首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The aim of this study is to analyze the effect of salinity on polycyclic aromatic hydrocarbons (PAHs) biodegradation, community structure and naphthalene dioxygenase gene (ndo) diversity of a halophilic bacterial consortium with the denaturing gradient gel electrophoresis (DGGE) approach. The consortium was developed from oil-contaminated saline soil after enrichment for six times, using phenanthrene as the substrate. The prominent species in the bacterial consortium at all salinities were identified as halophilic bacteria Halomonas, Alcanivorax, Marinobacter, Idiomarina, Martelella and uncultured bacteria. The predominant microbes gradually changed associating with the saline concentration fluctuations ranging from 0.1% to 25% (w/v). Two ndo alpha subunits were dominant at salinities ranging from 0.1% to 20%, while not been clearly detected at 25% salinity. Consistently, the biodegradation occurred at salinities ranging from 0.1% to 20%, while no at 25% salinity, suggesting the two ndo genes played an important role in the degradation. The phylogenetic analysis revealed that both of the two ndo alpha subunits were related to the classic nah-like gene from Pseudomonas stutzeri AN10 and Pseudomonas aeruginosa PaK1, while one with identity of about 82% and the other one with identity of 90% at amino acid sequence level. We concluded that salinity greatly affected halophilic bacterial community structure and also the functional genes which were more related to biodegradation.
  相似文献   

2.
Nitrogen (N) and phosphorus (P) released from the sediment to the surface water is a major source of water quality impairment. Therefore, inhibiting sediment nutrient release seems necessary. In this study, red soil (RS) was employed to control the nutrients released from a black-odorous river sediment under flow conditions. The N and P that were released were effectively controlled by RS capping. Continuous-flow incubations showed that the reduction efficiencies of total N (TN), ammonium (NH 4 + -N), total P (TP) and soluble reactive P (SRP) of the overlying water by RS capping were 77%, 63%, 77% and 92%, respectively, and nitrification and denitrification occurred concurrently in the RS system. An increase in the water velocity coincided with a decrease in the nutrient release rate as a result of intensive water aeration.
  相似文献   

3.
Methane fermentation process can be restricted and even destroyed by the accumulation of propionate because it is the most difficult to be anaerobically oxidized among the volatile fatty acids produced by acetogenesis. To enhance anaerobic wastewater treatment process for methane production and COD removal, a syntrophic propionate-oxidizing microflora B83 was obtained from an anaerobic activated sludge by enrichment with propionate. The inoculation of microflora B83, with a 1:9 ratio of bacteria number to that of the activated sludge, could enhance the methane production from glucose by 2.5 times. With the same inoculation dosage of the microflora B83, COD removal in organic wastewater treatment process was improved from 75.6% to 86.6%, while the specific methane production by COD removal was increased by 2.7 times. Hydrogen-producing acetogenesis appeared to be a rate-limiting step in methane fermentation, and the enhancement of hydrogen-producing acetogens in the anaerobic wastewater treatment process had improved not only the hydrogen-producing acetogenesis but also the acidogenesis and methanogenesis.
  相似文献   

4.
The Environmental Burden of Disease (EBD) approach for outdoor air pollution has been used to calculate premature deaths and average potential years of life lost attributable to air pollution in China over the past 10 years with differences between the North and the South of the country being analyzed. The results indicate that: (1) Between 2004 and 2013, annual premature deaths attributable to outdoor air pollution in China ranged from 350000 to 520000. In 2013, deaths resulting from air pollution in China represented 9.9% of the country’s total deaths. (2) In 2004, the average life expectancy of the Chinese population and the number of potential years of life lost (PYLL) attributable to air pollution was 69.6 and 1.85 years respectively as compared to 74.4 and 0.67 years respectively in 2013. (3) The number of the PYLL attributable to air pollution in the northern regions of China is found to be larger than that of the southern regions. The PYLL figures of the northern and southern regions in 2004 were 2.3 and 1.8 years, respectively, with a difference of 0.5 years, as compared to 1.4 and 0.7 years respectively with a difference of 0.7 years in 2013.
  相似文献   

5.
Microwave irradiation has been used to prepare Al, Fe-pillared clays from a natural Tunisian smectite from the El Hicha deposit (province of Gabes). Chemical analysis, XRD spectra and surface properties evidenced the success of pillaring process. The obtained solids present higher surface area and pore volume than conventionally prepared Al-Fe pillared clays. The main advantages of the microwave methodology are the considerable reduction of the synthesis time and the consumption of water. The microwave-derived Al-Fe pillared clays have been tested for catalytic wet air oxidation (CWAO) of phenol in a stirred tank at 160°C and 20 bar of pure oxygen pressure. These materials are efficient for CWAO of phenol and are highly stable despite the severe operating conditions (acidic media, high pressure, high temperature). The catalyst deactivation was also significantly hindered when compared to conventionally prepared clays. Al-Fe pillared clays prepared by microwave methodology are promising as catalysts for CWAO industrial water treatment.
  相似文献   

6.
Methane production from low-strength wastewater (LSWW) is generally difficult because of the low metabolism rate of methanogens. Here, an up-flow biofilm reactor equipped with conductive granular graphite (GG) as fillers was developed to enhance direct interspecies electron transfer (DIET) between syntrophic electroactive bacteria and methanogens to stimulate methanogenesis process. Compared to quartz sand fillers, using conductive fillers significantly enhanced methane production and accelerated the start-up stage of biofilm reactor. At HRT of 6 h, the average methane production rate and methane yield of reactor with GG were 0.106 m3/(m3·d) and 74.5 L/kg COD, which increased by 34.3 times and 22.4 times respectively compared with the reactor with common quartz sand fillers. The microbial community analysis revealed that methanogens structure was significantly altered and the archaea that are involved in DIET (such as Methanobacterium) were enriched in GG filler. The beneficial effects of conductive fillers on methane production implied a practical strategy for efficient methane recovery from LSWW.
  相似文献   

7.
Direct individual analysis using Scanning Electron Microscopy combined with online observation was conducted to examine the S-rich particles in PM2.5 of two typical polluted haze episodes in summer and winter from 2014 to 2015 in Beijing. Four major types of S-rich particles, including secondary CaSO4 particles (mainly observed in summer), S-rich mineral particles (SRM), S-rich water droplets (SRW) and (C, O, S)-rich particles (COS) were identified.We found the different typical morphologies and element distributions of S-rich particles and considered that (C, O, S)-rich particles had two major mixing states in different seasons. On the basis of the S-rich particles’ relative abundances, S concentrations and their relationships with PM2.5 as well as the seasonal comparison, we revealed that the S-participated formation degrees of SRM and SRW would enhance with increasing PM2.5 concentration. Moreover, C-rich matter and sulfate had seasonally different but significant impacts on the formation of COS.
  相似文献   

8.
Many studies have focused on environmental estrogen-related diseases. However, no consistent gene markers or signatures for estrogenicity have been discovered in mammals. This study investigated the estrogenic effects of 17β-estradiol on the prostate in immature male mice. Consistent U-shaped responses were seen in bodyweight, ventral prostate epithelial morphology, and miRNA expression levels. Specifically, most estradiol regulated miRNAs were downregulated at low doses of estradiol (0.2 and 2 mg·kg–1), and whose expression returned to the control level at a larger dose (200 mg·kg–1). The function of these regulated miRNAs is related to the prostate cancer and PI3K-Akt signaling pathways, which is consistent with the function of estradiol. Furthermore, the miRNA-processing machinery, Drosha, in the prostate was also regulated in a similar pattern, which could be a part of the U-shaped miRNA expression mechanism. All of these data indicate that the prostate is a reliable organ for evaluating estrogenic activity and that the typical nonmonotonic dose-response relationship could be used as a novel biomarker for estrogenicity.
  相似文献   

9.
Flow cytometry (FCM) has been widely used in multi-parametric assessment of cells in various research fields, especially in environmental sciences. This study detected the metabolic activity of Escherichia coli and Staphylococcus aureus by using an FCM method based on 5-cyano-2,3-ditolyltetrazolium chloride (CTC); the accuracy of this method was enhanced by adding SYTO 9 and 10%R2A broth. The disinfection effects of chlorine, chloramine, and UV were subsequently evaluated by FCM methods. Chlorine demonstrated stronger and faster destructive effects on cytomembrane than chloramine, and nucleic acids decomposed afterwards. The metabolic activity of the bacteria persisted after the cytomembranewas damaged as detected using CTC. Low-pressure (LP) UV or medium-pressure (MP) UV treatments exerted no significant effects on membrane permeability. The metabolic activity of the bacteria decreased with increasing UV dosage, and MP-UV was a stronger inhibitor of metabolic activity than LP-UV. Furthermore, the membrane of Gram-positive S. aureus was more resistant to chlorine/chloramine than that of Gram-negative E. coli. In addition, S. aureus showed higher resistance to UV irradiation than E. coli.
  相似文献   

10.
Bottom ash is an inevitable by-product from municipal solid waste (MSW) incineration plants. Recycling it as additives for cement production is a promising disposal method. However, the heavy metals and chlorine are the main limiting factors because of the potential environmental risks and corrosion of cement kilns. Therefore, investigating heavy metal and chlorine characteristics of bottom ash is the significant prerequisite of its reuse in cement industries. In this study, a correlative analysis was conducted to evaluate the effect of the MSW components and collection mode on the heavy metal and chlorine characteristics in bottom ash. The chemical speciation of insoluble chlorine was also investigated by synchrotron X-ray diffraction analysis. The results showed that industrial waste was the main source of heavy metals, especially Cr and Pb, in bottom ash. The higher contents of plastics and kitchen waste lead to the higher chlorine level (0.6 wt.%–0.7 wt.%) of the bottom ash. The insoluble chlorine in the MSW incineration bottom ash existed primarily as AlOCl, which was produced under the high temperature (1250°C) in incinerators.
  相似文献   

11.
A sampling campaign including summer, autumn and winter of 2014 and spring of 2015 was accomplished to obtain the characteristic of chemical components in PM2.5 at three sites of Kunming, a plateau city in South-west China. Nine kinds of water-soluble inorganic ions (WSI), organic and element carbon (OC and EC) in PM2.5 were analyzed by ion chromatography and thermal optical reflectance method, respectively. Results showed that the average concentrations of total WSI, OC and EC were 22.85±10.95 µg·m-3, 17.83±9.57 µg·m-3 and 5.11±4.29 µg·m-3, respectively. They totally accounted for 53.0% of PM2.5. Secondary organic and inorganic aerosols (SOA and SIA) were also assessed by the minimum ratio of OC/EC, nitrogen and sulfur oxidation ratios. The annual average concentrations of SOA and SIA totally accounted for 28.3% of the PM2.5 concentration. The low proportion suggested the primary emission was the main source of PM2.5 in Kunming. However, secondary pollution in the plateau city should also not be ignorable, due to the appropriate temperature and strong solar radiation, which can promote the atmospheric photochemical reactions.
  相似文献   

12.
A new type of Au/TiO2/reduced graphene oxide (RGO) nanocomposite was fabricated by the hydrothermal synthesis of TiO2 on graphene oxide followed by the photodeposition of Au nanoparticles. Transmission electron microscopy images showed that Au nanoparticles were loaded onto the surface of both TiO2 and RGO. Au/TiO2/RGO had a better photocatalytic activity than Au/ TiO2 for the degradation of phenol. Electrochemical measurements indicated that Au/TiO2/RGO had an improved charge transfer capability. Meanwhile, chemiluminescent analysis and electron spin resonance spectroscopy revealed that Au/TiO2/RGO displayed high production of hydrogen peroxide and hydroxyl radicals in the photocatalytic process. This high photocatalytic performance was achieved via the addition of RGO in Au/TiO2/RGO, where RGO served not only as a catalyst support to provide more sites for the deposition of Au nanoparticles but also as a collector to accept electrons from TiO2 to effectively reduce photogenerated charge recombination.
  相似文献   

13.
The development of cost-effective and highly efficient anode materials for extracellular electron uptake is important to improve the electricity generation of bioelectrochemical systems. An effective approach to mitigate harmful algal bloom (HAB) is mechanical harvesting of algal biomass, thus subsequent processing for the collected algal biomass is desired. In this study, a low-cost biochar derived from algal biomass via pyrolysis was utilized as an anode material for efficient electron uptake. Electrochemical properties of the algal biochar and graphite plate electrodes were characterized in a bioelectrochemical system (BES). Compared with graphite plate electrode, the algal biochar electrode could effectively utilize both indirect and direct electron transfer pathways for current production, and showed stronger electrochemical response and better adsorption of redox mediators. The maximum current density of algal biochar anode was about 4.1 times higher than graphite plate anode in BES. This work provides an application potential for collected HAB to develop a cost-effective anode material for efficient extracellular electron uptake in BES and to achieve waste resource utilization.
  相似文献   

14.
This work presents an overall introduction to the Station for Observing Regional Processes of the Earth System–SORPES in Nanjing, East China, and gives an overview about main scientific findings in studies of air pollution-weather/climate interactions obtained since 2011. The main results summarized in this paper include overall characteristics of trace gases and aerosols, chemical transformation mechanisms for secondary pollutants like O3, HONO and secondary inorganic aerosols, and the air pollution–weather/climate interactions and feedbacks in mixed air pollution plumes from sources like fossil fuel combustion, biomass burning and dust storms. The future outlook of the development plan on instrumentation, networking and data-sharing for the SORPES station is also discussed.
  相似文献   

15.
Bioelectrochemical systems (BES) have been extensively studied for resource recovery from wastewater. By taking advantage of interactions between microorganisms and electrodes, BES can accomplish wastewater treatment while simultaneously recovering various resources including nutrients, energy and water (“NEW”). Despite much progress in laboratory studies, BES have not been advanced to practical applications. This paper aims to provide some subjective opinions and a concise discussion of several key challenges in BES-based resource recovery and help identify the potential application niches that may guide further technological development. In addition to further increasing recovery efficiency, it is also important to have more focus on the applications of the recovered resources such as how to use the harvested electricity and gaseous energy and how to separate the recovered nutrients in an energy-efficient way. A change in mindset for energy performance of BES is necessary to understand overall energy production and consumption. Scaling up BES can go through laboratory scale, transitional scale, and then pilot scale. Using functions as driving forces for BES research and development will better guide the investment of efforts.
  相似文献   

16.
We implemented the online coupled WRF-Chem model to reproduce the 2013 January haze event in North China, and evaluated simulated meteorological and chemical fields using multiple observations. The comparisons suggest that temperature and relative humidity (RH) were simulated well (mean biases are–0.2K and 2.7%, respectively), but wind speeds were overestimated (mean bias is 0.5 m?s–1). At the Beijing station, sulfur dioxide (SO2) concentrations were overpredicted and sulfate concentrations were largely underpredicted, which may result from uncertainties in SO2 emissions and missing heterogeneous oxidation in current model. We conducted three parallel experiments to examine the impacts of doubling SO2 emissions and incorporating heterogeneous oxidation of dissolved SO2 by nitrogen dioxide (NO2) on sulfate formation during winter haze. The results suggest that doubling SO2 emissions do not significantly affect sulfate concentrations, but adding heterogeneous oxidation of dissolved SO2 by NO2 substantially improve simulations of sulfate and other inorganic aerosols. Although the enhanced SO2 to sulfate conversion in the HetS (heterogeneous oxidation by NO2) case reduces SO2 concentrations, it is still largely overestimated by the model, indicating the overestimations of SO2 concentrations in the North China Plain (NCP) are mostly due to errors in SO2 emission inventory.
  相似文献   

17.
Biofilm is an effective simultaneous denitrification and in situ sludge reduction system, and the characteristics of different biofilm carrier have important implications for biofilm growth and in situ sludge reduction. In this study, the performance and mechanism of in situ sludge reduction were compared between FSC-SBBR and SC-SBBR with constructed by composite floating spherical carriers (FSC) and multi-faceted polyethylene suspension carriers (SC), respectively. The variation of EPS concentration indicated that the biofilm formation of FSC was faster than SC. Compared with SCSBBR, the FSC-SBBR yielded 0.16 g MLSS/g COD, almost 27.27% less sludge. The average removal rates of COD and NH4+-N were 93.39% and 96.66%, respectively, which were 5.21% and 1.43% higher than the average removal rate of SC-SBBR. Investigation of the mechanisms of sludge reduction revealed that, energy uncoupling metabolism and sludge decay were the main factors for sludge reduction inducing 43.13% and 49.65% less sludge, respectively, in FSC-SBBR. EEM fluorescence spectroscopy and SUVA analysis showed that the hydrolytic capacity of biofilm attached in FSC was stronger than those of SC, and the hydrolysis of EPS released more DOM contributed to lysis-cryptic growth metabolism. In additional, Bacteroidetes and Mizugakiibacter associated with sludge reduction were the dominant phylum and genus in FCS-SBBR. Thus, the effect of simultaneous in situ sludge reduction and pollutant removal in FSC-SBBR was better.
  相似文献   

18.
To further determine the fouling behavior of bovine serum albumin (BSA) on different hydrophilic PVDF ultrafiltration (UF) membranes over a range of pH values, self-made atomic force microscopy (AFM) colloidal probes were used to detect the adhesion forces of membrane–BSA and BSA–BSA, respectively. Results showed that the membrane–BSA adhesion interaction was stronger than the BSA–BSA adhesion interaction, and the adhesion force between BSA–BSA-fouled PVDF/PVA membranes was similar to that between BSA–BSA-fouled PVDF/PVP membranes, which indicated that the fouling was mainly caused by the adhesion interaction between membrane and BSA. At the same pH condition, the PVDF/PVA membrane–BSA adhesion force was smaller than that of PVDF/ PVP membrane–BSA, which illustrated that the more hydrophilic the membrane was, the better antifouling ability it had. The extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory predicts that the polar or Lewis acid–base (AB) interaction played a dominant role in the interfacial free energy of membrane–BSA and BSA–BSA that can be affected by pH. For the same membrane, the pH values of a BSA solution can have a significant impact on the process of membrane fouling by changing the AB component of free energy.
  相似文献   

19.
Effect of different carbon sources on purification performance and change of microbial community structure in a novel A2N-MBR process were investigated. The results showed that when fed with acetate, propionate or acetate and propionate mixed (1:1) as carbon sources, the effluent COD, NH4 +-N, TN and TP were lower than 30, 5, 15 and 0.5 mg?L–1, respectively. However, taken glucose as carbon source, the TP concentration of effluent reached 2.6 mg?L–1. Process analysis found that the amount of anaerobic phosphorus release would be the key factor to determine the above effectiveness. The acetate was beneficial to the growth of Candidatus Accumulibacter associated with biological phosphorus removal, which was the main cause of high efficiency phosphorus removal in this system. In addition, it could eliminate the Candidatus Competibacter associated with glycogen-accumulating organisms and guarantee high efficiency phosphorus uptake of phosphorus accumulating organisms in the system with acetate as carbon source.
  相似文献   

20.
Titanium dioxide (TiO2) is a widely used photocatalyst that has been demonstrated for microorganism disinfection in drinking water. In this study, a new material with a novel structure, silver and copper loaded TiO2 nanowire membrane (Cu-Ag-TiO2) was prepared and evaluated for its efficiency to inactivate E. coli and bacteriophage MS2. Enhanced photo-activated bactericidal and virucidal activities were obtained by the Cu-Ag-TiO2 membrane than by the TiO2, Ag-TiO2 and Cu-TiO2 membranes under both dark and UV light illumination. The better performance was attributed to the synergies of enhanced membrane photoactivity by loading silver and copper on the membrane and the synergistic effect between the free silver and copper ions in water. At the end of a 30 min test of deadend filtration under 254 nm UV irradiation, the Cu-Ag-TiO2 membrane was able to obtain an E. coli removal of 7.68 log and bacteriophage MS2 removal of 4.02 log, which have met the US EPA standard. The free metal ions coming off the membrane have concentrations of less than 10 ppb in the water effluent, far below the US EPA maximum contaminant level for silver and copper ions in drinking water. Therefore, the photo-activated disinfection by the Cu-Ag-TiO2 membrane is a viable technique for meeting drinking water treatment standards of microbiological water purifiers.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号