首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A total of 285 water samples were collected from 71 roof harvested rainwater tanks from four villages in different provinces over a two-year (2013–2014) period during the early (October to December) and late (January to March) rainy season. Water quality was evaluated based on Escherichia coli, faecal coliforms and Enterococcus spp. prevalence using the IDEXX Quanti-Tray quantification system. Real-Time PCR was used to analyse a subset of 168 samples for the presence of Shigella spp., Salmonella spp. and E. coli virulence genes (stx1, stx2 and eaeA). Escherichia coli were detected in 44.1% of the samples, Enterococcus spp. in 57.9% and faecal coliforms in 95.7%. The most prevalent E. coli concentrations in harvested rainwater were observed in 29.1% of samples and 22.5% for Enterococcus spp. and, were within 1–10 cfu/100 ml and 10–100 cfu/100 ml, respectively, whereas those for faecal coliforms (36.6%) were within 100–1000 cfu/100 ml. On average 16.8% of the samples had neither E. coli nor Enterococcus spp. detected, while 33.9% had only Enterococcus spp. and 23.7% had only E. coli. E. coli and Enterococcus spp. were detected together in 25.5% of the samples. Evaluation of samples for potential pathogenic bacteria showed all tested samples to be negative for the Shigella spp. ipaH gene, while five tested positive for Salmonella ipaB gene. None of the samples tested positive for the stx1 and stx2 genes, and only two tested positive for the eaeA gene. These findings are potentially useful in the development of a simplified risk assessment strategy based on the concentrations of indicator bacteria.  相似文献   

2.
There are increasing concerns on heavy metal contaminant in soils and vegetables. In this study, we investigated heavy metal pollution in vegetables and the corresponding soils in the main vegetable production regions of Zhejiang province, China. A total of 97 vegetable samples and 202 agricultural soil samples were analyzed for the concentrations of Cd, Pb, As, Hg, and Cr. The average levels of Cd, Pb, and Cr in vegetable samples [Chinese cabbage (Brassica campestris spp. Pekinensis), pakchoi (Brassica chinensis L.), celery (Apium graveolens), tomato (Lycopersicon esculentum), cucumber (Colletotrichum lagenarium), cowpea (Vigna unguiculata), pumpkin (Cucurbita pepo L.), and eggplant (Solanum melongena)] were 0.020, 0.048, and 0.043 mg kg?1, respectively. The Pb and Cr concentrations in all vegetable samples were below the threshold levels of the Food Quality Standard (0.3 and 0.5 mg kg?1, respectively), except that two eggplant samples exceeded the threshold levels for Cd concentrations (0.05 mg kg?1). As and Hg contents in vegetables were below the detection level (0.005 and 0.002 mg kg?1, respectively). Soil pollution conditions were assessed in accordance with the Chinese Soil Quality Criterion (GB15618-1995, Grade II); 50 and 68 soil samples from the investigated area exceeded the maximum allowable contents for Cd and Hg, respectively. Simple correlation analysis revealed that there were significantly positive correlations between the metal concentrations in vegetables and the corresponding soils, especially for the leafy and stem vegetables such as pakchoi, cabbage, and celery. Bio-concentration factor values for Cd are higher than those for Pb and Cr, which indicates that Cd is more readily absorbed by vegetables than Pb and Cr. Therefore, more attention should be paid to the possible pollution of heavy metals in vegetables, especially Cd.  相似文献   

3.
The aim of this study was to survey the response of the microbial community to crude oil and the diversity of alkane hydroxylase (alkB) genes in soil samples from the Qinghai-Tibet Plateau (QTP). The enrichment cultures and clone libraries were used. Finally, 53 isolates and 94 alkB sequences were obtained from 10 pristine soil samples after enrichment at 10 °C with crude oil as sole carbon source. The isolates fell into the phyla Proteobacteria, Actinobacteria, and Bacteroidetes, with the dominance of Pseudomonas and Acinetobacter. The composition of degraders was different from polar habitats where Acinetobacter sp. is not a predominant responder of alkane degradative microbial communities. Phylogenetic analysis showed that the alkB genes from isolates and enrichment communities formed eight clusters and mainly related with alkB genes of Pseudomonas, Rhodococcus, and Acinetobacter. The alkB gene diversity in the QTP was lower than marine environments and polar soil samples. In particular, a total of 10 isolates exhibiting vigorous growth with crude oil could detect no crude oil degradation-related gene sequences, such as alkB, P450, almA, ndoB, and xylE genes. The Shannon-Wiener index of the alkB clone libraries from the QTP ranged from 1.00 to 2.24 which is similar with polar pristine soil samples but lower than that of contaminated soils. These results indicated that the Pseudomonas, Acinetobacter, and Rhodococcus genera are the candidate for in situ bioremediation, and the environment of QTP may be still relatively uncontaminated by crude oil.  相似文献   

4.
Water quality and bacterial contamination from 18 drinking water municipal plants in three locations at Giza governorate were investigated. The average total count of bacteria detected after four stages of treatments in the investigated plants was 32 CFU/1 mL compared to 2330 cfu/mL for raw water, with a reduction percentage of 98.6. Although there is a relatively high removal percent of bacterial contamination from the water sources, however, several bacterial pathogens were identified in the produced water prepared for drinking including Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, and Shigella spp. After 3 days of water incubation at 30 °C, the amount of bacterial endotoxins ranged from 77 to 137 ng/mL in the water produced from the municipal plants compared to 621–1260 ng/mL for untreated water. The main diseases reported from patients attending different clinics and hospitals during summer 2014 at the surveyed locations and assuredly due to drinking water from these plants indicated that diarrheas and gastroenteritis due to E. coli and Campylobacter jejuni constituted 65.7% of the total patients followed by bacillary dysentery or shigellosis due to Shigella spp. (7.9%) and cholera due to Vibrio cholera (7.2%). There was an increase in serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) as well as urea and creatinine values of guinea pigs consuming water produced from the non-governmental plants for 6 months indicating remarkable liver and kidney damages. Histological sections of liver and kidney from the tested animal revealed liver having ballooning degeneration of hepatocytes and distortion and fragmentation of the nuclei, while the section of the kidney showed irregularly distributed wrinkled cells, degenerated Bowman’s capsule, congested blood vessels, and inflammatory cells.  相似文献   

5.
The poor operational status of some wastewater treatment plants often result in the discharge of inadequately treated effluent into receiving surface waters. This is of significant public health concern as there are many informal settlement dwellers (ISDs) that rely on these surface waters for their domestic use. This study investigated the treatment efficiency of two independent wastewater treatment plants (WWTPs) in Durban, South Africa and determined the impact of treated effluent discharge on the physicochemical and microbial quality of the receiving water bodies over a 6-month period. Presumptive Escherichia coli isolates were identified using biochemical tests and detection of the mdh gene via PCR. Six major virulence genes namely eae, hly, fliC, stx1, stx2, and rfbE were also detected via PCR while antibiotic resistance profiles of the isolates were determined using Kirby-Bauer disc diffusion assay. The physicochemical parameters of the wastewater samples ranged variously between 9 and 313.33 mg/L, 1.52 and 76.43 NTUs, and 6.30 and 7.87 for COD, turbidity, and pH respectively, while the E. coli counts ranged between 0 and 31.2?×?103 CFU/ml. Of the 200 selected E. coli isolates, the hly gene was found in 28 %, fliC in 20 %, stx2 in 17 %, eae in 14 %, with stx1 and rfbE in only 4 % of the isolates. Notable resistance was observed toward trimethoprim (97 %), tetracycline (56 %), and ampicillin (52.5 %). These results further highlight the poor operational status of these WWTPs and outline the need for improved water quality monitoring and enforcement of stringent guidelines.  相似文献   

6.
The aims of the present investigation were to reveal the distribution and enrichment characteristics of copper in soil and Phragmites australis of Liao River estuary wetland. The concentrations of copper in root, stem, leaf, and ear of Phragmites australis as well as in soil were determined to study the absorption capacity of copper by wild Phragmites australis of Liao River estuary wetland. The study was carried out at test pool of the Shenyang Agricultural University, and the experimental materials (soil, irrigating water and Phragmites australis) were derived from Liao River estuary wetland. The concentrations of copper in soil and Phragmites australis were 16.4441 to 49.0209 mg/kg and 0.8621 to 89.5524 mg/kg, respectively. The results indicated that the enrichment coefficients of copper in different tissues of Phragmites australis changed with the growth of Phragmites australis. The results revealed that the enrichment coefficients of copper in the whole Phragmites australis were greater than 1 at each growing stage of the Phragmites australis. The results also showed that the transfer coefficients of Phragmites australis to copper changed with the growth of Phragmites australis. The results revealed that the Phragmites australis had a good removal effect on copper from soil and had some characteristics of copper hyperaccumulator.  相似文献   

7.
An optical method is developed to estimate water transparency (or underwater visibility) in terms of Secchi depth (Z sd ), which follows the remote sensing and contrast transmittance theory. The major factors governing the variation in Z sd , namely, turbidity and length attenuation coefficient (1/(c + K d ), c = beam attenuation coefficient; K d  = diffuse attenuation coefficient at 531 nm), are obtained based on band rationing techniques. It was found that the band ratio of remote sensing reflectance (expressed as (R rs (443) + R rs (490))/(R rs (555) + R rs (670)) contains essential information about the water column optical properties and thereby positively correlates to turbidity. The beam attenuation coefficient (c) at 531 nm is obtained by a linear relationship with turbidity. To derive the vertical diffuse attenuation coefficient (K d ) at 531 nm, K d (490) is estimated as a function of reflectance ratio (R rs (670)/R rs (490)), which provides the bio-optical link between chlorophyll concentration and K d (531). The present algorithm was applied to MODIS-Aqua images, and the results were evaluated by matchup comparisons between the remotely estimated Z sd and in situ Z sd in coastal waters off Point Calimere and its adjoining regions on the southeast coast of India. The results showed the pattern of increasing Z sd from shallow turbid waters to deep clear waters. The statistical evaluation of the results showed that the percent mean relative error between the MODIS-Aqua-derived Z sd and in situ Z sd values was within ±25%. A close agreement achieved in spatial contours of MODIS-Aqua-derived Z sd and in situ Z sd for the month of January 2014 and August 2013 promises the model capability to yield accurate estimates of Z sd in coastal, estuarine, and inland waters. The spatial contours have been included to provide the best data visualization of the measured, modeled (in situ), and satellite-derived Z sd products. The modeled and satellite-derived Z sd values were compared with measurement data which yielded RMSE = 0.079, MRE = ?0.016, and R 2  = 0.95 for the modeled Z sd and RMSE = 0.075, MRE = 0.020, and R 2  = 0.95 for the satellite-derived Z sd products.  相似文献   

8.
The afforestation of arid lands faces many challenges, and perhaps the most important key for success is choosing one or more species that are adapted well for local environmental conditions. We explored species that would be suitable for the steppe region of Central Anatolia. Intensive site preparation included ripping the subsoil (to 80 cm) and plowing the upper soil before planting seedlings of Elaeagnus angustifolia, Robinia pseudoacacia, Fraxinus angustifolia, and Pinus nigra were used as tree species. We also tested the success of several shrub species: Amygdalus orientalis, Calligonum polygonoides, and Spartium junceum. After five growing seasons, E. angustifolia showed the highest survival, with 80% of planted seedlings remaining. For the shrubs, A. orientalis was the most successful species with a 95% survival rate. Broad-leaved trees grew a cumulative average of 34 cm in height in 5 years, whereas P. nigra seedings grew only 9 cm. The greatest height growth occurred in the shrubs, with A. orientalis gaining 40 cm in height in 5 years. Overall, E. angustifolia and A. orientalis appeared best suited for afforestation in these areas. R. pseodoacacia and F. angustifolia may also be used as alternative species.  相似文献   

9.
A simple, sensitive and reliable HPLC-FLD method for the routine determination of 4-nonylphenol, 4-NP and 4-tert-octylphenol, 4-t-OP content in water samples was developed. The method consists in a liquid–liquid extraction of the target analytes with dichloromethane at pH  3.0–3.5 followed by the HPLC-FLD analysis of the organic extract using a Zorbax Eclipse XDB C8 column, isocratic elution with a mixed solvent acetonitrile/water 65:35, at a flow rate of 1.0 mL/min and applying a column temperature of 40°C. The method was validated and then applied with good results for the determination of 4-NP and 4-t-OP in Ialomi?a River water samples collected each month during 2006. The concentration levels of 4-NP and 4-t-OP vary between 0.08–0.17 μg/L with higher values of 0.24–0.37 μg/L in the summer months for 4-NP, and frequently <0.05 μg/L but also between 0.06–0.09 μg/L with higher values of 0.12–0.16 μg/L in July and August for 4-t-OP and were strongly influenced by sesonial and anthropic factors. The method was also applied on samples collected over 2 years 2007 and 2008 from urban wastewaters discharged into sewage or directly into the rivers by economic agents located in 30 Romanian towns. Good results were obtained when the method was used for analysis of effluents discharged into surface waters by 16 municipal wastewater treatment plants, during the year 2008.  相似文献   

10.
Land-use change through degrading natural vegetation for agricultural production adversely affects many of soil properties particularly organic carbon content of soils. The native shrub land and grassland of Gaziantep-Adiyaman plateau that is an important pistachio growing eco-region have been cleared to convert into pistachio orchard for the last 50 to 60 years. In this study, the effects of conversion of natural vegetation into agricultural uses on soil erodibility have been investigated. Soil samples were collected from surface of agricultural fields and adjacent natural vegetation areas, and samples were analyzed for some soil erodibility indices such as dispersion ratio (DR), erosion ratio (ER), structural stability index (SSI), Henin’s instability index (I s ), and aggregate size distribution after wet sieving (AggSD). According to the statistical evaluation, these two areas were found as different from each other in terms of erosion indices except for I s index (P < 0.001 for DR and ER or P < 0.01 for SSI). In addition, native shrub land and converted land to agriculture were found different in terms of AggSD in all aggregate size groups. As a contrary to expectations, correlation tests showed that there were no any interaction between soil organic carbon and measured erodibility indices in two areas. In addition, significant relationships were determined between measured variables and soil textural fractions as statistical. These obtaining findings were attributed to changing of textural component distribution and initial aggregate size distribution results from land-use change in the study area. Study results were explained about hierarchical aggregate formation mechanism.  相似文献   

11.
Temporal variation of Synechococcus, its production (μ) and grazing loss (g) rates were studied for 2 years at nearshore stations, i.e. Port Dickson and Port Klang along the Straits of Malacca. Synechococcus abundance at Port Dickson (0.3–2.3 × 105 cell ml?1) was always higher than at Port Klang (0.3–7.1 × 104 cell ml?1) (p < 0.001). μ ranged up to 0.98 day?1 (0.51 ± 0.29 day?1), while g ranged from 0.02 to 0.31 day?1 (0.15 ± 0.07 day?1) at Port Klang. At Port Dickson, μ and g averaged 0.47 ± 0.13 day?1 (0.29–0.82 day?1) and 0.31 ± 0.14 day?1 (0.13–0.63 day?1), respectively. Synechococcus abundance did not correlate with temperature (p > 0.25), but nutrient and light availability were important factors for their distribution. The relationship was modelled as log Synechococcus = 0.37Secchi ? 0.01DIN + 4.52 where light availability (as Secchi disc depth) was a more important determinant. From a two-factorial experiment, nutrients were not significant for Synechococcus growth as in situ nutrient concentrations exceeded the threshold for saturated growth. However, light availability was important and elevated Synechococcus growth rates especially at Port Dickson (F = 5.94, p < 0.05). As for grazing loss rates, they were independent of either nutrients or light intensity (p > 0.30). In nearshore tropical waters, an estimated 69 % of Synechococcus production could be grazed.  相似文献   

12.
Selection of appropriate residue application method is essential for better use of biomass for soil and environmental health improvement. A laboratory incubation experiment was conducted for 75 days to investigate C and N mineralization of residues of soybean (Glycine max L.), chickpea (Cicer arietinum L.), maize (Zea mays L.), and wheat (Triticum aestivum L.) placed on the soil surface and incorporated into the soil. The residue of soybean and chickpea had a greater decomposition rate than that of maize and wheat, despite of their placements. Higher rate of decomposition of the residue of soybean and chickpea was recorded when it was kept on the soil surface while soil incorporation of residue of wheat and maize resulted in faster decomposition. Therefore, these findings could be used as guidelines for management of crop residue application in farmland to improve soil and environmental quality.  相似文献   

13.
Diarrhoea remains a global public health enigma raising deep concerns for the health planners since contaminated potable water often spoils the community health structure. We hereby report a 6-year odd continuing outbreak surveillance report based on potable water indices, during which 264 water samples were screened from different districts of West Bengal, India. Samples were analysed for the presence of different enteropathogenic bacterial species by conventional molecular tools and their sensitivity to antibiotics. 78.03% samples were positive for enteropathogenic bacterial organisms and 75% samples harbored Coliform. 45.45, 12.12, and 4.16% samples were positive for E.coli, V. cholerae, and V. mimicus, respectively. Diarrhoeagenic E.coli 7 EPEC, 10 ETEC, and 2 EIEC were isolated along with 2 V. cholerae O1 Ogawa (ctxA and tcpA ElTor positive), one each from tube well and pond. Interestingly, 4 V.cholerae non-O1/non-O139 also harbored hlyA gene. The detection of toxin genes among this bacterial pool of sampled water indicates the fallout of the potable water sources, thus enabling us to establish that it is none other than the contaminated potable water system which often wreaks havoc in the south Bengal diarrhoeal menace. The consequences are further complicated by the presence of drug-resistant pathogenic bacterial pool to fluoroquinolone, beta-lactams, and cephalosporins, in the accessible potable water, with threats of outbreaks exploding into an epidemic, given suitable environment, poor sanitation, and unhygienic practices. Therefore, we strongly recommend re-modelling of ‘point-of-use water disinfection’ measures and adequate personal hygiene for healthier community life.  相似文献   

14.
In our analysis of 136 water samples from wetland environments (rice paddies, natural wetland sites, man-made water bodies) in rural areas of North-East Thailand, Burkholderia pseudomallei was most prevalent in rice paddies (15 of the 30 positive sites). The high prevalence in the water of rice fields is indicative of the inherent vulnerability of farmers in rural agricultural areas in this area of Thailand and likely other locations in the tropics. Nearly all B. pseudomallei-positive sites were found within the vicinity of a large wetland associated with the Chi River, in the month of July 2014. Positive samples were found in water ranging in pH from 5.9 to 8.7, salinity ranging from 0.04 to 1.58 ppt, nitrate ranging from 0 to 10.8 ppm, and iron ranging from 0.003 to 1.519 ppm. Of these variables, only iron content was statistically higher in B. pseudomallei-positive versus B. pseudomallei-negative sites, suggesting that increasing concentrations of iron may encourage the growth of this bacterium, which is responsible for melioidosis. Our results, when combined with data from other published studies, support the notion that B. pseudomallei can exist in a wide range of environmental conditions. Thus, we argue that health safety education is a more appropriate means of addressing farmer vulnerability than chemical or physical alterations to fields at large scales. Further, it may be important to investigate melioidosis through transdisciplinary approaches that consider the complex social and ecological contexts in which the disease occurs.  相似文献   

15.
The suitability of Mazzaella laminarioides and Sarcothalia crispata as heavy metal biomonitors of Cd, Cu, Hg, Pb, and Zn was assessed by comparing bioaccumulation of these elements in different life stages and frond sizes in samples from three locations, San Vicente Bay (industrial area), Coliumo, and Quidico (the latter as a reference station), where different degrees of heavy metal pollution are recorded. Bioaccumulation and bioconcentration factors of Cd, Cu, Hg, Pb, and Zn were evaluated. The two macroalgae species showed similar patterns, with higher values of Cu, Hg, Pb, and Zn in polluted areas. M. laminarioides bioaccumulated higher concentrations of all metals assessed than S. crispata, independent of life stage and frond size. The results also showed significantly higher Cu, Hg, Pb, and Zn concentrations (p < 0.05) in water samples from San Vicente Bay than those measured in Coliumo and Quidico. Concentrations of Cd, Hg, Pb, and Zn in San Vicente Bay and Cd, Hg, and Pb in Coliumo and Quidico exceed the mean values considered to represent natural concentrations (Cu = 3.00 μg L?1; Zn = 5.00 μg L?1; Pb = 0.03 μg L?1; Cd = 0.05 μg L?1; Hg = 0.05 μg L?1); however, the concentrations recorded do not cause negative effects on the growth and survival of macroalgae. The assessment of heavy metals bioaccumulated in M. laminarioides and S. crispata, particularly Hg, Pb, and Zn, offers a reliable approach for pollution assessment in rocky intertidal environments. Cu and Cd concentrations in seawater samples from San Vicente and Coliumo Bays were significantly higher than in those from Quidico (p value < 0.05); no significant differences in Cd concentrations were observed between San Vicente and Coliumo Bays (p < 0.05). Exceptionally, Cd is bioaccumulated at high levels independent of its availability in the water, thus reaching high concentrations in control areas. High concentrations of metals like Cu and Zn may limit or inhibit Cd uptake in macroalgae, since the transport channels are saturated by some metals, reducing the accumulation of others. These macroalgae species offer good potential for the development of suitable heavy metal pollution survey tools in rocky intertidal environments.  相似文献   

16.
The accumulation of heavy metals in agricultural soils has been the subject of great concern because these metals have the potential to be transferred to soil solutions and subsequently accumulate in the food chain. To study the persistence of trace metals in crop and orchard soils, representative surface soil samples were collected from terrace farmland that had been cultivated for various numbers of years (3, 8, 12, 15, and >20 years), terrace orchard land that had been cultivated for various numbers of years (4, 7, 10, 12, 15, 18, 25, and >30 years), and slope farmland with various gradients (3°, 5°, 8°, 12°, 15°, and 25°) and analyzed for heavy metals (As, Cr, Cu, Hg, Ni, and Zn). These samples were collected from Nihegou catchment of Chunhua county in the southern Loess Plateau of China. The six heavy metals demonstrated different trends with time or gradient in the three land-use types. The Cu and Zn contents of the soil were higher than the referee background values of the loessal soil, and the contents of Cr and Ni, and especially those of As and Hg, were lower. Cu was the only heavy metal that just met the Grade III Environmental Quality Standard for Soils of China, while the others reached grade I. Cu and Hg were considered contaminant factors and Hg was a moderate potential ecological risk factor in the catchment. Of the sites investigated, 89.5% fell into the category with a low degree of contamination (C d ) and rest were moderate, while all three land-use types had low potential ecological risk (RI). Changes of C d and RI were consistent with the cultivated time in the terrace farmland and terrace orchard land. Values of RI increased while C d decreased with the increasing of slope gradient in the slope farmland. Evaluating the ecological risk posed by heavy metals using more soil samples in a larger study area is necessary on the Loess Plateau of China.  相似文献   

17.
The zebrafish (Danio rerio) is one of the most studied aquatic organisms for water biomonitoring, due to its sensitivity to environmental degradation and resistance to toxic substances. This study determined the presence of micronuclei and nuclear abnormalities in peripheral blood erythrocytes, and assessed the gene expression of caspase-3 (CASP-3) and metallothionein 1 (MT-1) in the gills and liver of D. rerio. The study fish (n = 45) were exposed to water collected from two stations with mining impact (E2 and E3) and a reference station without evident mining contamination (E1), all located in La Elvira stream (Manizales-Colombia). In addition, a positive control (PC) with HgCl2 (50 μg/L) and negative control (NC) with tap water were included. The fish from the PC and E2 and E3 treatments displayed genotoxic effects and changes in gene expression, with significant differences in micronuclei formation and the presence of blebbed nuclei. The cytochrome oxidase subunit I (COI) gene was used as reference and proved to be stable compared to the β-actin and 28S ribosomal RNA (28S) genes. In gills, CASP-3 expression was higher in the PC, and MT-1 expression was higher in the PC and E3 treatment. In liver, CASP-3 was expressed in the E2 treatment, and MT-1 expression was low. These results show that the genotoxic effects and differential gene expression observed in fish exposed to water from La Elvira stream could also be affecting the organisms present in this habitat.  相似文献   

18.
Munition constituents (MC) are present in aquatic environments throughout the world. Potential for fluctuating release with low residence times may cause concentrations of MC to vary widely over time at contaminated sites. Recently, polar organic chemical integrative samplers (POCIS) have been demonstrated to be valuable tools for the environmental exposure assessment of MC in water. Flow rate is known to influence sampling by POCIS. Because POCIS sampling rates (Rs) for MC have only been determined under quasi-static conditions, the present study evaluated the uptake of 2,4,6-trinitrotoluene (TNT), RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), and 2,4- and 2,6-dinitrotoluenes (DNT), by POCIS in a controlled water flume at 7, 15, and 30 cm/s in 10-day experiments using samplers both within and without a protective cage. Sampling rate increased with flow rate for all MC investigated, but flow rate had the strongest impact on TNT and the weakest impact on RDX. For uncaged POCIS, mean Rs for 30 cm/s was significantly higher than that for 7 cm by 2.7, 1.9, 1.9, and 1.3 folds for TNT, 2,4-DNT, 2,6-DNT, and RDX, respectively. For all MC except RDX, mean Rs for caged POCIS at 7 cm/s were significantly lower than for uncaged samplers and similar to those measured at quasi-static condition, but except for 2,6-DNT, no caging effect was measured at the highest flow rate, indicating that the impact of caging on Rs is flow rate-dependent. When flow rates are known, flow rate-specific Rs should be used for generating POCIS-derived time-averaged concentrations of MC at contaminated sites.  相似文献   

19.
Storm water runoff is increasingly assessed for fecal indicator organisms (e.g., Escherichia coli, E. coli) and its impact on contact recreation. Concurrently, use of autosamplers along with logistic, economic, technical, and personnel barriers is challenging conventional protocols for sample holding times and storage conditions in the field. A common holding time limit for E. coli is 8 h with a 10 °C storage temperature, but several research studies support longer hold time thresholds. The use of autosamplers to collect E. coli water samples has received little field research attention; thus, this study was implemented to compare refrigerated and unrefrigerated autosamplers and evaluate potential E. coli concentration differences due to field storage temperature (storms with holding times ≤24 h) and due to field storage time and temperature (storms >24 h). Data from 85 runoff events on four diverse watersheds showed that field storage times and temperatures had minor effects on mean and median E. coli concentrations. Graphs and error values did, however, indicate a weak tendency for higher concentrations in the refrigerated samplers, but it is unknown to what extent differing die-off and/or regrowth rates, heterogeneity in concentrations within samples, and laboratory analysis uncertainty contributed to the results. The minimal differences in measured E. coli concentrations cast doubt on the need for utilizing the rigid conventional protocols for field holding time and storage temperature. This is not to say that proper quality assurance and quality control is not important but to emphasize the need to consider the balance between data quality and practical constraints related to logistics, funding, travel time, and autosampler use in storm water studies.  相似文献   

20.
An unusual bloom of Chrysosporum ovalisporum (basionym Aphanizomenon ovalisporum) occurred for the first time in the Murray River and distributary rivers in New South Wales, Australia, from mid-February to early June 2016. At its greatest extent, it contaminated a combined river length of ca. 2360 km. Chrysosporum ovalisporum usually comprised >99% of the total bloom biovolume at most locations sampled, which at times exceeded 40 mm3 l?1. The origins of the bloom were most likely reservoirs on the upper Murray River, with cyanobacterial-infested water released from them contaminating the river systems downstream. An integrated approach using three analytical methods: (1) identification and enumeration by microscopy, (2) multiplex quantitative polymerase chain reaction (qPCR), and (3) toxin analysis, was used to obtain data for the assessment of risk to water users and management of the bloom. qPCR indicated some cyrA and stxA genes responsible for cylindrospermopsin and saxitoxin biosynthesis respectively were present, but mostly below the level of quantification. No mcyE genes for microcystin biosynthesis were detected. Toxin analysis also revealed that cylindrospermopsin, saxitoxin and microcystin were all below detection. Lack of measurable toxicity in a species usually considered a cylindrospermopsin producer elsewhere meant the possibility of relaxing management guidelines; however, high (Red) alerts needed to be maintained due to risk to water users from other biohazards potentially produced by the cyanobacteria such as contact irritants. A three-tiered monitoring strategy is suggested for monitoring cyanobacterial blooms to provide enhanced data for bloom management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号