首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Digestive rhythms in the mussel Mytilus edulis   总被引:1,自引:0,他引:1  
Mytilus edulis L., collected from a mid-tide level on the shore, showed rhythmic changes in mantle fluid pH, crystalline style pH, style length and total protein, and in the amylase activity in the digestive gland. These changes were correlated with the changes in tidal height. Style size may be related to extracellular digestion in the stomach. Style size and amylase content of the style were not significantly correlated with each other. The changes in amylase activity in the digestive gland confirmed the existence of a tidal rhythm for intracellular digestion in M. edulis.  相似文献   

2.
G. Schulte 《Marine Biology》1976,37(3):265-277
Feeding, locomotory and defecatory activity of the algivorous orbatid mite Ameronothrus marinus have been measured under defined conditions in the laboratory. Of terrestrial origin, these mites inhabit the intertidal zone of rocky shores along the North and Baltic Seas. Under daylight cycles found at the sampling site and in the absence of tides, feeding and defecation follow an endogenous rhythm with a spontaneous period of 12.3 h; in the tideless littoral of the Baltic Sea these activities are synchronized with diurnal cycles. Feeding and defecation follow a definite sequential pattern, repeated on the average every 4 h, i.e., 3 times between two high tides. The phase of this tidal feeding-defecation rhythm is determined by the onset of the high tide, and different patterns of this rhythm can be observed according to the tidal zones. Inhabitants of the lower eulittoral exposed to longer periods of submersion start feeding earlier, take up more food at one time before the beginning of high tide, quickly defecate part of the food undigested after feeding, and later produce other faecal pellets which contain the real remains of digestion. Inhabitants of the upper eulittoral, exposed to shorter periods of submersion, start feeding later and extend their feeding activity over the whole period of low tide; the difference between faecal pellets with digested and undigested contents is indistinct. The occurrence of these different types of faecal pellets in inhabitants of the intertidal zone is interpreted as a compensatory physiological adaptation resulting from increasing periods of submersion.  相似文献   

3.
Young plaice (Pleuronectes platessa L.), caught in the intertidal zone, exhibit a short-lived tidal rhythm when their activity is recorded in darkness in the laboratory. This tidal rhythm rapidly changes to one of circadian frequency both in darkness and in light-dark cycles. It is considered that the basic rhythm is circadian in nature, but that it can be entrained to keep in phase with the tides by some, as yet unknown, Zeitgeber present under tidal conditions.  相似文献   

4.
N. Conway 《Marine Biology》1987,95(2):231-235
In 1983 a sample of cockles [Cerastoderma edule (L.)] was removed from the mid-tide level at Booterstown Strand, County Dublin, Ireland at 2-h intervals, for a period of 24 h. The gills, mantle and visceral mass tissues contained significant levels of lysozyme, with the gills containing the highest, weight-specific levels. A tidal rhythm of lysozyme activity in the gills, mantle and visceral mass was inversely related to the tidal cycle. The data were best described by a tidal curve shifted-5 hours out of phase, with maximum and minimum levels of activity occurring one hour after low and high tides, respectively. In marine bivalves, lysozyme may be involved in the extracellular digestion and absorption of bacteria during low tide. In this context the present use of bivalves as biological indicators of bacterial pollution is discussed.Constribution No. 6282 from the Woods Hole Oceanographic Institution  相似文献   

5.
P. Natarajan 《Marine Biology》1989,101(3):347-354
Phasing of persistent circatidal rhythmicity to an artificial tidal cycle was assessed in the prawns Penaeus indicus Milne Edwards and P. monodon (Fabricius) collected from the Vellar estuary, South India, in the period between June and December 1984. Simulated 6 h cycles of 20 and 30 S, and 6 h cycles of 20° and 30°C induced a persistent tidal rhythmicity after 20 cycles. The imposed 6 h cycles of 25 and 30 S, and 25° and 30°C induced tidal rhythms after 30 cycles. In both cases, re-established tidal activity rhythms were evident for at least 48 h — higher activity occurring during the higher salinity and lower temperature phases of the simulated tidal cycles. Artificial tidal cycles of still water and running water synchronized the tidal rhythm after 20 cycles. Combined 30 S, 20°C, for 6 h and 20 S and 30°C for 6 h established a persistent tidal rhythm after 10 cycles, whereas wave action had no influence on tidal synchronization. The influence of possible interactions of tidal rhythms and in situ tidal variables on circatidal activity is discussed.  相似文献   

6.
Changes in digestive pH and protease activity have been determined throughout the transition from larvae to the juvenile stage in Sparus aurata in rearing conditions (from 0.04 to 100 g wet weight). Measurements of pH have been taken in the stomach and different segments along the length of the intestine using a pH microelectrode. In starved fish, the gastric pH ranged between 6.0 and 8.0 approximately, except in juveniles of intermediate size (between 1.0 and 7.0 g wet weight), which exhibited a wider pH range of 2.0–8.0. Fed fish with digestive content showed, in general, lower pH values in the stomach. A progressive decrease was observed from a pH range of 5.5–8.0 in the youngest animals (0.04 g) to a pH range of 2.0–6.2 when juveniles were approaching 1.0 g wet weight. Above this weight, the gastric pH remained constant (between 2.0 and 6.0 approximately). The pH values in the intestine ranged between 6.7 and 8.4. They were similar in the different segments and weight classes examined, and there were no significant differences between fed and starved animals. Specific acid protease activity (units per milligram soluble protein) in fed animals increased from small (0.04–1.0 g) to intermediate juveniles (1.0 and 7.0 g), but then remained similar in larger juveniles. On the contrary, specific alkaline protease activity in fed animals decreased from small to intermediate juveniles, and then remained at a similar level in larger juveniles. The results reflect a progressive transition during several months from alkaline digestion in larvae with undeveloped stomachs to the acid digestion in juveniles with fully developed stomachs. Full gastric capacity is developed in seabream juveniles of 1 g wet weight, which represents approximately 100 days post-hatching in cultured populations. Nevertheless, in the following 2.5 months, during which the intestine reaches the appropriate length, juveniles still show a transitional period in the regulatory mechanism of digestion, probably linked to the adaptation to a different feeding habit.Communicated by S.A. Poulet, RoscoffThis revised version was published in December 2003 with corrections to the legend of Fig. 3.  相似文献   

7.
The Dungeness crab, Cancer magister, inhabits areas that are frequently subject to periods of hypoxia. This species can employ physiological mechanisms that allow it to cope with acute hypoxic episodes. When crabs feed there is a general increase in physiological variables; these may pose an additional physiological burden on crabs already attempting to maintain adequate oxygen uptake in hypoxia. In Barkley Sound, British Columbia, the inshore habitats of C. magister ranged in dissolved oxygen from 28 kPa at the water surface to less than 1.0 kPa just above the sediment–water interface. During short-term hypoxic events, crabs reduced both the amount of food eaten and the amount of time spent feeding. Crabs tended to cease feeding below 3.2 kPa oxygen, but resumed feeding when the dissolved oxygen tensions were rapidly raised to 6 kPa. In a high (10.5–21 kPa) oxygen gradient, both unfed and fed crabs showed no preference for any area of the gradient. In a low (2.5–10.5 kPa) dissolved oxygen gradient, both unfed and fed crabs preferred the highest oxygen regime. In the laboratory, crabs were less likely to enter hypoxic waters (below 3.2 kPa oxygen) to obtain and consume food; those that did moved the food to a higher oxygen regime prior to feeding and settled in higher oxygen regimes for digestion. Crab behaviour was also monitored in the field. Fed and unfed crabs were fitted with ultrasonic telemetry tags and tracked during a tidal cycle. Unfed crabs remained mobile, travelling up to 1,370 m within 6 h, while postprandial crabs settled in areas of high oxygen and moved very little during the first 48 h after release. The present study suggests that C. magister exhibits behavioural responses in order to minimise the use of physiological mechanisms, and maximise foraging and digestive processes. Thus the nutritional state of the individual may be important in regulating both its behaviour and distribution in its natural environment.  相似文献   

8.
T. Akiyama 《Marine Biology》1995,123(2):251-255
Dimorphostylis asiatica, a cumacean crustacea inhabiting the sublittoral line of the Seto Inland Sea, shows a rhythmic pattern of swimming activity coinciding with daily and tidal components in the field. This activity pattern was bimodal at first, i.e., circatidal activity coinciding with high tides at their habitat. The mean free-running period (i.e., bitidal interval) of this endogenous rhythm was 23.1 h at 10°C, which was significantly shorter than the environmental tidal cycle. In most cases (90% of the records) this bimodal activity became unimodal within 10 d. The unimodal period was 24 to 27.5 h, which is markedly longer than the preceding bimodal period. The bimodal pattern observed in the present study was not observed in the field. The difference between field and laboratory activity patterns can be explained in terms of direct response of the bimodal circatidal rhythm to the day-night cycle in the field. Field observations were made and laboratory experiments conducted between 1988 and 1992.  相似文献   

9.
Changes in mean style weight and in lysozyme activity of the style, digestive gland, gill and mantle of Mytilus edulis and Tellina tenuis from the Clyde Sea area, Scotland, were investigated over tidal cycles in March and August, 1981. For M. edulis, significant changes occurred in the style weight, style lysozyme activity and digestive gland lysozyme activity during a 22 h period. These appear to be related to a diurnal cycle rather than a tidal cycle. Changes in the weight of the style of M. edulis may be caused by dissolution during feeding, and style lysozyme may be secreted independently of the style matrix. The activity of lysozyme in T. tenuis is unaffected by the tide, suggesting that this intertidal bivalve can feed throughout the tidal cycle.  相似文献   

10.
B. W. Molony 《Marine Biology》1993,116(3):389-397
Young Ambassis vachelli (Richardson) 40 to 50 d old, were used in a laboratory experiment to test the effects of starvation and subsequent re-feeding on body constituents and growth. Fish in three laboratory treatments (fed continuously; fed for 9 d and then starved for 15 d; starved for 9 d and fed for 15 d), were compared to fish from a local field population. Different body stores were mobilised at different times and rates during starvation. Carbohydrates were mobilised from the onset of starvation and were depleted after 3 d. Lipid and protein were mobilised at an increasing rate from the onset of starvation. The mortality in starved fish was relatively high (up to 70%) until re-feeding. Upon feeding, all body stores were restored rapidly in fish that were starved, with carbohydrate levels displaying an overshoot (carbohydrate level exceeding normal levels) in comparison to the levels in continuously fed fish. After 15 d of feeding, the starved fish had levels of constituents similar to those in continuously fed fish. Fish that were fed and subsequently starved were able to maintain themselves for at least 15 d prior to death, indicating a better degree of starvation resistance than fish without a history of feeding. This implies that feeding history in the early life of a fish is important in growth and survival but that young fish may have growth regimes flexible enough to survive relatively long periods of starvation.  相似文献   

11.
The rhythmicity of intracellular digestion was examined in two sublittoral populations of Ostrea edulis L. On the West coast of Ireland. During 12 h cycles at each station, 20 oysters were collected each hour, grouped as sub-samples of 5, facing each of the 4 cardinal points of the compass. A segment of digestive diverticula from each oyster was examined histologically and classified according to the digestive phases of the tubules. Oysters at both stations exhibited fluctuations in digestive activity which were not correlated with tidal ebb and flow nor with orientation to tidal currents. A relationship between variations in suspended particulate matter concentration in the water body and digestion is proposed. It is suggested that increases in the levels of particulate matter, by stimulating feeding, cause a significant increase in the proportion of absorptive-phase tubules 4 to 6 h later.  相似文献   

12.
We determined the temporal evolution of amylase, cellulase, laminarinase and protease in the digestive gland and crystalline style of cockles Cerastoderma edule held over 9 to 12 d in the presence and absence of food. Cockles were fed a constant diet of 1.5 mm3 l−1 of Tetraselmis suecica for 9 to 12 d and were then starved for 6 to 8 d in late summer (September 1992) and in winter (January 1993). Feeding increased the dry weight and total cellulase, laminarinase and protease activities of the digestive gland irrespective of season, whereas amylase activity remained unchanged. In winter (i.e. when cockles are metabolically weak) the response was faster and stronger, especially for protease. An additional experiment in September starved cockles for 20 d before resuming feeding. In agreement with the seasonal differences, the presence of food after prolonged starvation induced a rapid and marked increase in protease in the digestive gland of the cockles. In winter, the possible effects of the biochemical composition of food on their enzymatic response were tested by feeding two groups of cockles with the same ration of T. suecica but harvested at different growth phases. A compensatory induction of cellulases occurred in cockles fed on T. suecica with a lower carbohydrate content. In the crystalline style, the protein level and carbohydrase fell during the first day of feeding and increased during the first day of subsequent starvation. These results indicate that the release of enzymes from the style prevails over the incorporation of enzymes during the early stages of feeding, whereas the opposite occurs during starvation. Received: 15 February 1998 / Accepted: 22 February 1999  相似文献   

13.
Larvae of the blue crab Callinectes sapidus Rathbun develop on the continental shelf. The postlarval stage (megalopa) occurs near the surface and is transported shoreward by wind-driven surface currents. It then uses selective tidal stream transport for migration up an estuary. Endogenous swimming rhythms were measured under constant dark conditions in the laboratory in megalopae collected from the Newport River Estuary (North Carolina), the Delaware Bay, and offshore from the Newport River Estuary. Megalopae from all areas had a similar circadian activity rhythm, in which they swam during the time of the day phase in the field and were inactive at night. This rhythm predicts the presence of a reverse, diel, vertical-migration pattern offshore which would contribute to the location of megalopae near the surface during the day. The rhythm lacks obvious ecological significance in estuaries because it does not contribute to selective tidal stream transport and would increase vulnerability to visual predators during the day. Attempts to entrain a circatidal rhythm in swimming by cyclic and step changes in salinity were unsuccessful, as the circadian rhythm persisted. The rhythm also continued in the presence of the eelgrass Zostera marina, which is a site of settlement and metamorphosis in the field. Thus, megalopae enter estuaries with a solar day rhythm in activity. This rhythm, however, is not expressed, because light inhibits swimming during the day upon exposure to estuarine water. Since this light inhibition is removed in offshore waters, the rhythm would be expressed if, after entering an estuary, megalopae were transported back to offshore areas. Received: 19 December 1995 / Accepted: 2 August 1996  相似文献   

14.
Uca crenulata, the California species of fiddler crab, was exposed to artificial light conditions to separate the influence of the light cycle from that of the tidal input on its rhythmic motor activity. Under both constant light and light-dark cycles, rhythmic activity was demonstrated in only 50% of the experimental crabs; the activity of the remaining 50% was random. Individuals exposed to constant light conditions after having been subjected to 24 h light-dark cycles demonstrated no significant difference in period length of their rhythmic activity from crabs investigated in constant light immediately after field collection. The mean period did not differ significantly from the tidal period of 24.8 h, but the variation was considerable. In artificial light-dark cycles, the activity rhythms were usually masked but, in some cases, synchronized. The results indicate that U. crenulata has an endogenous rhythm with a period close to the tidal cycle which may be synchronized by light as well as by tidal cues. The display of this endogenous rhythm, however, is poor.  相似文献   

15.
Quantification of feeding rates and selectivity of zooplankton is vital for understanding the mechanisms structuring marine ecosystems. However, methodological limitations have made many of these studies difficult. Recently, molecular based methods have demonstrated that DNA from prey species can be used to identify zooplankton gut contents, and further, quantitative gut content estimates by quantitative PCR (qPCR) assays targeted to the 18S rRNA gene have been used to estimate feeding rates in appendicularians and copepods. However, while standard single primer based qPCR assays were quantitative for the filter feeding appendicularian Oikopleura dioica, feeding rates were consistently underestimated in the copepod Calanus finmarchicus. In this study, we test the hypothesis that prey DNA is rapidly digested after ingestion by copepods and describe a qPCR-based assay, differential length amplification qPCR (dla-qPCR), to account for DNA digestion. The assay utilizes multiple primer sets that amplify different sized fragments of the prey 18S rRNA gene and, based on the differential amplification of these fragments, the degree of digestion is estimated and corrected for. Application of this approach to C. finmarchicus fed Rhodomonas marina significantly improved quantitative feeding estimates compared to standard qPCR. The development of dla-qPCR represents a significant advancement towards a quantitative method for assessing in situ copepod feeding rates without involving cultivation-based manipulation.  相似文献   

16.
Up-estuary migration of crab larvae to adult habitats is thought to be accomplished by selective tidal transport in which late-stage larvae enter the water column on flood tides and remain on or near the bottom on ebb tides. This study measured endogenous rhythms in swimming by the last larval stage (megalopa) of blue crabs Callinectes sapidus and fiddler crabs Uca spp. Previous field studies found that megalopae of both species were only abundant in the estuarine water column on nocturnal rising tides. Megalopae were collected from the Newport River Estuary, North Carolina (34°41N; 76°40W) during August–September 1992 and swimming activity was recorded for 4.5 to 7 d under constant conditions with a video system. Rhythms exhibited by both genera in the laboratory were not identical to those recorded in the field. Uca spp. displayed a circatidal rhythm, with maximum swimming occurring near the time of high tide in the field. Rhythm amplitude increased when crushed oyster shells were present, which suggested that megalopae bury or cling to the substrate during quiescent periods. In contrast, C. sapidus had a circadian rhythm in which maximum swimming coincided with the day phase in the field. In most trials, the activity of blue crab megalopae was unrelated to the expected tidal cycle. It was concluded that a tidal rhythm in swimming was the behavioral basis of flood-tide transport for fiddler crab larvae. The endogenous rhythm in blue crabs does not participate in transport, which probably results from behavioral responses to environmental cues associated with flood tide.  相似文献   

17.
Ovigerous females of the subtidal xanthid crab Neopanope sayi (Smith) and the high intertidal grapsid crab Sesarma cinereum (Bosc) were collected during the summers of 1986 and 1987 in the Beaufort, North Carolina (USA), area and brought into the laboratory, where rhythms in larval release were monitored. When crabs with late-stage embryos were put under a 14 h light:10 h dark cycle in an otherwise constant-environment room, an apparent tidal rhythm in release of larvae was observed for both species, with N. sayi releasing near the time of day and night high tides, and S. cinereum releasing around the time of night high tides. The time of sunset relative to high tide was a complicating factor, since larval release for both species was often concentrated around sunset when evening high tides fell several hours before sunset. When a group of N. sayi and S. cinereum were brought into the laboratory and placed under constant lowlevel light for 5 d, the release rhythm of the population persisted, thus implying that the rhythm is endogenous. Larval release near the time of high tide and often at night is common among brachyurans living in tidal areas, regardless of specific adult habitat, suggesting a common functional advantage. Possibilities include transport of larvae from areas where predation and the likelihood of stranding and exposure to low-salinity waters are high, as well as a reduced probability of predation on adult females. Results of the present study suggest that the importance of release after darkness may increase with increasing tidal height of the adult.  相似文献   

18.
Valve activity rhythm of the oyster Crassostrea gigas is mainly driven by tides in the field, but in the laboratory, only a circadian clock mechanism has been demonstrated. In an attempt to reconcile these results, the mechanisms underlying the circatidal rhythm were studied in the laboratory under different entrainment or free-running regimes and in the field at Arcachon (44°39′N/1°09′W) in February–April 2011). Results confirm the existence of a circadian clock in C. gigas. Under entrainment regimes (12-h dark/12-h light photoperiod and tidal cycles simulated by a reversing current flow), oysters exhibited both circadian and circatidal cycles. Under free-running conditions (e.g., continuous darkness), the endogenous rhythm appeared to be circadian. There was no experimental evidence for an endogenous circatidal rhythm, even in oysters just transferred from the field, where a clear tidal cycle was expressed. There are two possible mechanisms to explain tidal behavior in C. gigas: an exogenous tidal cue that drives tidal activity and masks the circadian rhythm and an endogenous circatidal clock that is sensitive to tidal zeitgebers and runs at tidal frequency.  相似文献   

19.
Pandian  T. J. 《Marine Biology》1967,1(1):60-64
Comparative studies on feeding, digestion, absorption and conversion have been made in the fish Megalops cyprinoides fed with mosquito fish, Gambusia affinis, and prawn, Metapenaeus monoceros, (Pandian, 1967). Feeding as well as digestion rates are faster in individuals fed with Gambusia than in those fed with prawn. The extent of the differences in food intake is more pronounced in smaller individuals than in larger ones. The prawn exoskeleton prolongs the duration of digestion and thus further reduces rate and amount of food intake. Changes in food quality do not affect absorption efficiency. Both, rate and efficiency of food conversion, are higher in M. cyprinoides fed with Gambusia than with prawn.  相似文献   

20.
Seventeen Longhurst Hardy Plankton Recorder profiles were taken over a diel cycle in January 1990 to study the feeding of four major copepods over the South Georgia shelf. Ontogenetic changes in vertical migration were followed and feeding cycles determined by gut fluorometry for Calanoides acutus Stage CV, Calanus sinillimus CV and CVI, C. propinquus CV and Rhincalanus gigas CV and CVI. In common with a neighbouring oceanic site visited two weeks later and reported elsewhere, all four species had a diel cycle of feeding and migration. The vertical distributions of C. simillimus (all stages), R. gigas (nauplii) and Euphausia frigida (postlarvae) were similar at both sites, the night being spent within the chlorophyll maximum at 15 to 30 m. However, the biomass dominants, C. acutus and R. gigas, dwelt below the chlorophyll maximum, about 30 m deeper than their oceanic counterparts. Unlike the oceanic site, feeding at the shelf site was not restricted to darkness, but increased 6 to 10 h before nightfall and finished at dawn; the intervening period coincided with sinking and digestion. Daylight feeding may have been induced by the shorter night, lower light levels or greater food requirements at the shelf site, despite planktonic predators being over three times more abundant. Daily ration estimates for R. gigas at both sites were only 2% body carbon per day. These low values contrast with its smaller competirors, whose rations were in the range 5.6 to 27%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号