首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The partitioning tracer technique for dense nonaqueous phase liquid (DNAPL) characterization was evaluated in an isolated test cell, in which controlled releases of perchloroethylene (PCE) had occurred. Four partitioning tracer tests were conducted, two using an inverted, double five-spot pumping pattern, and two using vertical circulation wells. Two of the four tests were conducted prior to remedial activities, and two were conducted after. Each test was conducted as a "blind test" where researchers conducting the partitioning tracer tests had no knowledge of the volume, method of release, nor resulting spatial distribution of DNAPL. Multiple partitioning tracers were used in each test, and the DNAPL volume estimates varied significantly within each test based on the different partitioning tracers. The tracers with large partitioning coefficients generally predicted a smaller volume of PCE than that expected based on the actual release volume. However, these predictions were made for low DNAPL saturations (average saturation was approximately 0.003), under conditions near the limits of the method's application. Furthermore, there were several factors that may have hindered prediction accuracy, including tracer degradation and remedial fluid interference.  相似文献   

2.
3.
Packed column experiments were conducted to study effects of initial saturation of tetrachloroethene (PCE) in the range of 1.0-14% pore volume (PV) on mobilization and downward migration of the non-aqueous phase liquid (NAPL) product upon contact with aqueous isobutanol ( approximately 10 vol.%). This study focused on the consequences of swelling beyond residual saturation. Columns were packed with mixtures of neat PCE, water and glass beads and waterflooded to establish a desired homogeneous residual saturation, and then flooded with aqueous isobutanol under controlled hydraulic conditions. Results showed a critical saturation of approximately 8% PV for these packed column experimental conditions. At low initial PCE saturations (<8% PV), experimental results showed reduced risk of NAPL-product migration upon contact with aqueous isobutanol. At higher initial PCE saturations (>8% PV), results showed NAPL-product mobilization and downward migration which was attributed to interfacial tension (IFT) reduction, swelling of the NAPL-product, and reduced density modification. Packed column results were compared with good agreement to theoretical predictions of NAPL-product mobilization using the total trapping number, N(T). In addition to the packed column study, preliminary batch experiments were conducted to study the effects of PCE volumetric fraction in the range of 0.5-20% on density, viscosity, and IFT modification as a function of time following contact with aqueous isobutanol ( approximately 10 vol.%). Modified NAPL-product fluid properties approached equilibrium within approximately 2 h of contact for density and viscosity. IFT reduction occurred immediately as expected. Measured fluid properties were compared with good agreement to theoretical equilibrium predictions based on UNIQUAC. Overall, this study demonstrates the importance of initial DNAPL saturation, and the associated risk of downward NAPL-product migration, in applying alcohol flooding for remediation of DNAPL contaminated ground water sites.  相似文献   

4.
In this work, we extend the recently developed gradient approach for surfactant-enhanced remediation of dense non-aqueous phase liquid (DNAPL)-impacted sites. The goal of the gradient approach is to maximize the DNAPL solubilization capacity in swollen micelles (Type I aqueous microemulsions) while at the same time minimizing the potential for DNAPL mobilization. In this work, we introduce a modified version of the capillary/trapping curve that we refer to as the gradient curve to help interpret and/or design the gradient approach. The gradient curve presents the residual DNAPL saturation as a function of interfacial tension and microemulsion viscosity. This approach demonstrates that keeping a low viscosity of the microemulsion phase is not only important for keeping a low head loss during surfactant flooding but also to prevent oil mobilization. Eight microemulsion systems were evaluated in this research; these systems were evaluated based on their tetrachloroethylene (PCE) solubilization capacity, interfacial tension (IFT), viscosity, density, and coalescence kinetics. Two of these systems were chosen for evaluation in site-specific column tests using an increasing electrolyte gradient to produce a decreasing IFT/increasing solubilization gradient system. The column studies were conducted with media from Dover Air Force Base in Dover, DE. Both solubilized and mobilized DNAPL were quantified. During the column studies, we observed that substantial PCE was mobilized when the residual level of PCE in the column was significantly higher than the steady-state residual saturation level being approach (as predicted from the gradient curve). Four column studies were performed, three of which were used to asses the validity of the gradient curve in predicting the residual saturation after each gradient step. From these tests we observed that starting IFTs of less than 1 mN/m all produced the same mobilization potential. In the last column, we used an additional gradient step with an initial IFT above 1 mN/m to dramatically reduce the amount of PCE mobilize. Based on the good agreement between column results and projections based on the gradient curve, we propose this as a preferred method for designing gradient surfactant flushing systems.  相似文献   

5.
Understanding the process of mass transfer from source zones of aquifers contaminated with organic chemicals in the form of dense non-aqueous phase liquids (DNAPL) is of importance in site management and remediation. A series of intermediate-scale tank experiments was conducted to examine the influence of aquifer heterogeneity on DNAPL mass transfer contributing to dissolved mass emission from source zone into groundwater under natural flow before and after remediation. A Tetrachloroethylene (PCE) spill was performed into six source zone models of increasing heterogeneity, and both the spatial distribution of the dissolution behavior and the net effluent mass flux were examined. Experimentally created initial PCE entrapment architecture resulting from the PCE migration was largely influenced by the coarser sand lenses and the PCE occupied between 30 and 60% of the model aquifer depth. The presence of DNAPL had no apparent effect on the bulk hydraulic conductivity of the porous media. Up to 71% of PCE mass in each of the tested source zone was removed during a series of surfactant flushes, with associated induced PCE mobilization responsible for increasing vertical DNAPL distributions. Effluent mass flux due to water dissolution was also found to increase progressively due to the increase in NAPL-water contact area even though the PCE mass was reduced. Doubling of local groundwater flow velocities showed negligible rate-limited effects at the scale of these experiments. Thus, mass transfer behavior was directly controlled by the morphology of DNAPL within each source zone. Effluent mass flux values were normalized by the up-gradient DNAPL distributions. For the suite of aquifer heterogeneities and all remedial stages, normalized flux values fell within a narrow band with mean of 0.39 and showed insensitivity to average source zone saturations.  相似文献   

6.
Trapped organic solvents, in both the vadose zone and below the water table, are frequent sources of environmental contamination. A common source of organic solvent contamination is spills, leaks, and improper solvent disposal associated with dry cleaning processes. Dry cleaning solvents, such as tetrachloroethylene (PCE), are typically enhanced with the addition of surfactants to improve cleaning performance. The objective of this work was to examine the partitioning behavior of surfactants from PCE in contact with water. The relative rates of surfactants partitioning and PCE dissolution are important for modeling the behavior of waste PCE in the subsurface, in that they influence the interfacial tension of the PCE, and how (or if) interfacial tension changes over time in the subsurface. The work described here uses a flow-through system to examine simultaneous partitioning and PCE dissolution in a porous medium. Results indicate that both nonylphenol ethoxylate nonionic surfactants and a sulfosuccinate anionic surfactant partition out of residual PCE much more rapidly than the PCE dissolves, suggesting that in many cases interfacial tension changes caused by partitioning may influence infiltration and distribution of PCE in the subsurface. Non-steady-state partitioning is found to be well-described by a linear driving force model incorporating measured surfactant partition coefficients.  相似文献   

7.
At concentrations above the critical micelle concentration, surfactants can significantly enhance the solubilization of residual nonaqueous phase liquids (NAPL) and, for this reason, are the focus of research on surfactant-enhanced aquifer remediation (SEAR). As a consequence of their amphiphilic nature, surfactants may also partition to various extents between the organic and aqueous phases, thereby affecting SEAR performance. We report here on the observation and analysis of the effect of surfactant partitioning on the dissolution kinetics of residual perchloroethylene (PCE) by aqueous solutions (1000 mg/L) of the non-ionic surfactant Triton X-100 in a model porous medium. For this fluid system, batch equilibration experiments showed that the surfactant partitions strongly into the NAPL (NAPL-water partition coefficient equal to 12.5). Dynamic interfacial tension (IFT) measurements were employed to study surfactant diffusion and interfacial adsorption. The dynamic IFT measurements were consistent with partitioning of the surfactant between the two liquid phases. PCE dissolution experiments, conducted in a transparent glass micromodel using an aqueous surfactant solution, were contrasted to experiments using clean water. Surfactant partitioning was observed to delay significantly the onset of micellar solubilization of PCE, an observation reproduced by a numerical model. This effect is attributed to the reduction of surfactant concentration in the immediate vicinity of the NAPL-water interface, which accompanies transport of the surfactant into the NAPL. Accordingly, it is suggested that both the rate and the extent of diffusion of the surfactant into the NAPL affect the onset of and the driving force for micellar solubilization. While many surfactants do not readily partition in NAPL, this possibility must be considered when selecting non-ionic surfactants for the enhanced solubilization of residual chlorinated solvents in porous media.  相似文献   

8.
Controlled release, blind test of DNAPL remediation by ethanol flushing   总被引:1,自引:0,他引:1  
A dense nonaqueous phase liquid (DNAPL) source zone was established within a sheet-pile isolated cell through a controlled release of perchloroethylene (PCE) to evaluate DNAPL remediation by in-situ cosolvent flushing. Ethanol was used as the cosolvent, and the main remedial mechanism was enhanced dissolution based on the phase behavior of the water-ethanol-PCE system. Based on the knowledge of the actual PCE volume introduced into the cell, it was estimated that 83 L of PCE were present at the start of the test. Over a 40-day period, 64% of the PCE was removed by flushing the cell with an alcohol solution of approximately 70% ethanol and 30% water. High removal efficiencies at the end of the test indicated that more PCE could have been removed had it been possible to continue the demonstration. The ethanol solution extracted from the cell was recycled during the test using activated carbon and air stripping treatment. Both of these treatment processes were successful in removing PCE for recycling purposes, with minimal impact on the ethanol content in the treated fluids. Results from pre- and post-flushing partitioning tracer tests overestimated the treatment performance. However, both of these tracer tests missed significant amounts of the PCE present, likely due to inaccessibility of the PCE. The tracer results suggest that some PCE was inaccessible to the ethanol solution which led to the inefficient PCE removal rates observed. The flux-averaged aqueous PCE concentrations measured in the post-flushing tracer test were reduced by a factor of 3 to 4 in the extraction wells that showed the highest PCE removal compared to those concentrations in the pre-flushing tracer test.  相似文献   

9.
Alcohol addition has been suggested for use in combination with surfactant flushing to enhance solubilization kinetics and permit density control of dense non-aqueous phase liquid (DNAPL)-laden surfactant plumes. This study examined the effects of adding ethanol (EtOH) to a 4% Tween 80 (polyoxyethylene (20) sorbitan monooleate) solution used to flush tetrachloroethene (PCE)-contaminated porous media. The influence of EtOH concentration, subsurface layering and scale on flushing solution delivery and PCE recovery was investigated through a combination of experimental and mathematical modeling studies. Results of batch experiments demonstrated that the addition of 2.5%, 5% and 10% (wt.) EtOH incrementally increased the PCE solubilization capacity and viscosity of the surfactant solution, while reducing solution density from 1.002 to 0.986 g/cm3. Effluent concentration data obtained from one-dimensional (1-D) column experiments were used to characterize rate-limited micellar solubilization of residual PCE, which was strongly dependent upon flow velocity and weakly dependent upon EtOH concentration. Two-dimensional (2-D) box studies illustrated that minor differences (0.008 g/cm3) between flushing and resident solution density can strongly influence surfactant front propagation. A two-dimensional multiphase simulator, MISER, was used to model the influence of EtOH composition on the aqueous flow field and PCE mass recovery. The ability of the numerical simulator to predict effluent concentrations and front propagation was demonstrated for both 1-D columns and 2-D boxes flushed with EtOH-amended Tween 80 solutions. Results of this study quantify the potential influence of alcohol addition on surfactant solution properties and solubilization capacity, and demonstrate the importance of considering small density variations in remedial design.  相似文献   

10.
Effects of surfactants on extraction of phenanthrene in spiked sand   总被引:9,自引:0,他引:9  
Chang MC  Huang CR  Shu HY 《Chemosphere》2000,41(8):1295-1300
Problems associated with polynuclear aromatic hydrocarbon (PAH) contaminated site in environmental media have received increasing attention. To resolve such problems, innovative in situ methods are urgently required. This work investigated the feasibility of using surfactants to extract phenanthrene on spiked sand in a batch system. Phenanthrene was spiked into Ottawa sand to simulate contaminated soil. Six surfactants, Brij 30 (BR), Triton X-100 (TR), Tergitol NP-10 (TE), Igepal CA-720 (IG), sodium dodecyl sulfate (SDS) and hexadecyl trimethyl ammonium bromide (HTAB) were used. Adjusting the extraction time, mixing speed and surfactant concentration yielded the optimum extracting conditions. The concentration of phenanthrene was identified with HPLC. Under the experimental conditions, results indicated that those surfactants were highly promising on site remediation since the residual phenanthrene concentration was effectively reduced. The optimum operating conditions were obtained at 30 min, 125 rpm and surfactant concentrations in 4%.  相似文献   

11.
The mass transfer rate from residual dense non-aqueous phase liquids (DNAPLs) to the mobile aqueous phase is an important parameter for the efficiency of surfactant-enhanced remediation through solubilization of this type of contamination. The mass transfer kinetics are highly dependent on the dimensionality of the system. In this study, irregularly shaped residual TCE saturations in two-dimensional saturated flow fields were flushed with a 2% polyoxyethylene sorbitan (20) monooleate (POESMO) solution until complete removal had been achieved. A numerical model was developed and used for the simulation of the various surfactant-flushing experiments with different initial saturation patterns and flow rates. Through optimization against in situ concentration and saturation data, a phenomenological power-law model for the relationship between the mass transfer rate from the DNAPL to the mobile aqueous phase on the one hand and the residual DNAPL saturation and the flow velocity on the other hand was derived. The obtained mass transfer rate parameters provide a reasonable fit to the experimental data, predicting the cleanup time and the general saturation and concentration pattern quite well but failing to predict the concentration curves at every individual sampling port. The obtained mass transfer rate model gives smaller values for the predicted mass transfer rate but shows a comparable dependence on water flow and saturation as in earlier published one-dimensional column experiments with identical characteristics for porous medium, DNAPL and surfactant. Mass transfer rate predictions were about one order of magnitude lower in the 2-D flow cell experiment than in 1-D column experiments. These results give an indication for the importance of dimensionality during surfactant remediation.  相似文献   

12.
Two-dimensional multiphase flow and transport simulators were refined and used to numerically investigate the entrapment and dissolution behavior of tetrachloroethylene (PCE) in heterogeneous porous media containing spatial variations in wettability. Measured hydraulic properties, residual saturations, and dissolution parameters were employed in these simulations. Entrapment was quantified using experimentally verified hydraulic property and residual saturation models that account for hysteresis and wettability variations. The nonequilibrium dissolution of PCE was modeled using independent estimates of the film mass transfer coefficient and interfacial area for entrapped and continuous (PCE pools or films) saturations. Flow simulations demonstrate that the spatial distribution of PCE is highly dependent on subsurface wettability characteristics that create differences in PCE retention mechanisms and the presence of subsurface capillary barriers. For a given soil texture, the maximum and minimum PCE infiltration depth was obtained when the sand had intermediate (an organic-wet mass fraction of 25%) and strong (water- or organic-wet) wettability conditions, respectively. In heterogeneous systems, subsurface wettability variations were also found to enhance or diminish the performance of soil texture-induced capillary barriers. The dissolution behavior of PCE was found to depend on the soil wettability and the spatial PCE distribution. Shorter dissolution times tended to occur when PCE was distributed over large regions due to an increased access of flowing water to the PCE. In heterogeneous systems, capillary barriers that produced high PCE saturations tended to exhibit longer dissolution times.  相似文献   

13.
Quantification of the relationship between dense nonaqueous phase liquid (DNAPL) source strength, source longevity and spatial distribution is increasingly recognized as important for effective remedial design. Partitioning tracers are one tool that may permit interrogation of DNAPL architecture. Tracer data are commonly analyzed under the assumption of linear, equilibrium partitioning, although the appropriateness of these assumptions has not been fully explored. Here we focus on elucidating the nonlinear and nonequilibrium partitioning behavior of three selected alcohol tracers - 1-pentanol, 1-hexanol and 2-octanol in a series of batch and column experiments. Liquid-liquid equilibria for systems comprising water, TCE and the selected alcohol illustrate the nonlinear distribution of alcohol between the aqueous and organic phases. Complete quantification of these equilibria facilitates delineation of the limits of applicability of the linear partitioning assumption, and assessment of potential inaccuracies associated with measurement of partition coefficients at a single concentration. Column experiments were conducted under conditions of non-equilibrium to evaluate the kinetics of the reversible absorption of the selected tracers in a sandy medium containing a uniform entrapped saturation of TCE-DNAPL. Experimental tracer breakthrough data were used, in conjunction with mathematical models and batch measurements, to evaluate alternative hypotheses for observed deviations from linear equilibrium partitioning behavior. Analyses suggest that, although all tracers accumulate at the TCE-DNAPL/aqueous interface, surface accumulation does not influence transport at concentrations typically employed for tracer tests. Moreover, results reveal that the kinetics of the reversible absorption process are well described using existing mass transfer correlations originally developed to model aqueous boundary layer resistance for pure-component NAPL dissolution.  相似文献   

14.
A novel method to remediate dense nonaqueous phase liquid (DNAPL) source zones that incorporates in situ density conversion of DNAPL via alcohol partitioning followed by displacement with a low interfacial tension (IFT) surfactant flood has been developed. Previous studies demonstrated the ability of the density-modified displacement (DMD) method to recover chlorobenzene (CB) and trichloroethene (TCE) from heterogeneous porous media without downward migration of the dissolved plume or free product. However, the extent of alcohol (n-butanol) partitioning required for in situ density conversion of high-density NAPLs, such as tetrachloroethene (PCE), could limit the utility of the DMD method. Hence, the objective of this study was to compare the efficacy of two n-butanol delivery approaches: an aqueous solution of 6% (wt) n-butanol and a surfactant-stabilized macroemulsion containing 15% (vol) n-butanol in water, to achieve density reduction of PCE-NAPL in two-dimensional (2-D) aquifer cells. Results of liquid-liquid equilibrium studies indicated that density conversion of PCE relative to water occurred at an n-butanol mole fraction of 0.56, equivalent to approximately 5 ml n-butanol per 1 ml of PCE when in equilibrium with an aqueous solution. In 2-D aquifer cell studies, density conversion of PCE was realized using both n-butanol preflood solutions, with effluent NAPL samples exhibiting density reductions ranging from 0.51 to 0.70 g/ml. Although the overall PCE mass recoveries were similar (91% and 93%) regardless of the n-butanol delivery method, the surfactant-stabilized macroemulsion preflood removed approximately 50% of the PCE mass. In addition, only 1.2 pore volumes of the macroemulsion solution were required to achieve in situ density conversion of PCE, compared to 6.4 pore volumes of the 6% (wt) n-butanol solution. These findings demonstrate that use of the DMD method with a surfactant-stabilized macroemulsion containing n-butanol holds promise as an effective source zone remediation technology, allowing for efficient recovery of PCE-DNAPL while mitigating downward migration of the dissolved plume and free product.  相似文献   

15.
A unique field experiment has been undertaken at the CFB Borden research site to investigate the development of dissolved chlorinated solvent plumes from a residual dense non-aqueous phase liquid (DNAPL) source. The "emplaced-source" tracer test methodology involved a controlled emplacement of a block-shaped source of sand containing chlorinated solvents below the water table. The gradual dissolution of this residual DNAPL solvent source under natural aquifer conditions caused dissolved solvent plumes of trichloromethane (TCM), trichloroethene (TCE) and perchloroethene (PCE) to continuously develop down gradient. Source dissolution and 3-D plume development were successfully monitored via 173 multilevel samplers over a 475-day tracer test period prior to site remediation research being initiated. Detailed groundwater level and hydraulic conductivity data were collected. Development of plumes with concentrations spanning 1-700,000 micrograms/1 is described and key processes controlling their migration identified. Plumes were observed to be narrow due to the weakness of transverse dispersion processes and long due to advection and significant longitudinal dispersion, very limited sorptive retardation and negligible, if any, attenuation due to biodegradation or abiotic reaction. TCM was shown to be essentially conservative, TCE very nearly conservative and PCE, consistent with its greater hydrophobicity, more retarded yet having a greater mobility than observed in previous Borden field tests. The absence of biodegradation was ascribed to the prevailing aerobic conditions and lack of any additional biodegradable carbon substrates. The transient groundwater flow regime caused significant transverse lateral plume movement, plume asymmetry and was likely responsible for most of the, albeit limited, transverse horizontal plume spreading. In agreement with the widespread incidence of extensive TCE and PCE plumes throughout the industrialized world, the experiment indicates such solvent plumes are likely to be highly mobile and persistent, at least in aquifers that are aerobic and have low sorption potential (low foc content).  相似文献   

16.
Naturally occurring radon in groundwater can be used as an in situ partitioning tracer for locating and quantifying non-aqueous phase liquid (NAPL) contamination in the subsurface. When combined with the single-well, push-pull test, this methodology has the potential to provide a low-cost alternative to inter-well partitioning tracer tests. During a push-pull test, a known volume of test solution (radon-free water containing a conservative tracer) is first injected ("pushed") into a well; flow is then reversed and the test solution/groundwater mixture is extracted ("pulled") from the same well. In the presence of NAPL radon transport is retarded relative to the conservative tracer. Assuming linear equilibrium partitioning, retardation factors for radon can be used to estimate NAPL saturations. The utility of this methodology was evaluated in laboratory and field settings. Laboratory push-pull tests were conducted in both non-contaminated and trichloroethene NAPL (TCE)-contaminated sediment. The methodology was then applied in wells located in non-contaminated and light non-aqueous phase liquid (LNAPL)-contaminated portions of an aquifer at a former petroleum refinery. The method of temporal moments and an approximate analytical solution to the governing transport equations were used to interpret breakthrough curves and estimate radon retardation factors; estimated retardation factors were then used to calculate TCE saturations. Numerical simulations were used to further investigate the behavior of the breakthrough curves. The laboratory and field push-pull tests demonstrated that radon retardation does occur in the presence of TCE and LNAPL and that radon retardation can be used to calculate TCE saturations. Laboratory injection-phase test results in TCE-contaminated sediment yielded radon retardation factors ranging from 1.1 to 1.5, resulting in calculated TCE saturations ranging from 0.2 to 0.9%. Laboratory extraction-phase test results in the same sediment yielded a radon retardation factor of 5.0, with a calculated TCE saturation of 6.5%. Numerical simulation breakthrough curves provided reasonably good matches to the approximate analytical solution breakthrough curves. However, non-equilibrium radon partitioning and heterogeneous TCE distributions may affect the retardation factors and TCE saturation estimates.  相似文献   

17.
Cho J  Annable MD 《Chemosphere》2005,61(7):899-908
In this study, we investigate pore scale morphology of nonaqueous phase liquids (NAPLs) trapped in different pore sizes using tracer techniques. Specific interfacial area and saturation of NAPL trapped in homogeneous sands were measured using the interfacial and partitioning tracer techniques. The observed NAPL-water interfacial areas increased in a log-linear fashion with decreasing sand grain size, but showed no clear trend with residual NAPL saturation formed in the various grain sizes. The measured values were used to calculate the NAPL morphology index, which characterizes the spatial NAPL distribution within the pore space. The NAPL morphology indices, increased exponentially with decreasing grain size, indicating that the NAPL becomes smaller, but more blobs. For a fixed grain size, the specific interfacial area and saturation of the NAPL were measured following changes caused by dissolution using alcohol. The observed interfacial areas showed a decrease linearly as a function of the NAPL saturation.  相似文献   

18.
In situ chemical oxidation is a technology that has been applied to speed up remediation of a contaminant source zone by inducing increased mass transfer from DNAPL sources into the aqueous phase for subsequent destruction. The DNAPL source zone can consist of one or more individual sources that may be present as an interconnected pool of high saturation, as a region of disconnected ganglia at residual saturation, or as combinations of these two morphologies. Potassium permanganate (KMnO(4)) is a commonly employed oxidant that has been shown to rapidly destroy DNAPL compounds like PCE and TCE following second-order kinetics in an aqueous system. During the oxidation of a target DNAPL compound, or naturally occurring reduced species in the subsurface, manganese oxide (MnO(2)) solids are produced. Research has shown that these manganese oxide solids may result in permeability reductions in the porous media thus reducing the ability for oxidant to be transported to individual DNAPL sources. It can also occur at the DNAPL-water interface, decreasing contact of the oxidant with the DNAPL. Additionally, MnO(2) formation at the DNAPL-water interface, and/or flow-bypassing as a result of permeability reductions around the source, may alter the mass transfer from the DNAPL into the aqueous phase, potentially diminishing the magnitude of any DNAPL mass depletion rate increase induced by oxidation. An experiment was performed in a two-dimensional (2D) sand-filled tank that included several discrete DNAPL source zones. Spatial and temporal monitoring of aqueous PCE, chloride, and permanganate concentrations was used to relate changes in mass depletion of, and mass flux, from DNAPL residual and pool source zones to chemical oxidation performance and MnO(2) formation. During the experiment, permeability changes were monitored throughout the 2D tank and these were related to MnO(2) deposition as measured through post-oxidation soil coring. Under the conditions of this experiment, MnO(2) formation was found to reduce permeability in and around DNAPL source zones resulting in changes to the overall flow pattern, with the effects depending on source zone configuration. A pool with little or no residual around it, in a relatively homogeneous flow field, appeared to benefit from resulting MnO(2) pore-blocking that substantially reduced mass transfer from the pool even though there was relatively little PCE mass removed from the pool. In contrast, a pool with residual around it (in a more typical heterogeneous flow field) appeared to undergo increased mass transfer as MnO(2) reduced permeability, altering the water flow and increasing the mixing at the DNAPL-water interface. Further, the magnitude of increased PCE mass depletion during oxidation appeared to depend on the PCE source configuration (pool versus ganglia) and decreased as MnO(2) was formed and deposited at the DNAPL-water interface. Overall, the oxidation of PCE mass appeared to be rate-limited by the mass transfer from the DNAPL to aqueous phase.  相似文献   

19.
A partitioning tracer test based on gas-phase diffusion in the vadose zone yields estimates of the residual nonaqueous phase liquid (NAPL) saturation. The present paper investigates this technique further by studying diffusive tracer breakthrough curves in the vadose zone for a heterogeneous NAPL distribution. Tracer experiments were performed in a lysimeter with a horizontal layer of artificial kerosene embedded in unsaturated sand. Tracer disappearance curves at the injection point and tracer breakthrough curves at some distance from the injection point were measured inside and outside of the NAPL layer. A numerical code was used to generate independent model predictions based on the physicochemical sand, NAPL, and tracer properties. The measured and modeled tracer breakthrough curves were in good agreement confirming the validity of important modeling assumptions such as negligible sorption of chlorofluorocarbon (CFC) tracers to the uncontaminated sand and their fast reversible partitioning between the soil air and the NAPL phase. Subsequently, the model was used to investigate different configurations of NAPL contamination. The experimental and model results show that the tracer disappearance curves of a single-well diffusive partitioning tracer test (DPTT) are dominated by the near-field presence of NAPL around the tip of the soil gas probe. In contrast, breakthrough curves of inter-well tracer tests reflect the NAPL saturation in between the probes, although there is no unique interpretation of the tracer signals if the NAPL distribution is heterogeneous. Numerical modeling is useful for the planning of a DPTT application. Simulations suggest that several cubic meters of soil can be investigated with a single inter-well partitioning tracer test of 24-hour duration by placing the injection point in the center of the investigated soil volume and probes at up to 1 m distance for the monitoring of gaseous tracers.  相似文献   

20.
The gas-phase partitioning tracer method was used to estimate non-aqueous phase liquid (NAPL), water, and air saturations in the vadose zone at a chlorinated-solvent contaminated field site in Tucson, AZ. The tracer test was conducted in a fractured-clay system that is the confining layer for the underlying regional aquifer. Three suites of three tracers were injected into wells located 14, 24, and 24 m from a single, central extraction well. The tracers comprised noble gases (traditionally thought to be nonsorbing), alkanes (primarily water partitioning), perfluorides (primarily NAPL partitioning), and halons (both NAPL and water partitioning). Observations of vacuum response were consistent with flow in a fractured system. The halon tracers exhibited the greatest amount of retardation, and helium and the perfluoride tracers the least. The alkane tracers were unexpectedly more retarded than the perfluoride tracers, indicating low NAPL saturations and high water saturations. An NAPL saturation of 0.01, water saturation of 0.215, and gas saturation of 0.775 was estimated based on analysis of the suite of tracers comprising helium, perfluoromethylcyclohexane and dibromodifluoromethane, which was considered to be the most robust set. The estimated saturations compare reasonably well to independently determined values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号