首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对目前地下结构地震土压力设计方法的研究现状,介绍了计算挡土墙地震主动土压力的物部·冈部公式及浅埋隧道谢家然围岩压力理论。并结合物部·冈部公式、谢家然理论提出了一种适用于计算地下结构地震土压力的新方法。该方法基于极限平衡理论,根据谢家然理论提供的滑裂面参数构造了滑动土体,采用物部·冈部公式计算了滑动土体作用在地下结构边墙上的地震土压力。最后结合工程实例,将本文方法与其它计算方法进行了比较,评价了该计算方法的优缺点。  相似文献   

2.
针对地下综合管廊结构的抗爆性能,依托某工程实例,建立综合管廊结构在燃气爆炸荷载作用下的三维有限元模型,确定燃气爆炸荷载曲线及其在地下管廊上的加载方式,分析了地下管廊在燃气爆炸荷载作用下的动力响应,讨论了燃气爆炸荷载峰值、持时等主要参数对地下管廊衬砌动力破坏特征的影响。结果表明,燃气爆炸荷载作用下,管廊衬砌的损伤破坏具有局部性和弱传递性;当超压峰值小于0.2 MPa,管廊损伤程度不大;随燃气爆炸荷载峰值的增大,管廊衬砌的损伤程度逐渐加重,达到0.7 MPa时,即便较短持时,燃气室也将出现明显破坏;随燃气爆炸荷载持时的增大,管廊结构损伤破坏加重;相同冲量时,荷载达到峰值时间越短,管廊衬砌的损坏范围和损伤程度越大。  相似文献   

3.
作为海洋平台的基础部分,桶形基础不仅承受海洋平台结构及自身重量等竖向荷载的长期作用,而且往往还遭受波浪等所产生的水平荷载及力矩等其它荷载分量的作用.因此,确定软基上桶形基础在竖向荷载(V)、水平荷载(H)和力矩(M)等共同作用下的承载特性,建立其在复合加载模式下的破坏包络面,并进而依此评价海洋平台基础及地基的稳定性,是...  相似文献   

4.
结构面对隧道围岩变形及稳定性起着决定性作用。运用三维离散元方法(3DEC)研究结构面分布特征,重点是结构面线密度1/λ、强度和倾角对隧道围岩变形的影响,总结了结构面分布与围岩变形特征的关系。结果表明,在结构面强度较低的情况下,结构面线密度对隧道变形的影响较大,其影响可分为两种情况:①λ≤0.2时,围岩的弯曲变形大于沿结构面的剪切变形,属于应力型大变形;②0.2<λ≤0.4时,沿结构面的剪切变形大于围岩的弯曲变形,属于结构型大变形。结构面倾角主要影响围岩大变形发生的位置。将数值模拟结果与国内工程实例实测变形资料相对比,发现一致性较好。本研究结果对隧道支护结构的设计以及施工设计具有借鉴意义与指导作用。  相似文献   

5.
采用修正惯用法,在考虑土拱效应对圆形隧道结构受力状态影响的基础上,研究了埋深对地下结构地震反应的影响规律。首先,对比分析了不考虑和考虑土拱效应时、地震荷载作用前,隧道结构内力分布及随埋深的变化规律;将作用于隧道结构上的水平地震荷载等效为围岩土体变形导致的土压力的改变值;继而探讨了考虑土拱效应后,地震荷载引起的隧道结构内力的改变,研究了不同地震动强度下,埋深对圆形隧道结构地震反应的影响规律。 研究结果显示,地震作用下,圆形隧道结构的内力随着埋置深度的增加呈现出先增大后减小或趋于稳定的趋势,即圆形隧道结构地震反应存在一个抗震关键埋深。  相似文献   

6.
可再生能源储存系统是利用钢筋混凝土桩基础来储存由太阳能板产生的可再生能源,可再生能源以压缩空气的形式储存在空心截面的桩基内,桩基础作为上部结构的承载结构,不仅要承受上部结构荷载,还要承受土体的反作用力和压缩空气的压力。然而,混凝土在拉应力作用下易产生裂缝,导致钢筋混凝土桩储存能源的使用性能和耐久性受限。为了克服传统钢筋混凝土能量桩的这些缺陷,针对各种FRP(Fiber Reinforced Polymer)-混凝土复合桩基础储能和承载的双功能进行研究。综合考虑结构荷载、土体的反作用和压缩空气热动力循环引起的内部空气压力的共同作用,对多种形式的复合能量桩基础体系的适用性进行了综合有限元分析。研究表明,内侧和外侧的FRP管可以有效提高使用性能和耐久性,相对于钢筋混凝土桩,FRPC管桩的使用可靠性和耐久性性能更高。  相似文献   

7.
《灾害学》2019,(1)
为了研究爆破扰动对深部隧道工程的影响,借助颗粒流程序PFC,开展爆破荷载作用下深埋隧道失稳破坏的数值模拟,分析了不同埋深隧道围岩的损伤演化过程和相同埋深隧道围岩颗粒位移与应力随时间的变化规律。研究结果表明:在距离隧道一定高度的顶面施加爆破荷载,随着埋深的增加,围岩损伤程度越严重,损伤集中于隧道的两帮,并逐渐由隧道右侧向顶板发展;隧道的失稳破坏是由爆破荷载和地应力共同造成的,爆破荷载主要使隧道围岩产生裂隙,而在高地应力的持续作用下,可能引起岩块的剥离和弹射;隧道两帮的竖向压应力大于岩体抗压强度是隧道围岩破裂的主要机制。研究成果为深埋隧道支护技术和灾害预报研究提供了依据。  相似文献   

8.
地下结构地震横向应变传递及其影响因素   总被引:1,自引:0,他引:1  
以变形控制为主线,提出了横向应变传递率(STC)的概念,以研究土层向地下结构横向应变传递的影响因素和影响规律。采用二维非线性动力有限元,分析地震动不同输入(峰值和波形)、土层不同性能(剪切模量和土层厚度)以及地下结构特征(埋深、宽高比)等参数对STC的影响。结果表明,引入的横向应变传递率的概念可以反映地震荷载-地下结构-土体间相互作用问题的本质,各种参数对STC的影响具有规律性:土层软硬对应变传递率影响显著,二者间呈幂指数关系;地震动输入对应变传递率有一定影响,二者间呈抛物线关系;工程常见土层厚度内,土层厚度变化对应变传递率的影响不大,基本可以忽略;地下结构埋深、宽高比对应变传递率影响较小,应变传递率基本为一常数。  相似文献   

9.
作为新型的深水海洋基础形式,吸力式沉箱基础不仅要承受海洋平台结构及自身重量等竖向荷载的长期作用,而且往往承受波浪等所产生的水平荷载及力矩荷载分量,其承载特性是海洋工程结构设施建造与设计中的一个关键技术问题,但目前这种新型基础的工作性能评价与设计理论远远不能满足工程实践的需要。为此,本文以大型通用有限元分析软件ABAQU S为平台,数值实现基于位移控制的Sw ipe试验加载方法,分析了完全不排水条件下不同的水平荷载作用点吸力式沉箱基础的承载特性及V-H破坏包络面。同时,对完全不排水条件下吸力式沉箱基础在垂直上拔荷载V、水平荷载H和力矩M共同作用下的承载特性进行了三维有限元分析,数值实现了荷载-位移控制搜寻方法,确定了复合加载作用下吸力式沉箱基础的V-H-M三维破坏包络面。  相似文献   

10.
研究了地下管线与双线盾构垂直时地下管线附加荷载的分布规律。采用弹性力学Mindlin解,推导出双线盾构在掘进过程中多因素引起的土体附加应力计算公式。基于Winkler土体模型,推导出双线盾构施工中土体损失引起的竖向土体附加应力计算公式。算例分析结果表明:双线盾构施工中盾壳摩擦力和盾尾注浆压力引起的地下管线附加荷载较大;正面附加推力引起的附加荷载较小;土体损失是引起竖向附加荷载的主要原因;随着先行、后行盾构开挖面前后距离Q的减小,后行盾构上方管线的附加荷载变化比较明显;随着先行、后行盾构轴线水平间距L的增大,x和z方向的附加荷载峰值减小。  相似文献   

11.
以苏州地铁一号线的星海站为工程背景,考虑土与地铁车站结构非线性动力相互作用效应,分析了土与地下结构接触面的动力分离与滑移效应、土与地下结构接触面上动土压力和动摩擦力的分布规律与反应幅值,以及动力接触效应对地铁车站结构动力反应的影响规律。研究结果表明:强地震发生时,在地铁地下车站结构侧墙顶端,出现了土与结构接触分离现象,在车站结构顶底板处,土与结构产生了相对滑移现象;考虑动力接触效应时,地下结构总体动力反应是变小的。给出了车站结构侧墙上动土压力分布规律及其动土压力系数,以及车站结构顶底板上的动土压力分布规律及其反应幅值。研究结果对进一步了解土与地下结构的动力接触效应及其对地下结构动力反应的影响,具有一定的参考价值和指导意义。  相似文献   

12.
地应力是存在于地壳中的应力,由岩石形变而引起的介质内部单位面积上的作用力。地应力作为地下构筑物的主要影响因素,在构造应力强烈的地区开挖建设,由于洞壁成为自由表面容易变形,使洞体逐渐缩小或造成坍塌,特别在深埋隧道工程中要考虑其对开挖后围岩的影响,针对性的采取应对措施,保障深埋隧道围岩的长期稳定性。传统方法在面对其复杂的地下环境,均有局限性,适用范围狭窄,笔者通过水压致裂法测定岩层的地应力,结合Midas模型模拟深埋隧道围岩和支护结构,对其受力、变形特点进行分析,探索其分布规律,相互影响,为今后类似工程提供参考借鉴。  相似文献   

13.
单护盾TBM施工易出现管片破损甚至渗漏水现象,直接影响了后期地铁的安全运行。鉴于此,文中以重庆地铁环线工程为背景,对管片拼装期间的管片受力进行现场监测,探究隧道管片在实际施工环境中的围岩荷载。通过现场监测查明了单护盾TBM隧道施工过程中管片-地层相互作用演化规律。采用ANSYS三维有限元分析软件,建立了考虑盾构管片-螺栓、管片-围岩和管片-盾尾相互作用的数值模型,分析了施工过程中围岩作用下管片受力情况,对比研究了正常推进荷载与附加力矩作用下的管片变形,得出了偏心千斤顶作用对管片力学性能的影响。分析结果表明:单护盾TBM隧道管片壁后压力是豆砾石、浆液及围岩的共同作用;重庆地区砂岩地层单护盾TBM施工管片壁后围岩压力相对理论计算值稍大,管片顶部、底部及腰部实际围岩压力分别为150~160 kPa、165~200 kPa和45~52 kPa;过高的附加扭矩可能导致管片的局部破损。  相似文献   

14.
目前地铁抗震设计规范中常用的地下结构抗震设计方法主要是位移响应法和应变传递法。这两种方法都是基于弹性假设,不能体现土体和地下结构的非线性。在刘晶波提出的地下结构Pushover分析方法的基础上,利用自主编制的一维土层地震反应分析软件APALS给出了随着地震动幅值增大而逐渐变化的地震荷载加载模式,并针对实际的双线地铁盾构隧道进行了拟静力弹塑性抗震分析,对其抗震性能进行了评价。结果表明:(1)隧道内力趋于一个极限值;(2)隧道的内力在θ=45°、135°、225°和315°的位置最大;(3)在隧道尚未破坏时,隧道周围的土层已经先达到破坏状态。  相似文献   

15.
风荷载是控制超高层建筑结构设计的主要因素。借助流体动力学采用大涡模拟方法,通过FLUENT和ABAQUS软件建立考虑风场和结构的流固耦合分析模型,运用MpCCI软件进行流固耦合面上的数据传递,以实现流体、固体相互作用。以国际上通用的风工程CAARC标准模型为对象,进行了考虑刚性基础和上部结构—群桩—筏板—土共同作用的风—结构流固耦合数值模拟计算和分析。结果表明:(1)本文方法计算结果与解析解基本一致,与前人的风洞试验和数值模拟结果基本一致;(2)流固耦合分析下,地下室侧面土体可抵抗一半以上风荷载在筏板处引起的附加弯矩,风荷载引起的筏板平均附加弯矩远小于自重产生的弯矩。计算方法和计算结果可以为风荷载作用下对地基基础的研究和流固耦合问题分析提供参考。  相似文献   

16.
《灾害学》2019,(Z1)
松散砂卵石地层围岩自稳时间极短,开挖后若不支护会立即坍塌,危及施工安全。根据地层特征曲线支护阻力与围岩位移的关系,若围岩自稳时间比支护施工时间短,支护结构要承受较大松散围岩压力,在这种地层中适时的支护时间已没有意义,必须采用合理的隧道防坍塌控制。施工中须根据砂卵石地层工程地质特征、隧道施工方案特点和周围环境的限制要求,合理选择支护措施,有效加固砂体,抑制围岩变形,以解决砂卵石隧道超前支护措施的选取、初期支护参数的优化、变形速率比值判别标准、衬砌结构施工力学行为、砂卵石地层围岩压力分布特征及洞室收敛变形的控制技术难题。研究成果可更好地保障砂卵石地层公路隧道的施工安全。  相似文献   

17.
河冰对桥墩作用的冰荷载计算方法(Ⅱ)——冰压力计算公式   总被引:10,自引:0,他引:10  
在松花江河冰力学性能试验和流冰动压力测量的基础上,回顾了国内外目前有关冰-结构相互作用与冰荷载计算的主要方法和公式,并通过黑龙江省流冰长期观测数据的统计分析,提出了适合我国国情的冰荷载计算方法,可供工程部门参考使用。  相似文献   

18.
浅埋软岩隧道顶板潜在滑移面的合理确定对于围岩压力计算及支护结构设计极为重要。本文基于隧道开挖诱发地层不均匀变形特征与顶板岩层发生张拉剪切破坏的关系,采用Peck曲线方法和数值方法来确定顶板潜在滑移面特征,进而研究了隧道覆跨比、围岩参数变化对滑移面特性的影响,并应用于实际工程。结果表明:(1)基于Peck曲线和数值分析方法来确定浅埋隧道顶板岩层潜在滑移面的形态与实测结果一致;(2)浅埋隧道顶板岩层的等效破裂角仅在围岩黏聚强度较低条件下才符合45°+φ/2,围岩级别越好,破坏范围越小,滑移面形态呈平缓的"S"型;围岩越差,破坏范围越大,滑移面形态呈竖直的"椭圆"型。随着隧道覆跨比、侧压力系数及抗剪强度指标的增大,等效破裂角呈减小趋势。地表开裂点随着覆跨比和侧压力系数增大而逐渐远离隧道轴线,随着岩体强度指标的增大而逐渐向隧道轴线迁移。  相似文献   

19.
高陡边坡桥墩同时承受上部结构传递的竖向荷载和桩周土体的侧向压力,墩柱受力性能复杂,易出现病害,影响桥梁安全。结合某高速公路桥墩倾斜的工程实例,对高陡边坡桥墩倾斜的机理进行分析,并对倾斜桥墩的安全性能进行评价。通过考虑边坡土体和桥墩的相互作用,采用数值方法对高陡边坡桥墩的受力特征进行研究,分析了墩柱倾斜和开裂的机理,并基于不同荷载下墩柱的内力组合,对墩柱的承载力进行评定。结果表明,边坡潜在滑移面受扰动后产生的坡体推力是引起墩柱倾斜的主要原因,坡体推力与车辆荷载及汽车制动力组合后,桥墩的承载力将不能满足设计要求。  相似文献   

20.
在涨落潮明显的河道中,如何在波流组合作用下确定钢板桩围堰的最小埋置深度,对钢板桩围堰的设计、施工具有重要的理论意义和实用价值。采用三维源汇分布法建立了大尺度结构物波浪力的数学计算模型,并叠加了通过《公路桥涵设计通用规范》相关公式得出的水流力,确定了围堰结构所承受的波流组合作用力。然后通过某实际工程的钢板桩围堰在"强流水、弱波浪"荷载组合和"强流水、强波浪"荷载组合下的围堰最小埋置深度的应用算例,验证了本文方法的可行性。最后讨论了波流组合作用与矩形围堰结构位移、转角的关系,并对影响围堰埋置深度的因素做了多参数分析,并得出了一些有益结论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号