首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hong Kong once supported more than 109 species of wild orchids, of which approximately 30% were endemic. Most of the local wild orchids have now become rare or endangered. I conducted a comparative study of genetic diversity in two closely related terrestrial orchids, an allotetraploid, Spiranthes hongkongensis , and its diploid progenitor, S. sinensis , to assess the effects of the population bottleneck associated with the origin of the polyploid and to investigate the relationships between number of breeding individuals, mating system, and level of isozyme variation in their populations. Nearly complete genetic uniformity was observed both within and among populations of S. hongkongensis . In contrast, S. sinensis had high levels of genetic variation for all of the genetic parameters examined. Regression analysis of population size and several components of genetic diversity in S. sinensis revealed that, among various measures of within-population variation, the proportion of polymorphic loci ( P ) and average number of alleles per locus ( A ) or per polymorphic locus ( A p ) were the most sensitive to population size ( R 2 = 0.942, p = 0.001; R 2 = 0.932, p = 0.002; and R 2 = 0.923, p = 0.002 respectively). The highly negative correlation ( r = −0.999, p < 0.01) between population size and the mean frequency of private alleles in pairwise population comparisons, p (1), indicated that population size may also be used to predict the extent of population differentiation caused by random genetic drift. Conservation of genetic diversity in S. sinensis could be maximized by protecting several of both large and small populations, whereas fewer populations may be needed to achieve this goal for S. hongkongensis.  相似文献   

2.
Abstract: Genetic diversity is expected to decrease in small and isolated populations as a consequence of bottlenecks, founder effects, inbreeding, and genetic drift. The genetics and ecology of the rare perennial plant Lychnis viscaria (Caryophyllaceae) were studied in both peripheral and central populations within its distribution area. We aimed to investigate the overall level of genetic diversity, its spatial distribution, and possible differences between peripheral and central populations by examining several populations with electrophoresis. Our results showed that the level of genetic diversity varied substantially among populations (  H exp = 0.000–0.116) and that the total level of genetic diversity (mean H exp = 0.056) was low compared to that of other species with similar life-history attributes. The peripheral populations of L. viscaria had less genetic variation (mean H exp = 0.034) than the central ones (0.114). Analysis of genetic structure suggested limited gene flow (mean F ST = 0.430) and high differentiation among populations, emphasizing the role of genetic drift (  N e m = 0.33). Isolation was even higher than expected based on the physical distance among populations. We also focused on the association between population size and genetic diversity and possible effects on fitness of these factors. Population size was positively correlated with genetic diversity. Population size and genetic diversity, however, were not associated with fitness components such as germination rate, seedling mass, or seed yield. There were no differences in the measured fitness components between peripheral and central populations. Even though small and peripheral populations had lower levels of genetic variation, they were as viable as larger populations, which emphasizes their potential value for conservation.  相似文献   

3.
Abstract:  We assessed spatial and temporal patterns of genetic diversity to evaluate effects of river fragmentation on remnant populations of the federally endangered Rio Grande silvery minnow ( Hybognathus amarus ). Analysis of microsatellite and mitochondrial DNA detected little spatial genetic structure over the current geographic range, consistent with high gene flow despite fragmentation by dams. Maximum-likelihood analysis of temporal genetic data indicated, however, that present-day effective population size ( NeV ) of the largest extant population of this species was 78 and the ratio of effective size to adult numbers ( NeV/N ) was ∼ 0.001 during the study period (1999 to 2001). Coalescent-based analytical methods provided an estimate of historical (river fragmentation was completed in 1975) effective size ( NeI  ) that ranged between 105 and 106. We propose that disparity between contemporary and historical estimates of Ne and low contemporary Ne/N result from recent changes in demography related to river fragmentation. Rio Grande silvery minnows produce pelagic eggs and larvae subject to downstream transport through diversion dams. This life-history feature results in heavy losses of yearly reproductive effort to emigration and mortality, and extremely large variance in reproductive success among individuals and spawning localities. Interaction of pelagic early life history and river fragmentation has altered demographic and genetic dynamics of remnant populations and reduced Ne to critically low values over ecological time.  相似文献   

4.
Abstract: The endangered Hawaiian monk seal breeds at six locations in the northwestern Hawaiian Islands. To determine whether significant genetic differentiation exists among these sites, we used microsatellite loci to examine the monk seal population structure at the five largest breeding colonies. Of 27 loci isolated from other seal species, only 3 were polymorphic in an initial screening of one individual from each breeding site. Only two alleles were found at each of these 3 loci in samples of 46–108 individuals. This extremely low variation is consistent with other measures of genetic variability in this species and is probably the result of a recent severe population bottleneck, combined with a long-term history of small population sizes. Although the smallest monk seal subpopulation in this study ( Kure Atoll) showed some evidence of heterozygote deficit, possibly indicative of inbreeding, the next smallest ( Pearl and Hermes Reef) had an apparent excess of heterozygous individuals. Genetic differentiation was detected between the two subpopulations at extreme ends of the range ( Kure and French Frigate Shoals). This trend was significant only at the microsatellite locus for which we had the largest sample size ( Hg6.3: R ST = 0.206, p = 0.002; allelic goodness of fit G h = 15.412, p < 0.005). French Frigate Shoals is the source population for translocated animals that have been released primarily at Kure Atoll. Differentiation between these sites consisted of allele frequency differences (with the same allele predominant in each location at all three loci), rather than the preservation of alternative alleles. Although the translocations have had positive demographic effects, we recommend continued genetic monitoring of both the source and recipient populations because translocated individuals are now entering the breeding population.  相似文献   

5.
Genetic variation was examined in Helonias bullata , a threatened perennial plant species that occurs in isolated wetland habitats. Fifteen populations representing the species' geographic range were sampled. Genetic diversity was low for the species ( H es = 0.053) as well as within populations ( H ep = 0.029). Of the 33 allozyme loci examined, 11 (33%) were polymorphic, while on average only 12.8% (4) of the loci were polymorphic within populations. The number of alleles per polymorphic locus was 2.36 for the species and averaged 2.09 across populations. For every genetic parameter calculated, variation in H. bullata was lower than that typically found for narrowly distributed plant species. The lowest levels of genetic diversity were found in northern areas that were colonized following the last glacial epoch. The number of genotypes detected per population ranged from three to 21, with a mean of 13 for this clonally reproducing species. We found a relatively high proportion of total genetic diversity (30.6%) among populations and a significant correlation (p < 0.002) between genetic distance and geographic distance. Genetic drift phenomena appear to play a major role in the population genetics of this species. Anomalously, several populations that appeared most limited in size and vigor were genetically most variable, perhaps because they represent older, relictual populations. Life-history characteristics of H. bullata coupled with low levels of genetic diversity and the degradation and disappearance of wetlands threaten the existence of this species.  相似文献   

6.
Abstract: The population of Rhinoceros unicornis in the Chitwan Valley, Nepal, was reduced to an estimated effective population size (Ne of 21–28 individuals (60–80 total animals) in 1962. Protein electrophoresis shows that heterozygosity remains very high in this population (Ho= 9.9%) despite its near extinction. We attribute this high heterozygosity to large Ne's prior to the population bottleneck, the recent occurrence of the bottleneck, and long generation time. These results illustrate the importance of considering historical demography and life history parameters when evaluating the possible genetic effects of bottlenecks in wild populations. They also offer support to recent arguments that the erosion of genetic diversity attributed to bottlenecks may be overemphasized.  相似文献   

7.
Levels of variation in eight large captive populations of D. melanogaster (census sizes ∼ 5000) that had been in captivity for periods from 6 months to 23 years (8 to 365 generations) were estimated from allozyme heterozygosities, lethal frequencies, and inversion heterozygosities and phenotypic variances, additive genetic variances ( V A), and heritabilities ( h 2) for sternopleural bristle numbers. Correlations between all measures of variation except lethal frequencies were high and significant. All measures of genetic variation declined with time in captivity, with those for average heterozygosities, V A, and h 2 being significant. The effective population size ( N e) was estimated to be 185–253 in these populations, only 0.037–0.051 of census size (N). Levels of allozyme heterozygosities declined rapidly in two large captive populations founded from another wild stock, being reduced by 86% and 62% within 2.5 years in spite of being maintained at sizes of approximately 1000 and 3500. Estimates of N e/ N for these populations were only 0.016 and 0.004. Two estimates of N e/ N for captive populations of D. pseudoobscura from data in the literature were also low at 0.036 and 0.012. Consequently, the rate of loss of genetic variation in captive populations and endangered species may be more rapid than hitherto recognized. Merely maintaining captive populations at large census sizes may not be sufficient to maintain essential genetic variation.  相似文献   

8.
We examined genetic diversity in 464 individuals of the monotypic lily Harperocallis flava in its two habitats (seepage bogs and a roadside right-of-way) and five populations of a co-occurring related lily, Tofieldia racemosa. The endangered H. flava, endemic to the Apalachicola lowlands of the Florida panhandle, was monomorphic for the 22 loci scored. In contrast, T. racemosa had a high proportion of polymorphic loci ( Ps = 68.2%; Pp = 47.7%) with moderate genetic diversity (   Hes = 0.134; Hep = 0.114). Estimated gene flow was moderately high ( Nm = 2.07) for T. racemosa, with most (93%) of the total genetic diversity found within populations. Despite the low level of genetic divergence, some isolation by distance was detected among T. racemosa populations. Harperocallis flava and other species without discernable genetic variation pose special problems for conservation biologists because genetic criteria are not available for the development of ex situ and in situ conservation and management strategies.  相似文献   

9.
Abstract: We used microsatellite DNA markers to investigate the maintenance of genetic diversity within and between samples of subpopulations (spanning five captive-bred generations) of the haplochromine cichlid Prognathochromis perrieri . The subpopulations are maintained as part of the Lake Victoria Cichlid species survival plan. Changes in the frequencies of 24 alleles, over four polymorphic loci, were used to estimate effective population size (   N e   ). Point estimates of N e ranged from 2.5 to 7.7 individuals and were significantly smaller than the actual census size (   N obs  ) for all subpopulations (32–243 individuals per generation), with the corresponding conservative N e   /  N obs ratios ranging from 0.01 to 0.12. Approximately 19% of the initial alleles were lost within the first four generations of captive breeding. Between-generation comparisons of expected heterozygosity showed significant losses ranging from 6% to 12% per generation. Seven private alleles were observed in the last sampled generation of four subpopulations, and analysis of population structure by F ST indicated that approximately 33% of the total genetic diversity is maintained between the subpopulations from different institutions. To reduce the loss of genetic variation, we recommend that offspring production be equalized by periodically removing dominant males, which will encourage reproduction by additional males. Consideration should also be given to encouraging more institutions to maintain populations, because a significant fraction of the genetic variation exists as among-population differences resulting from random differentiation among subpopulations.  相似文献   

10.
Managers of small populations often need to estimate the expected time to extinction Te of their charges. Useful models for extinction times must be ecologically realistic and depend on measurable parameters. Many populations become extinct due to environmental stochasticity, even when the carrying capacity K is stable and the expected growth rate is positive. A model is proposed that gives Te by diffusion analysis of the log population size nt (= loge Nt). The model population grows according to the equation Nt+1 = RtNt, with K as a ceiling. Application of the model requires estimation of the parameters k = logK, rd = the expected change in n, vr = Variance(log R), and ϱ the autocorrelation of the rt. These are readily calculable from annual census data (rd is trickiest to estimate). General formulas for Te are derived. As a special case, when environmental fluctuations overwhelm expected growth (that is rd 0), Te = 2no(k - no/2)/vr. If the rt are autocorrelated, then the effective variance is vre vr (1 + ϱ)/(1 - ϱ). The theory is applied to populations of checkerspot butterfly, grizzly bear, wolf, and mountain lion.  相似文献   

11.
Abstract: It has been argued that demographic and environmental factors will cause small, isolated populations to become extinct before genetic factors have a significant negative impact. Islands provide an ideal opportunity to test this hypothesis because they often support small, isolated populations that are highly vulnerable to extinction. To assess the potential negative impact of isolation and small population size, we compared levels of genetic variation and fitness in island and mainland populations of the black-footed rock-wallaby ( Petrogale lateralis [Marsupialia: Macropodidae]). Our results indicate that the Barrow Island population of P. lateralis has unprecedented low levels of genetic variation (  H e = 0.053, from 10 microsatellite loci) and suffers from inbreeding depression (reduced female fecundity, skewed sex ratio, increased levels of fluctuating asymmetry). Despite a long period of isolation ( ∼ 1600 generations) and small effective population size (  N e ∼ 15), demographic and environmental factors have not yet driven this population to extinction. Nevertheless, it has been affected significantly by genetic factors. It has lost most of its genetic variation and become highly inbred (  F e = 0.91), and it exhibits reduced fitness. Because several other island populations of P. lateralis also exhibit exceptionally low levels of genetic variation, this phenomenon may be widespread. Inbreeding in these populations is at a level associated with high rates of extinction in populations of domestic and laboratory species. Genetic factors cannot then be excluded as contributing to the extinction proneness of small, isolated populations.  相似文献   

12.
Abstract: In natural populations, many breeders do not leave surviving offspring, and as a result many potential genetic lineages are lost. I examined lineage extinction in Serengeti cheetahs ( Acinonyx jubatus ) and found that 76% of matrilines were lost over a 25-year period. Production of future breeders was nonrandom and generally confined to a few families. Five out of 63 matrilines accounted for 45% of the total cheetah population over the course of the study. Lineage persistence is perhaps best illustrated by the variance in lifetime reproductive success ( LRS) and heritability in this parameter. In female cheetahs, variance in LRS was high, and new data show that this LRS was heritable. Variance in LRS and heritability in LRS have dramatic consequences for effective population size, N e. I calculated N e for cheetahs, taking into account fluctuating population size, unequal sex ratio, non-Poisson distribution of reproductive success, and heritability of fitness. The N e was most strongly affected by variance in reproductive success and especially heritability in reproductive success. The variance N e was 44% of the actual population size, and the inclusion of heritability further reduced N e to only 15% of the actual population, a ratio similar to that of a social carnivore with reproductive suppression. The current cheetah population in the Serengeti is below numbers suggested by N e estimates as sufficient to maintain sufficient genetic diversity.  相似文献   

13.
Monitoring temporal changes in genetic variation has been suggested as a means of determining if a population has experienced a demographic bottleneck. Simulations have shown that the variance in allele frequencies over time ( F ) can provide reasonable estimates of effective population size ( Ne ). This relationship between F and Ne suggests that changes in allele frequencies may provide a way to determine the severity of recent demographic bottlenecks experienced by a population. We examined allozyme variation in experimental populations of the eastern mosquitofish ( Gambusia holbrooki ) to evaluate the relationship between the severity of demographic bottlenecks and temporal variation in allele frequencies. Estimates of F from both the fish populations and computer simulations were compared to expected rates of drift. We found that different methods for estimating F had little effect on the analysis. The variance in estimates of F was large among both experimental and simulated populations experiencing similar demographic bottlenecks. Temporal changes in allele frequencies suggested that the experimental populations had experienced bottlenecks, but there was no relationship between observed and expected values of F . Furthermore, genetic drift was likely to be underestimated in populations experiencing the most severe bottlenecks. The weak relationship between F and bottleneck severity is probably due to both sampling error associated with the number of polymorphic loci examined and the loss of alleles during the bottlenecks. For populations that may have experienced severe bottlenecks, caution should be used in making evolutionary interpretations or management recommendations based on temporal changes in allele frequencies.  相似文献   

14.
Abstract:  Remnant plants in urban fringes and native plants in gardens have the potential to contribute to the conservation of threatened plants by increasing genetic diversity, effective size of populations, and levels of genetic connectedness. But they also pose a threat through the disruption of locally adapted gene pools. At Hyams Beach, New South Wales, Australia, four bushland stands of the rare shrub, Grevillea macleayana McGillivray, surround an urban area containing remnant and cultivated specimens of this species. Numbers of inflorescences per plant, fruits per plant, and visits by pollinators were similar for plants in urban gardens and bushland. Urban plants represented a substantial but complex genetic resource, displaying more genetic diversity than bushland plants judged by He , numbers of alleles per locus, and number of private alleles. Of 27 private alleles in urban plants, 17 occurred in a set of 19 exotic plants. Excluding the exotic plants, all five stands displayed a moderate differentiation ( FST = 0.14 ± 0.02), although the urban remnants clustered with two of the bushland stands. These patterns may be explained by high levels of selfing and inbreeding in this species and by long-distance dispersal (several seeds in the urban stand were fathered by plants in other stands). Genetic leakage (gene flow) from exotic plants to 321 seeds on surrounding remnant or bushland plants has not occurred. Our results demonstrate the conservation value of this group of urban plants, which are viable, productive, genetically diverse, and interconnected with bushland plants. Gene flow has apparently not yet led to genetic contamination of bushland populations, but high levels of inbreeding would make this a rare event and difficult to detect. Remnant plants in urban gardens could successfully contribute to recovery plans for endangered and vulnerable species.  相似文献   

15.
The genetic polymorphism of natural populations of Lepilemur mustelinus ruficaudatus was studied by protein electrophoresis. We sampled blood from 72 individuals from four populations separated by geographic or anthropogenic barriers from southwestern Madagascar. Six out of 22 enzyme loci showed genetic variation with a degree of polymorphism of 0.273. The expected and observed degree of genetic heterozygosity over all loci is similar to that of other primates (He = 0.058, Ho = 0.036). The F-statistics revealed that the four subpopulations were similar with respect to gene structure (FST = 0.065, p = 0.016), but the genotypic structures within subpopulations were inconsistent with random mating. For the total of the four subpopulations the proportion of heterozygous individuals was significantly smaller than expected under random mating (FIS = 0.373, FIT = 0.414, p < 0.01). These results correspond closely to what is expected considering the low migration ability of individuals of L. m ruficaudatus leading to small and rather isolated inbred populations.  相似文献   

16.
Abstract: We investigated the conservation of genetic diversity during a restoration program for American shad ( Alosa sapidissima ) in Virginia ( U.S.A.). Restoration entailed capture of wild Pamunkey River shad broodstock followed by production and release of hatchery-reared fry to supplement the nearly extinct James River shad population. To assess the baseline genetic diversity of donor and recipient populations, we used five tri- and tetra-nucleotide microsatellite loci to test for genetic heterogeneity among yearly subsamples from both rivers and between early- and late-spawning shad from the donor population. Tests for allelic heterogeneity between James River and Pamunkey shad subsamples yielded no significant genetic differentiation (χ 2 = 14.72, p = 0.132 and χ 2 = 10.24, p = 0.440, respectively). We detected no significant genetic divergence between early- and late-spawning adults in Pamunkey River spawning aggregations in either year. The donor and recipient populations exhibited significant genetic differentiation (χ 2 = 27.4, p = 0.003), however, indicating that the stocking program carries a risk of outbreeding depression. Because the two river populations are genetically divergent, replenishment of the James population with Pamunkey fry may be detectable in the future as heterozygote deficits and linkage disequilibria in the James River population. In an analysis of broodstock and their hatchery-reared progeny, microsatellites proved efficient for family analysis, unambiguously determining the parentage of 100% of the hatchery-reared fry studied. Genetic analysis indicated that breeding procedures may result in high levels of reproductive variance.  相似文献   

17.
Estimating the Effective Population Size of Conserved Populations   总被引:10,自引:0,他引:10  
Accurate estimation of effective population size is important in attempts to conserve small populations of animals or plants. We review the genetic and ecological methods that have been used to estimate effective population size in the past and suggest that, while genetic methods may often be appropriate for the estimation of N e, and its monitoring, ecological methods have the advantage of providing data that can help predict the effect of a changed environment on N e. Estimation of N e, is particularly complex in populations with overlapping generations, and we summarize previous empirical estimates of N e that used ecological methods in such populations. Since it is often difficult to assess what parameters and assumptions have been used in previous calculations, we suggest a method that provides a good estimate of N e, makes clear what assumptions are involved, and yet requires a minimum of information. The method is used to analyze data from 14 studies. In 36% (5) of these studies, our estimate is in excellent agreement with the original, and yet we use significantly less information, in 21% (3) the original estimate is markedly lower, in 43% (6) it is markedly higher. Reasons for the discrepancies are suggested. Two of the underestimates involve a failure in the original to account for a long maturation time, and four of life overestimates involve problems in the original with the correction for overlapping generations.  相似文献   

18.
We analyzed the amount and distribution of genetic variation in Baptisia arachnifera Duncan to develop a sampling strategy for ex situ research. Baptisia arachnifera is an endangered plant species endemic to the coastal plain of Georgia (U.S.) where all populations are within 16 km of each other. A reduction in numbers of individuals has been observed during the last 50 years. Baptisia arachnifera was polymorphic at 24% of the 37 loci examined with an average of 1.32 alleles per locus. The genetic diversity index was relatively low ( He = 0.097) as expected for endemic species. Populations were in Hardy-Weinberg equilibrium, suggesting that the species is outcrossing. Consistent with this conclusion is the observation that the majority (approximately 90%) of the genetic variation present in the species is found within individual populations. Indirect evidence of gene flow between populations was detected (   Nm = 2.35). The close proximity of the populations and the recent reduction in population sizes suggest that the populations surveyed may be fragments of a once more continuous gene pool. Based on the observed distribution of genetic diversity among populations (GST = 0.096), sampling two populations would capture 99% of the allozyme diversity surveyed. Allozyme data were used to determine which 2 of the 10 populations surveyed should be sampled to maximize the ex situ conservation of genetic diversity. Although the paper-producing companies that own most of the land where Baptisia arachnifera occurs are modifying their harvesting techniques, the species could become extinct without more effective management and preservation efforts.  相似文献   

19.
Abstract: The controversy (  Berger 1990, 1999 ; Wehausen 1999 ) over rapid extinction in bighorn sheep ( Ovis canadensis ) has focused on population size alone as a correlate to persistence time. We report on the persistence and population performance of 24 translocated populations of bighorn sheep. Persistence in these sheep was strongly correlated with larger patch sizes, greater distance to domestic sheep, higher population growth rates, and migratory movements, as well as to larger population sizes. Persistence was also positively correlated with larger average home-range size ( p = 0.058, n = 10 translocated populations) and home-range size of rams ( p = 0.087, n = 8 translocated populations). Greater home-range size and dispersal rates of bighorn sheep were positively correlated to larger patches. We conclude that patch size and thus habitat carrying capacity, not population size per se, is the primary correlate to both population performance and persistence. Because habitat carrying capacity defines the upper limit to population size, clearly the amount of suitable habitat in a patch is ultimately linked to population size. Larger populations (250+ animals) were more likely to recover rapidly to their pre-epizootic survey number following an epizootic ( p = 0.019), although the proportion of the population dying in the epizootic also influenced the probability of recovery ( p = 0.001). Expensive management efforts to restore or increase bighorn sheep populations should focus on large habitat patches located ≥23 km from domestic sheep, and less effort should be expended on populations in isolated, small patches of habitat.  相似文献   

20.
Abstract:  We evaluated the relative contributions of sampling error (randomly chosen standard errors applied as 0–30% of parameter estimates) in initial population size and vital rates (survival and reproduction) to the outcome of a simulated population viability analysis for grizzly bears (  Ursus arctos ). Error in initial population size accounted for the largest source of variation (model II analysis of variance, F 25,5= 10.8, p = 0.00001) in simulation outcomes, explaining 60.5% of the variance. In contrast, error in vital rates contributed little to simulation outcomes ( F 25,5= 0.61, p = 0.70), accounting for only 2.4% of model variation. Reduced global variation in vital rates, as a result of independent random sampling of annual deviates for each parameter, likely contributed to the results. Errors in estimates of initial population size, if ignored in PVA, have the potential to leave managers with estimates of population persistence that are of little value for making management decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号