. The role of carbonates in absorbing trace metals is evident from their positive relationship with trace metals. Comparison of acid leachable trace metals indicates increase in concentrations in the study area and the sediments act as a sink for trace metals contributed from multiple sources.  相似文献   

11.
Soil testing procedures to address metals bioavailability currently use air-dried soil rewetted almost until saturation. Such practices may influence the redox state of soil and the related dynamics of metals. To assess this potential impact, a metal-contaminated soil was air-dried and rewetted to 90% water holding capacity. We monitored over a 21-day incubation period the temporal changes of soil redox potential and solution Cd concentration (either total or free). Other physico-chemical parameters were followed notably pH, ionic strength (I) and the concentrations of NO(3)(-), Mn, Fe and SO(4)(2-) in solution. Soil redox potential showed the progressive establishment of strong reducing conditions in soil, in agreement with the temporal changes of NO(3)(-), Mn, Fe and SO(4)(2-) concentrations. It decreased by 13 pe units over the culture period leading to sulphate-reducing conditions (pe<-3) within only 21days. Solution Cd concentration increased transitorily over the first 100-150h of incubation (2-fold increase) in relation with the parallel increase in the concentration of competing cations for adsorption (Ca, Mg). It steeply decreased over the last 300h of incubation (30-fold decrease) as a result of Cd precipitation as Cd sulphides. This biphasic evolution of Cd dynamics was related to the temporal changes of Cd resupply from the solid phase. Using the technique of DGT we described the kinetics of Cd resupply over time and needed to invoke the existence of two pools of Cd.  相似文献   

12.
Two sites representing different aquifer types, i.e., Dommel (sandy) and Flémalle (gravelly loam) along the Meuse River, have been selected to conduct microcosm experiments. Various conditions ranging from aerobic over nitrate- to sulphate reducing were imposed. For the sandy aquifer, nitrate reducing conditions predominated, which specifically in the presence of a carbon source led to pH increases and enhanced Zn removal. For the calcareous gravelly loam, sulphate reduction was dominant resulting in immobilization of both Zn and Cd. For both aquifer types and almost all redox conditions, higher arsenic concentrations were measured in the groundwater. Analyses of different specific microbial populations by polymerase chain reaction (PCR) revealed the dominance of denitrifiers for the Dommel site, while sulfate reducing bacteria (SRB) were the prevailing population for all redox conditions in the Flémalle samples.  相似文献   

13.
Total contents and speciation of selected heavy metals, including Al, Fe, Co, Ni, Pb, Zn, Cu, Cr, were measured in sediment samples and mussels Mya arenaria and Astarte borealis collected in the Horsund Fjord off Spitsbergen (Norwegian Sea) and the Bay of Gdansk (Baltic Sea). The investigation aimed at revealing differences in the accumulation pattern of heavy metals in mussels inhabiting sediments characterized by varying metal bioavailability. The contents of metals adsorbed to sediments and associated with iron and manganese hydroxides, which were obtained by sequential extraction, were utilized as a measure of metal bioavailability. The contents of Cd, Pb, Zn, Cu and Cr in mussels collected off Spitsbergen were generally lower than those in mussels from the Baltic Sea. In sediments collected off Spitsbergen the bioavailable fraction represented a small proportion (0-3.7% adsorbed metals and 0-11% associated with metals hydroxides) of total heavy metal contents. In sediments from the Baltic Sea the percentages of metals adsorbed and bound to hydroxides were 1-46% and 1-13%, respectively. The differences in bioavailable metal contents measured in sediments were utilized to explain the different contents of metals in mussels collected in the corresponding sites.  相似文献   

14.
Lin C  Shacahr Y  Banin A 《Chemosphere》2004,57(9):1047-1058
Soil aquifer treatment (SAT) of wastewater relies on extensive biogeochemical processes in the soil and aquifer to achieve large-scale and economic reclamation of municipal effluents. Removal of trace metals from the wastewater is a prime objective in the operation, but the long-term sustainability of the adsorptive filtration capacity of the soils is an open question. Solid/solution partitioning (measured by the distribution coefficient, K(d)) and solid/solid partitioning (measured by selective sequential dissolution, SSD) of heavy metals were measured in soils sampled from active recharge basins in a wastewater reclamation plant and were compared to the adjacent pristine dune. K(d) values for the adsorption of Cu, Ni and Zn, measured in short-term adsorption experiments positively and significantly correlated with solution pH. Quantitative estimation of Cu, Ni and Zn adsorption on multi-sorbents indicated that surface adsorption and precipitation on Fe oxides and/or carbonate may be the major mechanisms of metal retention in these soils. SSD analyses of metal partitioning in soils exposed to approximately 20yr of effluent recharge showed that all solid-phase components, including the most stable 'residual' component, competed for and retained added Cu and Zn. Copper preferentially partitioned into the oxide component (32.0% of the soil-accumulated metal) while Zn preferentially partitioned into the carbonate component (51.6% of the soil-accumulated metal).  相似文献   

15.
In the electrokinetic treatment of heavy metal polluted soil, an alkaline environment is generated at the cathode side. It provokes the precipitation of metal ions as hydroxides into the soil and diminishes the capability of the electroremediation to clean the polluted site. In this work the "polarity exchange" technique is presented as a simple way to avoid the negative effect of OH(-) on metal transportation. This technique lies in the operation during short time intervals at inverted polarity, so that the generation of H+ ions from the oxidation of water neutralize in the alkaline zone where the metal is precipitated, favouring its dissolution. Once the metals are redissolved, the polarity is set to the original position to transport them to the desired direction. Kaolin clay contaminated with Mn was used to test the feasibility of the polarity exchange technique. The application of the "conventional technique" dealt with a removal of 14% of the initial Mn in 7.6d. For a similar treatment time the polarity exchange technique resulted in 72% of removed Mn. Successive polarity exchanges will yield with a complete decontamination of the soil with a moderate increment in the electric power consumption.  相似文献   

16.
The influence of soil formation on copper sorption is documented based on chronosequences of soils from three river floodplains in Europe (Danube, Ebro and Elbe). Sequential extraction was used to fractionate copper in original and spiked soils in order to study the long-term and short-term behaviour of copper retention. Copper partitioning among defined geochemical fractions was mainly determined by soil pH and the contents of carbonates, organic matter and Fe-/Mn-oxides and hydroxides. Copper extracted with NH(2)OH.HCl correlated well with the contents of crystalline Fe-oxides and hydroxides, demonstrating increasing retention capacity with progressing soil development. Copper retained in original soils was found in more strongly bound fractions, whereas sorption of freshly added copper was primarily influenced by the presence of carbonates. Beyond the effect of progressing soil formation, variations in organic carbon contents due to different land use history affected the copper retention capacity of the investigated soils.  相似文献   

17.
Electrokinetics is an innovative technique for treating heavy metals contaminated soil, especially low pH soils such as the Chinese red soil (Udic Ferrisols). In this paper, a Cu-Zn contaminated red soil is treated by electrokinetics. When the Cu-Zn contaminated red soil was treated without control of catholyte pH during the electrokinetic treatment, the soil pH in the soil sections near cathode after the experiment was high above 6, which resulted in accumulation of large amounts of Cu and Zn in the soil sections with such high pH values. Compared to soil Cu, soil Zn was more efficiently removed from the soil by a controlled electrokinetic method. Application of lactic acid as catholyte pH conditioning solution caused an efficient removal of Cu and Zn from the soil. Increasing the electrolyte strength (salt concentration) of the conditioning solution further increased Cu removal, but did not cause a significant improvement for soil Zn. Soil Cu and Zn fractions after the electrokinetic treatments were analyzed using sequential extraction method, which indicated that Cu and Zn precipitation in the soil section closest to the cathode in the treatments without catholyte pH control limited their removal from the soil column. When the catholyte pH was controlled by lactic acid and CaCl(2), the soil Cu and Zn removal percentage after 554 h running reached 63% and 65%, respectively. Moreover, both the residual soil Cu and Zn concentrations were lower than 100 mg kg(-1), which is adequate and meets the requirement of the Chinese soil environmental quality standards.  相似文献   

18.
Stream sediments from the mining and smelting district of Príbram, Czech Republic, were studied to determine the degree, sources and dispersal of metal contamination using a combination of bulk metal and mineralogical determinations, sequential extractions and Pb isotopic analyses. The highest metal concentrations were found 3-4 km downstream from the main polymetallic mining site (9800 mg Pb kg(-1), 26 039 mg Zn kg(-1), 316.4 mg Cd kg(-1), 256.9 mg Cu kg(-1)). The calculated enrichment factors (EFs) confirmed the extreme degree of contamination by Pb, Zn and Cd (EF>40). Lead, Zn and Cd are bound mainly to Fe oxides and hydroxides. In the most contaminated samples Pb is also present as Pb carbonates and litharge (PbO). Lead isotopic analysis indicates that the predominant source of stream sediment contamination is historic Pb-Ag mining and primary Pb smelting (206Pb/207Pb=1.16), while the role of secondary smelting (car battery processing) is negligible.  相似文献   

19.
Use of sequential extraction to assess metal partitioning in soils   总被引:12,自引:0,他引:12  
The state of heavy metal pollution and the mobility of Cd, Cu, Ni, Cr, Pb and Zn were studied in three texturally different agricultural soil profiles near a Cu-Ni smelter in Harjavalta, Finland. The pseudo-total concentrations were determined by an aqua regia procedure. Metals were also determined after division into four fractions by sequential extraction with (1) acetic acid (exchangeable and specifically adsorbed metals), (2) a reducing agent (bound to Fe/Mn hydroxides), (3) an oxidizing agent (bound to soil organic matter) and (4) aqua regia (bound to mineral structures). Fallout from the smelter has increased the concentrations of Cd, Cu and Ni in the topsoil, where 75-90% of Cd, 49-72% of Cu and 22-52% of Ni occurred in the first two fractions. Slight Pb and Zn pollution was evident as well. High proportions of mobile Cd, Cu and Ni also deeper in the sandy soil, closest to the smelter, indicated some downward movement of metals. The hydroxide-bound fraction of Pb dominated in almost all soils and horizons, while Ni, Cr and Zn mostly occurred in mineral structures. Aqua regia extraction is usefully supplemented with sequential extraction, particularly in less polluted soils and in soils that exhibit substantial textural differences within the profiles.  相似文献   

20.
The chemical and physical processes involved in the retention of 10(-2)M Zn, Pb and Cd in a calcareous medium were studied under saturated dynamic (column) and static (batch) conditions. Retention in columns decreased in order: Pb>Cd approximately Zn. In the batch experiments, the same order was observed for a contact time of less than 40h and over, Pb>Cd>Zn. Stronger Pb retention is in accordance with the lower solubility of Pb carbonates. However, the equality of retained Zn and Cd does not fit the solubility constants of carbonated solids. SEM analysis revealed that heavy metals and calcareous particles are associated. Pb precipitated as individualized Zn-Cd-Ca- free carbonated crystallites. All the heavy metals were also found to be associated with calcareous particles, without any change in their porosity, pointing to a surface/lattice diffusion-controlled substitution process. Zn and Cd were always found in concomitancy, though Pb fixed separately at the particle circumferences. The Phreeqc 2.12 interactive code was used to model experimental data on the following basis: flow fractionation in the columns, precipitation of Pb as cerrusite linked to kinetically controlled calcite dissolution, and heavy metal sorption onto proton exchanging sites (presumably surface complexation onto a calcite surface). This model simulates exchanges of metals with surface protons, pH buffering and the prevention of early Zn and Cd precipitation. Both modeling and SEM analysis show a probable significant decrease of calcite dissolution along with its contamination with metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号