首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Clinch River of southwestern Virginia and northeastern Tennessee is arguably the most important river for freshwater mussel conservation in the United States. This featured collection presents investigations of mussel population status and habitat quality in the Clinch River. Analyses of historic water‐ and sediment‐quality data suggest that water column ammonia and water column and sediment metals, including Cu and Zn, may have contributed historically to declining densities and extirpations of mussels in the river's Virginia sections. These studies also reveal increasing temporal trends for dissolved solids concentrations throughout much of the river's extent. Current mussel abundance patterns do not correspond spatially with physical habitat quality, but they do correspond with specific conductance, dissolved major ions, and water column metals, suggesting these and/or associated constituents as factors contributing to mussel declines. Mussels are sensitive to metals. Native mussels and hatchery‐raised mussels held in cages in situ accumulated metals in their body tissues in river sections where mussels are declining. Organic compound and bed‐sediment contaminant analyses did not reveal spatial correspondences with mussel status metrics, although potentially toxic levels were found. Collectively, these studies identify major ions and metals as water‐ and sediment‐quality concerns for mussel conservation in the Clinch River.  相似文献   

2.
Segments of the Clinch River in Virginia have experienced declining freshwater mussel populations during the past 40 years, while other segments of the river continue to support some of the richest mussel communities in the country. The close proximity of these contrasting reaches provides a study area where differences in climate, hydrology, and historic mussel distribution are minimal. The USGS conducted a study between 2009 and 2011 to evaluate possible causes of the mussel declines. Evaluation of mussel habitat showed no differences in physical habitat quality, leaving water and sediment quality as possible causes for declines. Three years of continuous water‐quality data showed higher turbidity and specific conductance in the reaches with low‐quality mussel assemblages compared to reaches with high‐quality mussel assemblages. Discrete water‐quality samples showed higher major ions and metals concentrations in the low‐quality reach. Base‐flow samples contained high major ion and metal concentrations coincident to low‐quality mussel populations. These results support a conceptual model of dilution and augmentation where increased concentrations of major ions and other dissolved constituents from mined tributaries result in reaches with declining mussel populations. Tributaries from unmined basins provide water with low concentrations of dissolved constituents, diluting reaches of the Clinch River where high‐quality mussel populations occur.  相似文献   

3.
Hughes, Robert M., Alan T. Herlihy, and Philip R. Kaufmann, 2010. An Evaluation of Qualitative Indexes of Physical Habitat Applied to Agricultural Streams in Ten U.S. States. Journal of the American Water Resources Association (JAWRA) 46(4): 792-806. DOI: 10.1111/j.1752-1688.2010.00455.x Abstract: Assessment of stream physical habitat condition is important for evaluating stream quality globally. However, the diversity of metrics and methods for assessing physical habitat condition confounds comparisons among practitioners. We surveyed 51 previously sampled stream sites (0.0-6.3 m wide) located in regions of row-crop agriculture in Oregon, California, North Dakota, South Dakota, Nebraska, Iowa, Minnesota, Pennsylvania, Maryland, and West Virginia to evaluate the comparability of four indexes of physical habitat condition relative to each other. We also compared the indexes to previously calculated indexes of fish and macroinvertebrate condition. The physical habitat indexes included the Stream Visual Assessment Protocol Version 2 of the Natural Resources Conservation Service, the qualitative habitat evaluation index of the Ohio Environmental Protection Agency, the rapid bioassessment protocol of the United States Environmental Protection Agency (USEPA), and a qualitative physical habitat index based on USEPA quantitative physical habitat measurements. All four indexes were highly correlated with each other, but low-to-moderately correlated with biotic index scores for fish and macroinvertebrate assemblages. Moderately high correlations occurred between some macroinvertebrate biotic index scores and quantitative metrics. We conclude that additional research is needed to increase the predictive and diagnostic capabilities of qualitative physical habitat indexes.  相似文献   

4.
Abstract: The purpose of this study was to validate the application of an invertebrate community index (ICI) to assess the biological integrity of urban streams. Validation involved comparing chemical and habitat data to ICI scores from 20 urban streams and four least‐impacted streams in the Choctawhatchee and Pea River watersheds located in Southeast Alabama. Chemical and habitat data were collected to support whether the ICI accurately predicts the health of the streams. A significant difference between urban and least‐impacted ICI scores, habitat evaluation scores, chemical variables, taxa richness, and Shannon‐Wiener diversity were observed when urban sites were compared with least‐impacted sites using Mann‐Whitney U‐test. Urban sites having low ICI scores, low species richness and diversity, and poor habitat showed greater impairment than least‐impacted sites. Cluster analysis of macroinvertebrate assemblages indicated two clusters. Significant differences between clusters in habitat evaluations, chemical parameters, and ICI scores showed that some urban sites were more degraded than other urban sites in the study. Differentiation between least‐impacted and urban sites indicated that the ICI provided valid biotic assessments. Therefore, this study validated that the ICI is capable of predicting the biological integrity of urban streams in the Choctawhatchee and Pea River watersheds.  相似文献   

5.
We investigated whether fish assemblage structure in southern Appalachian streams differed with historical and contemporary forest cover. We compared fish assemblages in 2nd–4th order streams draining watersheds that had increased forest cover between 1950 and 1993 (i.e., reforesting watersheds). We sampled fish in 50 m reaches during August 2001 and calculated catch-per-unit-effort (CPUE) by taxonomic, distributional, trophic, reproductive, and thermal metrics. We assigned streams to reforestation categories based on cluster analysis of years 1950 and 1993 near-stream forest cover. The relationship between forest cover and assemblage structure was assessed using analysis of variance to identify differences in fish CPUE in five forest cover categories. Streams contained 23 fish species representing six families, and taxa richness ranged from 1 to 13 at 30 stream sites. Streams with relatively low near-stream forest cover were different from streams having moderate to high near-stream forest cover in 1950 and 1993. Fish assemblages in streams having the lowest amount of forest cover (53–75%) were characterized by higher cosmopolitan, brood hider, detritivore/herbivore, intermediate habitat breadths, run-pool dweller, and warm water tolerant fish CPUE compared to streams with higher riparian forest cover. Our results suggest that fish assemblage’s structural and functional diversity and/or richness may be lower in streams having lower recent or past riparian forest cover compared to assemblages in streams having a high degree of near-stream forest cover.  相似文献   

6.
Fish and benthic macroinvertebrate assemblages often provide insight on ecological conditions for guiding management actions. Unfortunately, land use and management legacies can constrain the structure of biotic communities such that they fail to reflect habitat quality. The purpose of this study was to describe patterns in fish and benthic macroinvertebrate assemblage structure, and evaluate relationships between biota and habitat characteristics in the Chariton River system of south-central Iowa, a system likely influenced by various potential management legacies (e.g., dams, chemical removal of fishes). We sampled fishes, benthic macroinvertebrates, and physical habitat from a total of 38 stream reaches in the Chariton River watershed during 2002–2005. Fish and benthic macroinvertebrate assemblages were dominated by generalist species tolerant of poor habitat quality; assemblages failed to show any apparent patterns with regard to stream size or longitudinal location within the watershed. Metrics used to summarize fish assemblages and populations [e.g., presence–absence, relative abundance, Index of Biotic Integrity for fish (IBIF)] were not related to habitat characteristics, except that catch rates of piscivores were positively related to the depth and the amount of large wood. In contrast, family richness of benthic macroinvertebrates, richness of Ephemeroptera, Trichoptera, and Plecoptera taxa, and IBI values for benthic macroinvertebrates (IBIBM) were positively correlated with the amount of overhanging vegetation and inversely related to the percentage of fine substrate. A long history of habitat alteration by row-crop agriculture and management legacies associated with reservoir construction has likely resulted in a fish assemblage dominated by tolerant species. Intolerant and sensitive fish species have not recolonized streams due to downstream movement barriers (i.e., dams). In contrast, aquatic insect assemblages reflected aquatic habitat, particularly the amount of overhanging vegetation and fine sediment. This research illustrates the importance of using multiple taxa for biological assessments and the need to consider management legacies when investigating responses to management and conservation actions.  相似文献   

7.
Streams are naturally hierarchical systems, and their biota are affected by factors effective at regional to local scales. However, there have been only a few attempts to quantify variation in ecological attributes across multiple spatial scales. We examined the variation in several macroinvertebrate metrics and environmental variables at three hierarchical scales (ecoregions, drainage systems, streams) in boreal headwater streams. In nested analyses of variance, significant spatial variability was observed for most of the macroinvertebrate metrics and environmental variables examined. For most metrics, ecoregions explained more variation than did drainage systems. There was, however, much variation attributable to residuals, suggesting high among-stream variation in macroinvertebrate assemblage characteristics. Nonmetric multidimensional scaling (NMDS) and multiresponse permutation procedure (MRPP) showed that assemblage composition differed significantly among both drainage systems and ecoregions. The associated R-statistics were, however, very low, indicating wide variation among sites within the defined landscape classifications. Regional delineations explained most of the variation in stream water chemistry, ecoregions being clearly more influential than drainage systems. For physical habitat characteristics, by contrast, the among-stream component was the major source of variation. Distinct differences attributable to stream size were observed for several metrics, especially total number of taxa and abundance of algae-scraping invertebrates. Although ecoregions clearly account for a considerable amount of variation in macroinvertebrate assemblage characteristics, we suggest that a three-tiered classification system (stratification through ecoregion and habitat type, followed by assemblage prediction within these ecologically meaningful units) will be needed for effective bioassessment of boreal running waters.  相似文献   

8.
Stream-riparian ecosystems are dynamic and complex entities that can support high levels of bird assemblage abundance and diversity. The myriad patches (e.g., aquatic, floodplain, riparian) found in the riverscape habitat mosaic attract a unique mixture of aquatic, semiaquatic, riparian, and upland birds, each uniquely utilizing the river corridor. Whereas standard morning bird surveys are widely used across ecosystems, the variety of bird guilds and the temporal habitat partitioning that likely occur in stream-riparian ecosystems argue for the inclusion of evening surveys. At 41 stream reaches in Vermont and Idaho, USA, we surveyed bird assemblages using a combination of morning and evening fixed-width transect counts. Student’s paired t-tests showed that while bird abundance was not significantly different between morning and evening surveys, bird assemblage diversity (as measured by species richness, Shannon-Weiner’s index, and Simpson’s index) was significantly higher in the morning than in the evening. NMS ordinations of bird species and time (i.e., morning, evening) indicated that the structure of morning bird assemblages was different from that of evening assemblages. NMS further showed that a set of species was only found in evening surveys. The inclusion of evening counts in surveying bird assemblages in stream-riparian ecosystems has important experimental and ecological implications. Experimentally, the sole use of morning bird surveys may significantly underestimate the diversity and misrepresent the community composition of bird assemblages in these ecosystems. Ecologically, many of the birds detected in evening surveys were water-associated species that occupy high trophic levels and aerial insectivores that represent unique aquatic-terrestrial energy transfers.  相似文献   

9.
Multimetric indices of biotic integrity (IBIs) are commonly used to assess condition of stream fish assemblages, but their ability to monitor trends within streams over time is largely unknown. We assessed the trend detection ability of two IBI formulations (one with traditional scoring and metrics, and one with nontraditional scoring and region-specific metrics) and of similarity and diversity indices using simulations that progressively altered the fish assemblages of 39 streams in the United States mid-Atlantic Highlands region. We also assessed responses to simulated 50% variability in fish abundances, as a measure of background noise. Fish assemblage indices responded little to changes that affected all species proportionally despite substantial changes in total fish number. Assemblage indices responded better to scenarios that differentially affected fish species, either according to life history traits or by increasing dominance of already common species, but even these changes took some time to detect relative to background variability levels. Ordinations of stream fish assemblage data suggested that differences among sites were maintained even after substantial alterations of fish composition within sites. IBIs are designed to detect broad assemblage differences among sites while downplaying abundance changes and variability increases that were the first indications of within-site changes, and they appear more suited to detecting large departures from natural fish assemblages than for monitoring gradual changes such as those our simulations produced. Inferences about causes of assemblage changes should be made with caution because of correlations among species traits and interdependence among IBI component metrics. Site trend assessments should be made based on all available data rather than just by summary indices.  相似文献   

10.
An assessment of the benthic macroinvertebrate community was conducted to characterize the ecological recovery of a channelized main stem and two small tributaries at the Watershed Research and Education Center (WREC, Arkansas, USA). Three other headwater streams in the same basin were also sampled as controls and for biological reference information. A principal components analysis produced stream groupings along an overall gradient of physical habitat integrity, with degraded reaches showing lower RBP habitat scores, reduced flow velocities, smaller substrate sizes, greater conductivity, and higher percentages of sand and silt substrate. The benthic macroinvertebrate assemblage at WREC was dominated by fast-reproducing dipteran larvae (midge and mosquito larvae) and physid snails, which comprised 71.3% of the total macroinvertebrate abundance over three sampling periods. Several macroinvertebrate assemblage metrics should provide effective targets for monitoring overall improvements in the invertebrate assemblage including recovery towards a more complex food web (e.g., total number of taxa, number of EPT taxa, percent 2 dominant taxa). However, current habitat conditions and the extent of existing degradation, system isolation and surrounding urban or agricultural land-uses might affect the level of positive change to the system. We therefore suggest a preliminary restoration strategy involving the addition of pool habitats in the system. At one pool we collected a total of 29 taxa (dominated by water beetle predators), which was 59% of total number of taxa collected at WREC. Maintaining water-retentive pools to collect flows and maintain water permanence focuses on enhancing known biology and habitat, thus reducing the effects of abiotic filters on macroinvertebrate assemblage recovery. Furthermore, biological assessment prior to restoration supports a strategy primarily focused on improving the existing macroinvertebrate community in the current context of the system, thereby reducing costs associated with active channel restoration. Monitoring future biological recovery and determining the contribution of changing assemblages to specific ecological processes would provide a critical underpinning for adaptive management and ecologically-effective restoration.  相似文献   

11.
Water extraction from dryland rivers is often associated with declines in the health of river and floodplain ecosystems due to reduced flooding frequency and extent of floodplain inundation. Following moderate flooding in early 2008 in the Narran River, Murray-Darling Basin, Australia, 10,423 ML of water was purchased from agricultural water users and delivered to the river to prolong inundation of its terminal lake system to improve the recruitment success of colonial waterbirds that had started breeding in response to the initial flooding. This study examined the spatial and temporal patterns of fish assemblages in river and floodplain habitats over eight months following flooding to assess the possible ecological benefits of flood extension. Although the abundances of most fish species were greater in river channel habitats, the fish assemblage used floodplain habitats when inundated. Young-of-the-year (4–12 months age) golden perch (Macquaria ambigua) and bony bream (Nematalosa erebi) were consistently sampled in floodplain sites when inundated, suggesting that the floodplain provides rearing habitat for these species. Significant differences in the abundances of fish populations between reaches upstream and downstream of a weir in the main river channel indicates that the effectiveness of the environmental water release was limited by restricted connectivity within the broader catchment. Although the seasonal timing of flood extension may have coincided with sub-optimal primary production, the use of the environmental water purchase is likely to have promoted recruitment of fish populations by providing greater access to floodplain nursery habitats, thereby improving the ability to persist during years of little or no flow.  相似文献   

12.
/ Fish and macroinvertebrate assemblage composition, instream habitat features and surrounding land use were assessed in an agriculturally developed watershed to relate overall biotic condition to patterns of land use and channel structure. Six 100-m reaches were sampled on each of three first-order warm-water tributaries of the River Raisin in southeastern Michigan. Comparisons among sites and tributaries showed considerable variability in fish assemblages measured with the index of biotic integrity, macroinvertebrate assemblages characterized with several diversity indexes, and both quantitative and qualitative measurements of instream habitat structure. Land use immediate to the tributaries predicted biotic condition better than regional land use, but was less important than local habitat variables in explaining the variability observed in fish and macroinvertebrate assemblages. Fish and macroinvertebrates appeared to respond differently to landscape configuration and habitat variables as well. Fish showed a stronger relationship to flow variability and immediate land use, while macroinvertebrates correlated most strongly with dominant substrate. Although significant, the relationships between instream habitat variables and immediate land use explained only a modest amount of the variability observed. A prior study of this watershed ascribed greater predictive power to land use. In comparison to our study design, this study covered a larger area, providing greater contrast among subcatchments. Differences in outcomes suggests that the scale of investigation influences the strength of predictive variables. Thus, we concluded that the importance of local habitat conditions is best revealed by comparisons at the within-subcatchment scale. KEY WORDS: Stream; Biomonitoring; Land use; Scale; Habitat; Fish; Macroinvertebrates  相似文献   

13.
A set of metrics that reflect various aspects of population and fish community structure in streams used for snorkeling was evaluated in the tourist region of Bodoquena Plateau, Brazil, with the purpose of biomonitoring the impacts of such activities. Observations were made while snorkeling in two sites (active = with tourism; inactive = without tourism) and along the gradient of daily tourist activity (before, during and after the passage of tourists) in two streams. Five metrics discriminated active from inactive sites: (i) the abundance of Crenicichla lepidota and (ii) the incidence of reproductive activity in Crenicichla lepidota which were greater in inactive sites, regardless the gradient of daily tourist activity; (iii) the feeding pattern of Prochilodus lineatus, which differed among sites and along the gradient of daily tourist activity; (iv) the abundance of Moenkhausia bonita, which was higher in the active sites and significantly increased along the gradient of daily tourist activity in one stream but decrease along the gradient in other stream; (v) the abundance of Hyphessobrycon eques, which was greater in inactive sites, regardless the gradient of daily tourist activity. With the exception of metric “iv”, the metrics were mediated by the reduction in habitat structural complexity due to snorkeling disturbance. The definition of these metrics is relevant because the degradation of ecosystem structural elements is one of the main impacts of recreational activities on aquatic environments. The easy recognition of target species and high water transparency throughout the year ensures the feasibility of these metrics in monitoring programs and may be applied by technicians after quick guides and training.  相似文献   

14.
In order for habitat restoration in regulated rivers to be effective at large scales, broadly applicable frameworks are needed that provide measurable objectives and contexts for management. The Ecological Limits of Hydrologic Alteration (ELOHA) framework was created as a template to assess hydrologic alterations, develop relationships between altered streamflow and ecology, and establish environmental flow standards. We tested the utility of ELOHA in informing flow restoration applications for fish and riparian communities in regulated rivers in the Upper Tennessee River Basin (UTRB). We followed the steps of ELOHA to generate univariate relationships between altered flows and ecology within the UTRB. By comparison, we constructed multivariate models to determine improvements in predictive capacity with the addition of non-flow variables. We then determined whether those relationships could predict fish and riparian responses to flow restoration in the Cheoah River, a regulated system within the UTRB. Although ELOHA provided a robust template to construct hydrologic information and predict hydrology for ungaged locations, our results do not suggest that univariate relationships between flow and ecology (step 4, ELOHA process) can produce results sufficient to guide flow restoration in regulated rivers. After constructing multivariate models, we successfully developed predictive relationships between flow alterations and fish/riparian responses. In accordance with model predictions, riparian encroachment displayed consistent decreases with increases in flow magnitude in the Cheoah River; however, fish richness did not increase as predicted 4 years after restoration. Our results suggest that altered temperature and substrate and the current disturbance regime may have reduced opportunities for fish species colonization. Our case study highlights the need for interdisciplinary science in defining environmental flows for regulated rivers and the need for adaptive management approaches once flows are restored.  相似文献   

15.
We describe the development of a bird integrity index (BII) that uses bird assemblage information to assess human impacts on 13 stream reaches in the Willamette Valley, Oregon, USA. We used bird survey data to test 62 candidate metrics representing aspects of bird taxonomic richness, tolerance or intolerance to human disturbance, dietary preferences, foraging techniques, and nesting strategies that were affected positively or negatively by human activities. We evaluated the metric responsiveness by plotting each one against a measure of site disturbance that included aspects of land use/land cover, road density, riparian cover, and stream channel and substrate conditions. In addition, we eliminated imprecise and highly correlated (redundant) metrics, leaving 13 metrics for the final index. Individual metric scores ranged continuously from 0 to 10, and index scores were weighted to range from 0 to 100. Scores were calibrated using historical species information to set expectations for the number of species expected under minimally disturbed conditions. Site scores varied from 82 for the least disturbed stream reach to 8.5 for an urban site. We compared the bird integrity index site scores with the performance of other measures of biotic response developed during this study: a fish index of biointegrity (IBI) and two benthic macroinvertebrate metrics. The three assemblages agreed on the general level of disturbance; however, individual sites scored differently depending on specific indicator response to in-stream or riparian conditions. The bird integrity index appears to be a useful management and monitoring tool for assessing riparian integrity and communicating the results to the public. Used together with aquatic indicator response and watershed data, bird assemblage information contributes to a more complete picture of stream condition.  相似文献   

16.
Extensive surveys were conducted to explore the diversity of fishes, distribution patterns, abundance, threat, and habitat status in the upper, middle, and lower stretch of river Gomti, a tributary of river Ganga. Altogether 56 fish species belonging to 20 families and 42 genera were collected from various sampling sites. Of the 56 species, five belong to the ‘endangered’ (EN) category and 11 belong to the vulnerable (VU) category. Six major categories of habitat were identified and pattern of fish assemblage and dominant genera in each habitat studied. Considerable differences were observed in the fish species richness and relative abundance (RA) of the species in the different sampling sites of river Gomti. Shannon–Wiener biodiversity index has been calculated for the fishes indicating considerable variation (p < 0.05) across the river. Apart from Indian Major Carps (Labeo rohita, Catla catla, Cirrhinus mrigala), Chitala chitala, Notopterus notopterus, Ompok pabda, O. bimaculatus, Labeo bata, L. calbasu, Cirrhinus reba, Channa marulius, Bagarius bagarius, and Clupisoma garua were the important species. All the species have been reported for the first time in this river. Indiscriminate catch, poisoning, using of fine mesh sized nets, dumping of sewage, siltation, water abstraction, changing land use pattern, decreased water discharge, and exotic species threaten the fish diversity. Urgent need exists for taking up research on the priority fish species and their habitat. Restoration measures have been proposed based on ecosystem scale approach for fish biodiversity conservation.  相似文献   

17.
Non-structural streambank stabilization, or bioengineering, is a common stream restoration practice used to slow streambank erosion, but its ecological effects have rarely been assessed. We surveyed bank habitat and sampled bank macroinvertebrates at four bioengineered sites, an unrestored site, and a comparatively less-impacted reference site in the urban Peachtree-Nancy Creek catchment in Atlanta, GA, USA. The amount of organic bank habitat (wood and roots) was much higher at the reference site and three of the bioengineered sites than at the unrestored site or the other bioengineered site, where a very different bioengineering technique was used (“joint planting”). At all sites, we saw a high abundance of pollution-tolerant taxa, especially chironomids and oligochaetes, and a low richness and diversity of the bank macroinvertebrate community. Total biomass, insect biomass, and non-chironomid insect biomass were highest at the reference site and two of the bioengineered sites (p < 0.05). Higher biomass and abundance were found on organic habitats (wood and roots) versus inorganic habitats (mud, sand, and rock) across all sites. Percent organic bank habitat at each site proved to be strongly positively correlated with many factors, including taxon richness, total biomass, and shredder biomass. These results suggest that bioengineered bank stabilization can have positive effects on bank habitat and macroinvertebrate communities in urban streams, but it cannot completely mitigate the impacts of urbanization.  相似文献   

18.
The Clinch River is located in northeastern Tennessee (TN) and southwestern Virginia (VA) of the United States, and contains a diverse mussel assemblage of 46 extant species, including 20 species listed as federally endangered. To facilitate quantitative monitoring of the fauna, quadrat data were collected from 2004 to 2009 at 18 sites in the river, including 12 sites in TN and 6 sites in VA. Thirty‐eight mussel species were collected alive in total from quadrat samples taken annually at sites in the TN section of the river. Over the five‐year study period, mussel density averaged 25.5 m?2 at all sites sampled in TN. In contrast, mussel density averaged only 3.1 m?2 at sites sampled in VA. The best historical site in VA was Pendleton Island in Scott County, where mussel density was estimated as high as 25 m?2 in 1979, comparable to current densities recorded in TN. Mussel densities are now <1 m?2, indicating a collapse of the fauna. A severe reduction in mussel abundance has occurred in a 68‐km section of the river from St. Paul, VA, downstream to approximately Clinchport, VA (river kilometers 411.5‐343.3). While the environmental factors responsible for the faunal decline are largely unknown, they must have been severe and sustained to reduce such large populations to their current low levels. Long‐term water and habitat quality monitoring is needed to determine whether environmental degradation is still occurring in the river.  相似文献   

19.
The objectives of this study were to assess the biological water of the Iranian Tajan River using different metrics, i.e., a Multimetric Macroinvertebrate Index (MMI) and a traits-based method. Twenty-eight physico-chemical parameters, 10 habitat factors, and abundance of macroinvertebrates were obtained for 17 sites. The Shahid-Rajaie dam divides the Tajan River into an up- and downstream part, with different land uses. Eighteen metrics were used to represent four components of ecosystem quality, including tolerance (Hilsenhoff, SIGNAL), diversity (Margalef, Shannon–Wiener, Simpson, and Evenness), abundance (total number of taxa, individuals, Ephemeroptera, Plecoptera, Trichoptera, EPT, and Insects), and composition of assemblages (% Ephemeroptera, % Plecoptera, % Trichoptera, and % EPT Taxa). The integrated MMI was calculated by averaging the obtained scores of all indices. In the next step, we gathered information on 22 biological traits of macroinvertebrates to evaluate whether (group of) traits could be identified that are indicative for specific or general stress. Result showed a decrease in MMI from upstream (very good water quality) to downstream (bad) due to human activities. Industrial activities like pulping and papermaking operations or sand mining in the downstream part had more effects than agriculture and fish ponds in the upstream part. A redundancy analysis biplot showed the variation between the modalities of trait of macroinvertebrates and their correlation with physico-chemical parameters in Tajan River. The findings show that traits can be indicative for different kind of stress but that more effort has to be put in gathering data sets to disentangle the effect of habitat quality, pollution, and the physico-chemical properties of high- versus lowland rivers.  相似文献   

20.
Abstract: This study evaluated biological integrity expectations of fish assemblages in wadeable streams for the Alabama portion of the Choctawhatchee River watershed using a multimetric approach. Thirty‐four randomly selected stream sites were sampled in late spring 2001 to calibrate an index of biotic integrity (IBI). Validation data were collected during the spring 2001, and summer and fall of 2003 from disturbed and least‐impacted targeted sites (n = 20). Thirty‐five candidate metrics were evaluated for their responsiveness to environmental degradation. Twelve metrics were selected to evaluate wadeable streams and four replacement metrics were selected for headwater streams. Scores that ranged from 58 to 60 were considered to be representative of excellent biotic integrity (none found in this study), scores of 48‐52 as good integrity (31% of the sites in this study), 40‐44 as fair (43%), 28‐34 as poor (21%), and 12‐22 as very poor (5%). Of the four stream condition categories (urban, cattle, row crop, and least impacted), the IBI scores for urban and cattle sites differed significantly from least‐impacted sites. Row crop sites, although not significantly different from least‐impacted, tended to have greater variability than the other categories. Lower IBI scores at both urban and cattle sites suggest that the IBI accurately reflects stream impairment in the Choctawhatchee River drainage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号