首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 658 毫秒
1.
The hydrologic response to statistically downscaled general circulation model simulations of daily surface climate and land cover through 2099 was assessed for the Apalachicola‐Chattahoochee‐Flint River Basin located in the southeastern United States. Projections of climate, urbanization, vegetation, and surface‐depression storage capacity were used as inputs to the Precipitation‐Runoff Modeling System to simulate projected impacts on hydrologic response. Surface runoff substantially increased when land cover change was applied. However, once the surface depression storage was added to mitigate the land cover change and increases of surface runoff (due to urbanization), the groundwater flow component then increased. For hydrologic studies that include projections of land cover change (urbanization in particular), any analysis of runoff beyond the change in total runoff should include effects of stormwater management practices as these features affect flow timing and magnitude and may be useful in mitigating land cover change impacts on streamflow. Potential changes in water availability and how biota may respond to changes in flow regime in response to climate and land cover change may prove challenging for managers attempting to balance the needs of future development and the environment. However, these models are still useful for assessing the relative impacts of climate and land cover change and for evaluating tradeoffs when managing to mitigate different stressors.  相似文献   

2.
This study investigates the impact of climate and land use change on the magnitude and timing of streamflow and sediment yield in a snow‐dominated mountainous watershed in Salt Lake County, Utah using a scenario approach and the Hydrological Simulation Program — FORTRAN model for the 2040s (year 2035–2044) and 2090s (year 2085–2094). The climate scenarios were statistically and dynamically downscaled from global climate models. Land use and land cover (LULC) changes were estimated in two ways — from a regional planning scenario and from a deterministic model. Results indicate the mean daily streamflow in the Jordan River watershed will increase by an amount ranging from 11.2% to 14.5% in the 2040s and from 6.8% to 15.3% in the 2090s. The respective increases in sediment load in the 2040s and 2090s is projected to be 6.7% and 39.7% in the canyons and about 7.4% to 14.2% in the Jordan valley. The historical 50th percentile timing of streamflow and sediment load is projected to be shifted earlier by three to four weeks by mid‐century and four to eight weeks by late‐century. The projected streamflow and sediment load results establish a nonlinear relationship with each other and are highly sensitive to projected climate change. The predicted changes in streamflow and sediment yield will have implications for water supply, flood control and stormwater management.  相似文献   

3.
Historically, many watershed studies have been based on using the streamflow flux, typically from a single gauge at the basin's outlet, to support calibration. In this setting, there is great potential for equifinality of parameters during the optimization process, especially for parameters that are not directly related to streamflow. Therefore, some of the optimal parameter values achieved during the autocalibration process may be physically unrealistic. In recent decades a vast array of data from land surface models and remote sensing platforms can help to constrain hydrologic fluxes such as evapotranspiration (ET). While the spatial resolution of these ancillary datasets varies, the continuous spatial coverage of these gridded datasets provides flux measurements across the entire basin, in stark contrast to point‐based streamflow data. This study uses Global Land Evaporation: the Amsterdam Model data to constrain Soil and Water Assessment Tool parameter values associated with ET to a more physically realistic range. The study area is the Little Washita River Experimental Watershed, in southern Oklahoma. Traditional objective metrics such as the Nash‐Sutcliffe coefficients record no performance improvement after application of this method. However, there is a dramatic increase in the number of days with receding flow where simulations match observed streamflow.  相似文献   

4.
Restored annual streamflow (Qr) and measured daily streamflow of the Chaohe watershed located in northern China and associated long‐term climate and land use/cover data were used to explore the effects of land use/cover change and climate variability on the streamflow during 1961‐2009. There were no significant changes in annual precipitation (P) and potential evapotranspiration, whereas Qr decreased significantly by 0.81 mm/yr (< 0.001) over the study period with a change point in 1999. We used 1961‐1998 as the baseline period (BP) and 1999‐2009 the change period (CP). The mean Qr during the CP decreased by 39.4 mm compared with that in the BP. From 1979 to 2009, the grassland area declined by 69.6%, and the forest and shrublands increased by 105.4 and 73.1%, respectively. The land use/cover change and climate variability contributed for 58.4 and 41.6% reduction in mean annual Qr, respectively. Compared with the BP, median and high flows in the CP decreased by 38.8 and up to 75.5%, respectively. The study concludes that large‐scale ecological restoration and watershed management in northern China has greatly decreased water yield and reduced high flows due to the improved land cover by afforestation leading to higher water loss through evapotranspiration. At a large watershed scale, land use/cover change could play as much of an important role as climate variability on water resources.  相似文献   

5.
袁涛  刘胜祥  徐海洋  卢少飞 《四川环境》2006,25(3):31-34,54
基于梁子湖自然保护区1987年和2004年Landsat-TM影像遥感数据,在Erdas Imagine 8.5图像处理软件的支持下,结合野外实地考察,获得了土地利用现状图,通过对数据的统计分析,研究了保护区近20年来土地利用/土地覆盖的动态变化。研究表明:耕地和水域是保护区内的主要土地利用类型;近20年来,耕地、园地、林地、草地的面积都有减少,其中耕地面积减少了2320.816hm^2,减少比例达到11.78%,是面积减少最多的土地利用类型;居民点、交通、水域用地有所增加,其中池塘面积变化最大,增幅达到213.4%,是面积增加最多的土地利用类型,居民点用地增加了551.18hm^2,增幅达到59.07%,是增长幅度较大的土地利用类型。变化的原因主要是经济的发展、人口数量的增长和旅游业的发展。  相似文献   

6.
Abstract: We evaluated the impact of land cover on fish assemblages by examining relationships between stream hydrology, physicochemistry, and instream habitat and their association with fish responses in streams draining 18 watersheds of the Lower Piedmont of western Georgia. Several important relationships between land use and physicochemical, hydrological, and habitat parameters were observed, particularly higher frequency of spate flows, water temperatures, and lower dissolved oxygen (DO) with percentage impervious surface (IS) cover, higher habitat quality with percentage forest cover, and elevated suspended solid concentrations with percentage pasture cover. Fish assemblages were largely explained by physicochemical and hydrological rather than habitat variables. Specifically, fish species diversity, richness, and biotic integrity were lower in streams that received high frequency of spate flows. Also, overall fish assemblage structure as determined by nonmetric multidimensional scaling was best described by total dissolved solids (TDS) and DO, with high TDS and low DO streams containing sunfish‐based assemblages and low TDS and high DO streams containing minnow‐based assemblages. Our results suggest that altered hydrological and physicochemical conditions, induced largely by IS, may be a strong determinant of fish assemblage structure in these lowland streams and allow for a more mechanistic understanding of how land use ultimately affects these systems.  相似文献   

7.
This work analyses land cover changes occurring between 1990 and 2000 within a Natural Protected Area, southwest of Madrid (Spain). We develop a new methodology that considers the net change in different land cover categories in each municipality of the study area. Our methodology, which uses Factorial Correspondence Analysis, allows identification of the most important changes at the municipality level and groups the municipalities where land use dynamics are similar. This method is a powerful tool for synthesis and can potentially be applied to non-spatial geographical data sources (e.g. agrarian census statistics). Our results show that the land cover around SW Madrid is highly dynamic. The shrub vegetation, arable land, heterogeneous agricultural and human-created area categories show the highest total change. The dynamics of the changes detected are dominated by decreases in the area of different types of crops and increases in forest areas. These changes may have indirect effects on the conservation of natural resources and wildlife if not managed appropriately.  相似文献   

8.
Abstract: The main objective of the study is to examine the accuracy of and differences among simulated streamflows driven by rainfall estimates from a network of 22 rain gauges spread over a 2,170 km2 watershed, NEXRAD Stage III radar data, and Tropical Rainfall Measuring Mission (TRMM) 3B42 satellite data. The Gridded Surface Subsurface Hydrologic Analysis (GSSHA), a physically based, distributed parameter, grid‐structured, hydrologic model, was used to simulate the June‐2002 flooding event in the Upper Guadalupe River watershed in south central Texas. There were significant differences between the rainfall fields estimated by the three types of measurement technologies. These differences resulted in even larger differences in the simulated hydrologic response of the watershed. In general, simulations driven by radar rainfall yielded better results than those driven by satellite or rain‐gauge estimates. This study also presents an overview of effects of land cover changes on runoff and stream discharge. The results demonstrate that, for major rainfall events similar to the 2002 event, the effect of urbanization on the watershed in the past two decades would not have made any significant effect on the hydrologic response. The effect of urbanization on the hydrologic response increases as the size of the rainfall event decreases.  相似文献   

9.
Continued alteration of the nitrogen cycle exposes receiving waters to elevated nitrogen concentrations and forces drinking water treatment services to plan for such increases in the future. We developed four 2011–2050 land cover change scenarios and modeled the impact of projected land cover change on influent water quality to support long-term planning for the Minneapolis Water Treatment Distribution Service (MWTDS) using Soil Water and Assessment Tool. Projected land cover changes based on relatively unconstrained economic growth led to substantial increases in total nitrogen (TN) loads and modest increases in total phosphorus (TP) loads in spring. Changes in sediment, TN, and TP under two “constrained” growth scenarios were near zero or declined modestly. Longitudinal analysis suggested that the extant vegetation along the Mississippi River corridor upstream of the MWTDS may be a sediment (and phosphorus) trap. Autoregressive analysis of current (2008–2017) chemical treatment application rates (mass per water volume processed) and extant (2001–2011) land cover change revealed that statistically significant increases in chemical treatment rates were temporally congruent with urbanization and conversion of pasture to cropland. Using the current trend in chemical treatment application rates and their inferred relationship to extant land cover change as a bellwether, the unconstrained growth scenarios suggest that future land cover may present challenges to the production of potable water for MWTDS.  相似文献   

10.
Abstract: Natural forests in southern China have been severely logged due to high human demand for timber, food, and fuels during the past century, but are recovering in the past decade. The objective of this study was to investigate how vegetation cover changes in composition and structure affected the water budgets of a 9.6‐km2 Dakeng watershed located in a humid subtropical mountainous region in southern China. We analyzed 27 years (i.e., 1967‐1993) of streamflow and climate data and associated vegetation cover change in the watershed. Land use/land cover census and Normalized Difference of Vegetation Index (NDVI) data derived from remote sensing were used to construct historic land cover change patterns. We found that over the period of record, annual streamflow (Q) and runoff/precipitation ratio did not change significantly, nor did the climatic variables, including air temperature, Hamon’s potential evapotranspiration (ET), pan evaporation, sunshine hours, and radiation. However, annual ET estimated as the differences between P and Q showed a statistically significant increasing trend. Overall, the NDVI of the watershed had a significant increasing trend in the peak spring growing season. This study concluded that watershed ecosystem ET increased as the vegetation cover shifted from low stock forests to shrub and grasslands that had higher ET rates. A conceptual model was developed for the study watershed to describe the vegetation cover‐streamflow relationships during a 50‐year time frame. This paper highlighted the importance of eco‐physiologically based studies in understanding transitory, nonstationary effects of deforestation or forestation on watershed water balances.  相似文献   

11.
A statistical procedure is developed to adjust natural streamflows simulated by dynamical models in downstream reaches, to account for anthropogenic impairments to flow that are not considered in the model. The resulting normalized downstream flows are appropriate for use in assessments of future anthropogenically impaired flows in downstream reaches. The normalization is applied to assess the potential effects of climate change on future water availability on the Rio Grande at a gage just above the major storage reservoir on the river. Model‐simulated streamflow values were normalized using a statistical parameterization based on two constants that relate observed and simulated flows over a 50‐year historical baseline period (1964–2013). The first normalization constant is a ratio of the means, and the second constant is the ratio of interannual standard deviations between annual gaged and simulated flows. This procedure forces the gaged and simulated flows to have the same mean and variance over the baseline period. The normalization constants can be kept fixed for future flows, which effectively assumes that upstream water management does not change in the future, or projected management changes can be parameterized by adjusting the constants. At the gage considered in this study, the effect of the normalization is to reduce simulated historical flow values by an average of 72% over an ensemble of simulations, indicative of the large fraction of natural flow diverted from the river upstream from the gage. A weak tendency for declining flow emerges upon averaging over a large ensemble, with tremendous variability among the simulations. By the end of the 21st Century the higher‐emission scenarios show more pronounced declines in streamflow.  相似文献   

12.
ABSTRACT: To adequately manage impacts of ongoing or future land use changes in a watershed, the magnitude of their hydrologic impacts needs to be assessed. A grid based daily streamflow model was calibrated with two years of observed streamflow data, using time periods when land use data are available and verified by comparison of model predictions with observed streamflow data. Streamflow data were separated into direct runoff and baseflow to estimate the impacts of urbanization on each hydrologic component. Analysis of the ratio between direct runoff and total runoff from 30 years of simulation results and the change in these ratios with urbanization shows that estimated annual direct runoff increased from 49.2 percent (1973) to 63.1 percent (1984) and 65.0 percent (1991), indicating the effects of urbanization are greater on direct runoff than on total runoff. The direct runoff ratio also varies with annual rainfall, with dry year ratios larger than those for wet years. This suggests that the impact of urbanization on areas that are sensitive to runoff ratios, such as stream ecosystems, might be more serious during drier years than in wetter years in terms of water quality and water yield. This indicates that sustainable base‐flow is important to maintaining sound stream ecosystems.  相似文献   

13.
The conversion of landscapes by human activities results in widespread changes in landscape spatial structure. Regardless of the type of land conversion, there appears to be a limited number of common spatial configurations that result from such land transformation processes. Some of these configurations are considered optimal or more desirable than others. Based on pattern geometry, we define ten processes responsible for pattern change: aggregation, attrition, creation, deformation, dissection, enlargement, fragmentation, perforation, shift, and shrinkage. A novelty in this contribution is the inclusion of transformation processes causing expansion of the land cover of interest. Consequently, we propose a decision tree algorithm that enables detection of these processes, based on three parameters that have to be determined before and after the transformation of the landscape: area, perimeter length, and number of patches of the focal landscape class. As an example, the decision tree algorithm is applied to determine the transformation processes of three divergent land cover change scenarios: deciduous woodland degradation in Cadiz Township (Wisconsin, USA) 1831–1950, canopy gap formation in a terra firme rain forest at the Tiputini Biodiversity Station (Amazonian Ecuador) 1997–1998, and forest regrowth in Petersham Township (Massachusetts, USA) 1830–1985. The examples signal the importance of the temporal resolution of the data, since long-term pattern conversions can be subdivided in stadia in which particular pattern components are altered by specific transformation processes.  相似文献   

14.
ABSTRACT: Evaluation of the applicability and validity of hydrologic simulation models for various cropping systems in different hydrogeologic and soil conditions is needed for a range of spatial scales. We calibrated and tested the ADAPT model for simulating streamflow from 552 to 1,985 km2 watersheds in central Illinois, where more than 79 percent of the land is used for maize‐soybean production and tile drainage is common. Model calibration was performed with a seven year period (1987 through1993) of measured streamflow from one of the watersheds, and model testing was done using independent weather and measured streamflow data from the two neighboring watersheds for the same seven year period. Simulations of annual streamflow were accurate with a coefficient of determination and Willmott's index of agreement of 0.98 and 0.99, respectively. For simulation of monthly streamflow, Willmott's index of agreement ranged from 0.93 to 0.95. For simulation of daily streamflow, Willmott's index of agreement ranged from 0.84 to 0.85. The daily simulations challenged the temporal and spatial resolution of our measured precipitation data. Discrepancies between simulated and measured data may result from the model's inability to effectively address frozen soils and snowmelt runoff processes and in accurately representing evapotranspiration.  相似文献   

15.
The Ala Wai Canal Watershed Model (ALAWAT) is a planning-level watershed model for approximating direct runoff, streamflow, sediment loads, and loads for up to five pollutants. ALAWAT uses raster GIS data layers including land use, SCS soil hydrologic groups, annual rainfall, and subwatershed delineations as direct model parameter inputs and can use daily total rainfall from up to ten rain gauges and streamflow from up to ten stream gauges. ALAWAT uses a daily time step and can simulate flows for up to ten-year periods and for up to 50 subwatersheds. Pollutant loads are approximated using a user-defined combination of rating curve relationships, mean event concentrations, and loading/washoff parameters for specific subwatersheds, land uses, and times of year. Using ALAWAT, annual average streamflow and baseflow relationships and urban suspended sediment loads were approximated for the Ala Wai Canal watershed (about 10,400 acres) on the island of Oahu, Hawaii. Annual average urban suspended sediments were approximated using two methods: mean event concentrations and pollutant loading and washoff. Parameters for the pollutant loading and washoff method were then modified to simulate the effect of various street sweeping intervals on sediment loads.  相似文献   

16.
ABSTRACT: The Snowmelt Runoff Model (SRM) is designed to compute daily stream discharge using satellite snow cover data for a basin divided into elevation zones. For the Towanda Creek basin, a Pennsylvania watershed with relatively little relief, analysis of snow cover images revealed that both elevation and land use affected snow accumulation and melt on the landscape. The distribution of slope and aspect on the watershed was also considered; however, these landscape features were not well correlated with the available snow cover data. SRM streamflow predictions for 1990, 1993 and 1994 snowmelt seasons for the Towanda Creek basin using a combination of elevation and land use zones yielded more precise streamflow estimates than the use of standard elevation zones alone. The use of multiple-parameter zones worked best in non-rain-on-snow conditions such as in 1990 and 1994 seasons where melt was primarily driven by differences in solar radiation. For seasons with major rain-on-snow events such as 1993, only modest improvements were shown since melt was dominated by rainfall energy inputs, condensation and sensible heat convection. Availability of GIS coverages containing satellite snow cover data and other landscape attributes should permit similar reformulation of multiple-parameter watershed zones and improved SRM streamflow predictions on other basins.  相似文献   

17.
Recent works have indicated that climate change in the northeastern United States is already being observed in the form of shorter winters, higher annual average air temperature, and more frequent extreme heat and precipitation events. These changes could have profound effects on aquatic ecosystems, and the implications of such changes are less understood. The objective of this study was to examine how future changes in precipitation and temperature translate into changes in streamflow using a physically based semidistributed model, and subsequently how changes in streamflow could potentially impact stream ecology. Streamflow parameters were examined in a New York City water supply watershed for changes from model‐simulated baseline conditions to future climate scenarios (2081‐2100) for ecologically relevant factors of streamflow using the Indicators of Hydrologic Alterations tool. Results indicate that earlier snowmelt and reduced snowpack advance the timing and increase the magnitude of discharge in the winter and early spring (November‐March) and greatly decrease monthly streamflow later in the spring in April. Both the rise and fall rates of the hydrograph will increase resulting in increased flashiness and flow reversals primarily due to increased pulses during winter seasons. These shifts in timing of peak flows, changes in seasonal flow regimes, and changes in the magnitudes of low flow can all influence aquatic organisms and have the potential to impact stream ecology.  相似文献   

18.
We examined the impacts of changes in land cover and soil conditions on the flow regime of the upper Delaware River Basin using the Water Availability Tool for Environmental Resources. We simulated flows for two periods, c. 1600 and 1940, at three sites using the same temperature and precipitation conditions: the East Branch, West Branch, and mainstem Delaware River at Callicoon, New York. The 1600 period represented pristine forest and soils. The 1940 period included reduced forest cover, increased agriculture, and degraded soils with reduced soil macropore fractions. A model‐sensitivity test examined the impact of soil macropore and land cover change separately. We assessed changes in flow regimes between the 1600 and 1940 periods using a variety of flow statistics, including established ecological limits of hydrologic alteration (ELOHA) thresholds. Reduced forest soil macropore fraction significantly reduced summer and fall baseflows. The 1940 period had significantly lower Q50 flows (50% exceedance) than the 1600 period, as well as summer and fall Q90 and Q75–Q90 flows below the ELOHA thresholds. The one‐ to seven‐day minimum flows were also lower for the 1940 period, by 17% on the mainstem. 1940 flows were 6% more likely than the 1600 period to fall below the low‐flow threshold for federally endangered dwarf wedgemussel (Alasmidonta heterodon) habitat. In contrast, the 1940 period had higher flows than the 1600 period from late fall to early winter.  相似文献   

19.
ABSTRACT: Significant land cover changes have occurred in the watersheds that contribute runoff to the upper San Pedro River in Sonora, Mexico, and southeast Arizona. These changes, observed using a series of remotely sensed images taken in the 1970s, 1980s, and 1990s, have been implicated in the alteration of the basin hydrologic response. The Cannonsville subwatershed, located in the Catskill/Delaware watershed complex that delivers water to New York City, provides a contrast in land cover change. In this region, the Cannonsville watershed condition has improved over a comparable time period. A landscape assessment tool using a geographic information system (GIS) has been developed that automates the parameterization of the Soil and Water Assessment Tool (SWAT) and KINEmatic Runoff and EROSion (KINEROS) hydrologic models. The Automated Geospatial Watershed Assessment (AGWA) tool was used to prepare parameter input files for the Upper San Pedro Basin, a subwatershed within the San Pedro undergoing significant changes, and the Cannonsville watershed using historical land cover data. Runoff and sediment yield were simulated using these models. In the Cannonsville watershed, land cover change had a beneficial impact on modeled watershed response due to the transition from agriculture to forest land cover. Simulation results for the San Pedro indicate that increasing urban and agricultural areas and the simultaneous invasion of woody plants and decline of grasslands resulted in increased annual and event runoff volumes, flashier flood response, and decreased water quality due to sediment loading. These results demonstrate the usefulness of integrating remote sensing and distributed hydrologic models through the use of GIS for assessing watershed condition and the relative impacts of land cover transitions on hydrologic response.  相似文献   

20.
Abstract: The accuracy of streamflow forecasts depends on the uncertainty associated with future weather and the accuracy of the hydrologic model that is used to produce the forecasts. We present a method for streamflow forecasting where hydrologic model parameters are selected based on the climate state. Parameter sets for a hydrologic model are conditioned on an atmospheric pressure index defined using mean November through February (NDJF) 700‐hectoPascal geopotential heights over northwestern North America [Pressure Index from Geopotential heights (PIG)]. The hydrologic model is applied in the Sprague River basin (SRB), a snowmelt‐dominated basin located in the Upper Klamath basin in Oregon. In the SRB, the majority of streamflow occurs during March through May (MAM). Water years (WYs) 1980‐2004 were divided into three groups based on their respective PIG values (high, medium, and low PIG). Low (high) PIG years tend to have higher (lower) than average MAM streamflow. Four parameter sets were calibrated for the SRB, each using a different set of WYs. The initial set used WYs 1995‐2004 and the remaining three used WYs defined as high‐, medium‐, and low‐PIG years. Two sets of March, April, and May streamflow volume forecasts were made using Ensemble Streamflow Prediction (ESP). The first set of ESP simulations used the initial parameter set. Because the PIG is defined using NDJF pressure heights, forecasts starting in March can be made using the PIG parameter set that corresponds with the year being forecasted. The second set of ESP simulations used the parameter set associated with the given PIG year. Comparison of the ESP sets indicates that more accuracy and less variability in volume forecasts may be possible when the ESP is conditioned using the PIG. This is especially true during the high‐PIG years (low‐flow years).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号