首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
Use of rubble from building demolition in mortars   总被引:4,自引:0,他引:4  
Because of increasing waste production and public concerns about the environment, it is desirable to recycle materials from building demolition. If suitably selected, ground, cleaned and sieved in appropriate industrial crushing plants, these materials can be profitably used in concrete. Nevertheless, the presence of masonry instead of concrete rubble is particularly detrimental to the mechanical performance and durability of recycled-aggregate concrete and the same negative effect is detectable when natural sand is replaced by fine recycled aggregate fraction. An alternative use of both masonry rubble and fine recycled material fraction could be in mortars. These could contain either recycled instead of natural sand or powder obtained by bricks crushing as partial cement substitution. In particular, attention is focused on the modification that takes place when either polypropylene or stainless steel fibers are added to these mortars. Polypropylene fibers are added in order to reduce shrinkage of mortars, stainless steel fibers for improving their flexural strength. The combined use of polypropylene fibers and fine recycled material from building demolition could allow the preparation of mortars showing good performance, in particular when coupled with bricks. Furthermore, the combined use of stainless steel fibers and mortars containing brick powder seems to be an effective way to guarantee a high flexural strength.  相似文献   

2.
The influence of recycled fine aggregates, which had been reclaimed from field-demolished concretes, on the resistance of mortar specimens to magnesium sulfate attack was investigated. Mortar specimens were prepared with recycled fine aggregates at different replacement levels (0%, 25%, 50%, 75% and 100% of natural fine aggregate by mass). The mortar specimens were exposed to 4.24% magnesium sulfate solution for about 1 year at ambient temperature, and regularly monitored for visual appearance, compressive strength loss and expansion. Additionally, in order to identify products of magnesium sulfate attack, mortar samples incorporating 0%, 25% and 100% replacement levels of the recycled fine aggregates were examined by X-ray diffraction (XRD) technique.Experimental results confirmed that the use of recycled fine aggregates up to a maximum 50% replacement level is effective under severe magnesium sulfate environment, irrespective of type of recycled fine aggregates. However, the worse performance was observed in mortar specimens incorporating 100% replacement level. It was found that the water absorption of recycled fine aggregates affected deterioration of mortar specimens, especially at a higher replacement level. XRD results indicated that the main cause of deterioration of the mortar specimens was primarily due to the formation of gypsum and thaumasite by magnesium sulfate attack. In addition, it appeared that the conversion of C–S–H into M–S–H by the attack probably influenced mechanical deterioration of mortar specimens with recycled fine aggregates.  相似文献   

3.
This study focuses on determining the engineering characteristics of asphalt concrete using mineral fillers with recycled waste lime, which is a by-product of the production of soda ash (Na(2)CO(3)). The materials tested in this study were made using a 25%, 50%, 75%, and 100% mixing ratio based on the conventional mineral filler ratio to analyze the possibility of using recycled waste lime. The asphalt concretes, made of recycled waste lime, hydrated lime, and conventional asphalt concrete, were evaluated through their fundamental engineering properties such as Marshall stability, indirect tensile strength, resilient modulus, permanent deformation characteristics, moisture susceptibility, and fatigue resistance. The results indicate that the application of recycled waste lime as mineral filler improves the permanent deformation characteristics, stiffness and fatigue endurance of asphalt concrete at the wide range of temperatures. It was also determined that the mixtures with recycled waste lime showed higher resistance against stripping than conventional asphalt concrete. It was concluded from various test results that a waste lime can be used as mineral filler and, especially, can greatly improve the resistance of asphalt concrete to permanent deformation at high temperatures.  相似文献   

4.
The quality of recycled aggregates from construction and demolition waste (CDW) is strictly related to the content of porous and low strength phases, and specifically to the patches of cement that remain attached to the surface of natural aggregates. This phase increases water absorption and compromises the consistency and strength of concrete made from recycled aggregates. Mineral processing has been applied to CDW recycling to remove the patches of adhered cement paste on coarse recycled aggregates. The recycled fine fraction is usually disregarded due to its high content of porous phases despite representing around 50% of the total waste.This paper focus on laboratory mineral separability studies for removing particles with a high content of cement paste from natural fine aggregate particles (quartz/feldspars). The procedure achieved processing of CDW by tertiary impact crushing to produce sand, followed by sieving and density and magnetic separability studies. The attained results confirmed that both methods were effective in reducing cement paste content and producing significant mass recovery (80% for density concentration and 60% for magnetic separation). The production of recycled sand contributes to the sustainability of the construction environment by reducing both the consumption of raw materials and disposal of CDW, particularly in large Brazilian centers with a low quantity of sand and increasing costs of this material due to long transportation distances.  相似文献   

5.
A comprehensive suite of geotechnical laboratory tests was undertaken on samples of recycled crushed glass produced in Victoria, Australia. Three types of recycled glass sources were tested being coarse, medium and fine sized glass. Laboratory testing results indicated that medium and fine sized recycled glass sources exhibit geotechnical behavior similar to natural aggregates. Coarse recycled glass was however found to be unsuitable for geotechnical engineering applications. Shear strength tests indicate that the fine and medium glass encompass shear strength parameters similar to that of natural sand and gravel mixtures comprising of angular particles. Environmental assessment tests indicated that the material meets the requirements of environmental protection authorities for fill material. The results were used to discuss potential usages of recycled glass as a construction material in geotechnical engineering applications particularly road works.  相似文献   

6.
将废粘土砖加工成粗细骨料,用于配制全废砖再生轻骨料混凝土.检测结果表明:所用废砖粗细骨料属轻骨料范畴,但其吸水率较大,且细骨料级配不良.试验表明:本试验配合比体系中,净水灰比为0.42,体积砂率为50%时最佳;以全废砖配制的再生砖轻骨料混凝土的强度发展规律与普通轻骨料混凝土类似,均有随水泥用量提高而强度提高的趋势,但随着所配制的混凝土强度等级的提高,再生轻骨料混凝土的强度提高趋势下降.以全废砖为骨料适合配制强度等级LC30及以下的再生轻骨料混凝土.  相似文献   

7.
The technical properties of cement mortars containing natural fine aggregate that is replaced by lead blast furnace slag at 25 and 35% level were assessed at fixed water-to-cement (W/C) ratio and at fixed flow table value. The leachabilities of some toxic elements from the cement mortars were also assessed to test the environmental suitability of the slag for use in preparation of cement mortar. At fixed W/C ratio, the strength of the mortar decreased with increase of the slag content. On the other hand, at fixed consistency, strength increased with increasing slag content in the mortar composition. The concentrations of some toxic elements in the leachates collected from the mortars containing slag were slightly higher than for the control mortar, but the concentrations in the leachates remained within the regulatory limits for recycling in construction applications. For most elements, leaching from a mortar containing 35% of slag was similar to that from a mortar containing 25% of slag. Therefore, 35% of natural sand can be beneficially replaced with Pb slag to produce cement mortar without affecting the mechanical and leaching properties studied in this work.  相似文献   

8.
The use of marine sediments as a pavement base material   总被引:1,自引:0,他引:1  
The management of marine sediments after dredging has become increasingly complex. In the context of sustainable development, traditional solutions such as immersion will be increasingly regulated. More than ever, with the shortage of aggregates from quarries, dredged material could constitute a new source of materials. In this study of the potential of using dredged marine sediments in road construction, the first objective is to determine the physical and mechanical characteristics of fine sediments dredged from a harbour in the north of France. The impacts of these materials on the environment are also explored. In the second stage, the characteristics of the fine sediment are enhanced for use as a road material. At this stage, the treatment used is compatible with industrial constraints. To decrease the water content of the fine sediments, natural decantation is employed; in addition, dredged sand is added to enhance the granular distribution and to reinforce the granular skeleton. Finally, the characteristics of the mix are enhanced by incorporating binders (cement and/or lime). The mechanical characteristics measured on the mixes are compatible with their use as a base course material. Moreover, the obtained results demonstrate the effectiveness of lime in the mixes. In terms of environmental impacts, on the basis of leaching tests and according to available thresholds developed for the use of municipal solid waste incineration (MSWI) bottom ash in road construction, the designed dredged mixes satisfy the prescribed thresholds.  相似文献   

9.
There is a need to promote high-value added utilization of recycled aggregates, considering the aspect of effective use. It should be noted, however, that recycled fine aggregates are generally low in quality due to the presence of cement paste attached to the aggregate surface. Based on this, there have been studies, which aimed to improve the quality of recycled aggregates using mechanical abrasion methods of removing the cement paste based on the principles of crushing, grinding and abrasion and beneficiation method using heat or acid. Accordingly, this study was performed as part of the research to improve the quality of recycled fine aggregates with the aim to effectively remove cement paste using steel ball as mechanical method and acid as chemical method. The results of the experiment showed that the oven-dry density and absorption ratio obtained after the abrasion process using sulfuric acid solution were 2.51 g/cm3 and 2.3%, respectively. This evidenced the quality improvement of the recycled aggregates as they satisfied the quality criteria of over 2.2 g/cm3 and under 5%, respectively, for Class I concrete proposed in the quality standards for recycled aggregates as well as natural sand proposed in Korea Standard criteria of over 2.5 g/cm3 and under 3%.  相似文献   

10.
The Golden Horn (GH) sediments, which consist mainly of clay, organic substances and heavy metals, are formed with the contribution of industrial and domestic wastes released in the Golden Horn Estuary. On account of their mineralogical and chemical composition, these sediments may be regarded as a suitable raw material for briquette production. In this study, the utilization of GH dredged bottom sediments was investigated for preparation of briquettes. Dried GH sediments were mixed with lime and sand in different percentages, moulded at various squeezing pressures and hardened under several steam pressure values by autoclaving. The briquettes produced through these different process conditions were tested for compressive strength according to the Turkish standards (TS705). It was found that variations in compressive strength were dependent on the amount of lime (Ca(OH)2) and sand (SiO2) added. Results show that the compressive strength increased with increasing lime and decreasing sand in the mixtures prepared for briquettes. It is concluded that briquettes with a compressive strength value of 294 kgf cm(-2) can be produced. This allows the GH sediments to be taken into account as a raw material in brick production, as far as compressive strength requirements are concerned. This possibility may represent an important way either for reducing environmental pollution or for recycling waste materials in industrial applications.  相似文献   

11.
Use of selected waste materials in concrete mixes   总被引:2,自引:0,他引:2  
A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures.  相似文献   

12.
In this study, according to two kinds of test methods, the waste official test (WOT) method and the soil contamination official test (SCOT) method applied to domestic harmful substance analysis by Korean regulation, ten kinds of harmful substance values for two kinds of natural aggregates (crushed stone and sea sand) and three kinds of recycled aggregates (road use aggregate, coarse aggregate and fine aggregate) were analyzed, as well as their alkalinity levels. Through this analysis, it was found that recycled aggregates had a higher harmful substance value than natural aggregates, but were still within the standard values and were safe. The pH levels of natural aggregates and recycled aggregates were measured by grinding the specimens according to the testing methods, and the results indicated that the natural aggregate was below pH 9, while the recycled aggregates were found to have a strong alkalinity of pH 11. The pH measurement of recycled aggregates according to grain size and eluting time indicated that a small grain size yielded an initially high pH value that changed little over eluting time, while aggregates with a large grain size had a relatively low initial pH value, but increased with eluting time. In addition, the pH of recycled aggregates was higher for smaller grain sizes, and the WOT method yielded higher pH levels than the SCOT method.  相似文献   

13.
Construction and demolition waste has been dramatically increased in the last decade, and social and environmental concerns on the recycling have consequently been increased. Recent technology has greatly improved the recycling process for waste concrete. This study investigates the fundamental characteristics of concrete using recycled concrete aggregate (RCA) for its application to structural concrete members. The specimens used 100% coarse RCA, various replacement levels of natural aggregate with fine RCA, and several levels of fly ash addition. Compressive strength of mortar and concrete which used RCA gradually decreased as the amount of the recycled materials increased. Regardless of curing conditions and fly ash addition, the 28 days strength of the recycled aggregate concrete was greater than the design strength, 40 MPa, with a complete replacement of coarse aggregate and a replacement level of natural fine aggregate by fine RCA up to 60%. The recycled aggregate concrete achieved sufficient resistance to the chloride ion penetration. The measured carbonation depth did not indicate a clear relationship to the fine RCA replacement ratio but the recycled aggregate concrete could also attain adequate carbonation resistance. Based on the results from the experimental investigations, it is believed that the recycled aggregate concrete can be successfully applied to structural concrete members.  相似文献   

14.
Utilization of construction and demolition (C&D) wastes as recycled aggregates in the production of concrete and concrete products have attracted much attention in recent years. However, the presence of large quantities of crushed clay brick in some the C&D waste streams (e.g. waste derived collapsed masonry buildings after an earthquake) renders the recycled aggregates unsuitable for high grade use. One possibility is to make use of the low grade recycled aggregates for concrete block production. In this paper, we report the results of a comprehensive study to assess the feasibility of using crushed clay brick as coarse and fine aggregates in concrete masonry block production. The effects of the content of crushed coarse and fine clay brick aggregates (CBA) on the mechanical properties of non-structural concrete block were quantified. From the experimental test results, it was observed that incorporating the crushed clay brick aggregates had a significant influence on the properties of blocks. The hardened density and drying shrinkage of the block specimens decreased with an increase in CBA content. The use of CBA increased the water absorption of block specimens. The results suggested that the amount of crushed clay brick to be used in concrete masonry blocks should be controlled at less than 25% (coarse aggregate) and within 50-75% for fine aggregates.  相似文献   

15.
Fly- and scrubber-ash (weight ratio of approximately 1:3) from municipal solid waste incinerators (MSWI) are a major land-fill disposal problem due to their leaching of heavy metals. We uniformly mixed both types of ash with optimal amounts of waste glass frit, which was then melted into a glassy slag. The glassy slag was then pulverized to a particle size smaller than 38 μm for use as a cement substitute (20–40% of total cement) and blended with sand and cement to produce slag-blended cement-mortar (SCM) specimens. The toxicity characteristics of the leaching procedure tests on the pulverized slag samples revealed that the amount of leached heavy metals was far below regulatory thresholds. The compressive strength of the 28-day cured SCM specimens was comparable to that of ordinary Portland cement mortars, while the compressive strength of specimens cured for 60 or 90 days were 3–11% greater. The observed enhanced strength is achieved by Pozzolanic reaction. Preliminary evaluation shows that the combination of MSWI fly- and scrubber-ash with waste glass yields a cost effective and environmentally friendly cement replacement in cement-mortars.  相似文献   

16.
The high cost of landfilling and the potential uses of waste foundry sands have prompted research into their beneficial reuse. Roadways have a high potential for large volume usage of the foundry sands. A laboratory testing program was conducted on soil-foundry sand mixtures amended with cement and lime to assess their applicability as highway subbase materials. The mixtures were compacted in the laboratory at a variety of moisture contents and compactive efforts and subjected to unconfined compression, California bearing ratio, and hydraulic conductivity tests. The environmental suitability of the prepared mixtures was evaluated by analyzing the effluent collected during hydraulic conductivity tests. Finally, required subbase thicknesses were calculated using the laboratory-based strength parameters. The results of the study show that the strength of a mixture is highly dependent on the curing period, compactive energy, lime or cement presence, and water content at compaction. The resistance of foundry sand-based specimens to winter conditions is generally better than that of a typical subbase reference material. Laboratory leaching tests indicated that if these mixtures later come in contact with water that has been discharged directly to the environment (e.g., drainage through asphalt pavement), the quality of water will not be affected.  相似文献   

17.
Sustainable development has become a major focus for engineers and planners as part of their collective efforts in finding, developing and integrating environmental-friendly solutions for material recycling and waste management into design and construction of civil engineering infrastructure. In the past three decades, there has been an increase in recycling and application of waste materials into the concrete to decrease costs and improve material properties of the concrete. Significant growth in automobile manufacturing industry and increased rubber tire supply for vehicles suggested the application of waste tire particles as concrete aggregates to minimize the ecological footprint of the rubber tire waste due to its recycling process difficulties. In this paper, the effect of rubber tire particles on compressive and dynamic strength of concrete specimens with different particle percentiles was tested on more than 55 cylindrical specimens. To achieve the optimal mix design properties of rubber tire concrete specimens, both fine and coarse aggregates got replaced by fine and coarse rubber particles. Introduction of rubber tire particles as coarse and fine aggregate reduces the brittleness of the concrete and provides more flexible aggregate bonding which ultimately improves the dynamic resistance of the concrete. It increases the concrete workability and provides environmental-friendly and cost-effective solutions in using recycled materials for concrete construction applications.  相似文献   

18.
This work was aimed at studying the possibility of reusing waste glass from crushed containers and building demolition as aggregate for preparing mortars and concrete. At present, this kind of reuse is still not common due to the risk of alkali-silica reaction between the alkalis of cement and silica of the waste glass. This expansive reaction can cause great problems of cracking and, consequently, it can be extremely deleterious for the durability of mortar and concrete. However, data reported in the literature show that if the waste glass is finely ground, under 75mum, this effect does not occur and mortar durability is guaranteed. Therefore, in this work the possible reactivity of waste glass with the cement paste in mortars was verified, by varying the particle size of the finely ground waste glass. No reaction has been detected with particle size up to 100mum thus indicating the feasibility of the waste glass reuse as fine aggregate in mortars and concrete. In addition, waste glass seems to positively contribute to the mortar micro-structural properties resulting in an evident improvement of its mechanical performance.  相似文献   

19.
The purpose of this study was to evaluate the production feasibility of triaxial whiteware using sand from cast iron moulds as a raw material instead of silica, and recycled glass in place of feldspar. Formulations were prepared using sand, glass waste, and white-firing clay such that only 50% of the composition was virgin material (clay). The ceramic bodies were formed by pressing and fired at different temperatures (between 1100 and 1300 degrees C). Specimens were characterized in terms of green density prior to firing; and their flexural strength, linear shrinkage, and water absorption were measured after firing. The microstructure was determined by scanning electron microscopy. Possible environmental impacts of this recycling process were also evaluated, through solubility and leaching tests, according to Brazilian standards. Gaseous emissions during the firing process were also analysed. The results showed that it is possible to produce triaxial ceramics by using such alternative raw materials.  相似文献   

20.
The use of coarse recycled concrete aggregates (CRCA) in conjunction with fine recycled concrete aggregates (FRCA) as sub-base materials has been widely studied. Although research results indicate that it is feasible to employ both CRCA and FRCA as granular sub-base, the influence of the unhydrated cement in the adhered mortar of the RCA on the properties of the sub-base materials has not been thoroughly studied. Generally, it is known that the strength of the sub-base materials prepared with RCA increases over time. However, this mechanism, known as the self-cementing properties, is not well understood and is believed to be governed by the properties of the fine portion of the RCA (<5mm). This paper presents an investigation on the cause of the self-cementing properties by measuring X-ray diffraction patterns, pH values, compressive strength and permeability of various size fractions of the FRCA obtained from a commercially operated construction and demolition waste recycling plant. Their influence on the overall sub-base materials was determined. The results indicate that the size fractions of <0.15 and 0.3-0.6mm (active fractions) were most likely to be the principal cause of the self-cementing properties of the FRCA. However, the effects on the properties of the overall RCA sub-base materials were minimal if the total quantity of the active fractions was limited to a threshold by weight of the total fine aggregate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号