首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Catalytic coprocessing of model and waste plastics with light Arabian crude oil residue was investigated using NiMo/Al2O3, ZSM-5, FCC, and hydrocracking catalysts. Reaction systems that were studied included low density polyethylene (LDPE), high density polyethylene (HDPE), polystyrene (PS), and polypropylene (PP). A series of single (plastic/catalyst) and binary (plastic/resid/catalyst) reactions were carried out in a 25-cm3 micro autoclave reactor under different conditions of weight and type of catalyst, duration, pressure, and temperature. The optimum conditions selected for our work were: 1% catalyst by weight of total feedstock weight, 60min reaction time, 8.3Mpa of H2, and 430°C. The product distribution for the binary system using plastic and petroleum residue provided some encouraging results. High yields of liquid fuels in the boiling range of 100°–480°C and gases were obtained along with a small amount of heavy oils and insoluble material such as gums and coke. In general, this study helps to demonstrate the technical feasibility of upgrading both waste plastics and petroleum resid, as well as an alternative approach to feedstock recycling.  相似文献   

2.
The economic success of feedstock recycling procedures for plastic wastes is increasingly demanding the conversion of the starting residue into more valuable chemicals. Thermal cracking of polyethylenes leads to the preparation of equimolar mixtures of n-paraffins and 1-alkenes within the C2–C100 range. These 1-olefins can be catalytically upgraded by selective oxidation processes to more valuable products (e.g., ketones and fatty acids) with different uses such as polar waxes, cetane improvers, varnishes, and printer inks. The results obtained on oxidation in a modified Wacker system of a model 1-olefin (1-dodecene) as well as of a distillate cut (C10–C25) of the product from the thermal cracking of urban polyethylene waste are described.  相似文献   

3.
Catalytic cracking of high-density polyethylene (HDPE) over fluid catalytic cracking (FCC) catalysts (1:6 ratio) was carried out using a laboratory fluidized bed reactor operating at 450 degrees C. Two fresh and two steam deactivated commercial FCC catalysts with different levels of rare earth oxide (REO) were compared as well as two used FCC catalysts (E-Cats) with different levels of metal poisoning. Also, inert microspheres (MS3) were used as a fluidizing agent to compare with thermal cracking process at BP pilot plant at Grangemouth, Scotland, which used sand as its fluidizing agent. The results of HDPE degradation in terms of yield of volatile hydrocarbon product are fresh FCC catalysts>steamed FCC catalysts approximately used FCC catalysts. The thermal cracking process using MS3 showed that at 450 degrees C, the product distribution gave 46 wt% wax, 14% hydrocarbon gases, 8% gasoline, 0.1% coke and 32% nonvolatile product. In general, the product yields from HDPE cracking showed that the level of metal contamination (nickel and vanadium) did not affect the product stream generated from polymer cracking. This study gives promising results as an alternative technique for the cracking and recycling of polymer waste.  相似文献   

4.
Recycling and recovery routes of plastic solid waste (PSW): A review   总被引:2,自引:0,他引:2  
Plastic solid waste (PSW) presents challenges and opportunities to societies regardless of their sustainability awareness and technological advances. In this paper, recent progress in the recycling and recovery of PSW is reviewed. A special emphasis is paid on waste generated from polyolefinic sources, which makes up a great percentage of our daily single-life cycle plastic products. The four routes of PSW treatment are detailed and discussed covering primary (re-extrusion), secondary (mechanical), tertiary (chemical) and quaternary (energy recovery) schemes and technologies. Primary recycling, which involves the re-introduction of clean scrap of single polymer to the extrusion cycle in order to produce products of the similar material, is commonly applied in the processing line itself but rarely applied among recyclers, as recycling materials rarely possess the required quality. The various waste products, consisting of either end-of-life or production (scrap) waste, are the feedstock of secondary techniques, thereby generally reduced in size to a more desirable shape and form, such as pellets, flakes or powders, depending on the source, shape and usability. Tertiary treatment schemes have contributed greatly to the recycling status of PSW in recent years. Advanced thermo-chemical treatment methods cover a wide range of technologies and produce either fuels or petrochemical feedstock. Nowadays, non-catalytic thermal cracking (thermolysis) is receiving renewed attention, due to the fact of added value on a crude oil barrel and its very valuable yielded products. But a fact remains that advanced thermo-chemical recycling of PSW (namely polyolefins) still lacks the proper design and kinetic background to target certain desired products and/or chemicals. Energy recovery was found to be an attainable solution to PSW in general and municipal solid waste (MSW) in particular. The amount of energy produced in kilns and reactors applied in this route is sufficiently investigated up to the point of operation, but not in terms of integration with either petrochemical or converting plants. Although primary and secondary recycling schemes are well established and widely applied, it is concluded that many of the PSW tertiary and quaternary treatment schemes appear to be robust and worthy of additional investigation.  相似文献   

5.
Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest in pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H2, C1–C4 hydrocarbons, CO2, CO and H2S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale.  相似文献   

6.
The huge increase in the generation of post-consumer plastic waste has produced a growing interest in eco-efficient strategies and technologies for their appropriate management and recycling. In response to this, PROQUIPOL Project is focused on developing, optimizing and adapting feedstock recycling technologies as an alternative for management for the treatment of complex plastic waste. Among the different plastic wastes studied, PROQUIPOL Project is working on providing a suitable treatment to the highly colored and complex multilayered post-consumer waste fractions of polyethylene terephthalate (PET) by chemical depolymerisation methods. Glycolysis and alkali hydrolysis processes have been studied with the aim of promoting the transformation of PET into the bis(2-hydroxyethyl) terephthalate monomer and terephthalic acid, respectively. In both cases operational conditions such as temperature, reaction time, catalyst to PET rate and solvent to PET rate have been considered to optimize product yield, achieving values near to 90 % and monomer purities over 95 % in both processes. This paper presents results obtained for each treatment as well as a simplified comparison of technical, economic and environmental issues.  相似文献   

7.
This study conducted gasification and catalytic reforming experiments with the expectation of obtaining new advantages on energy recovery and aimed for the development of an effective catalyst. Initially, the use of thermal gasification technology for waste treatment in line with waste-to-energy strategies was reviewed. Technological systems which have gasification were classified and their current status was discussed. Then, the results of gasification and reforming experiments showed that product gas with 50 % H2 or more was obtained using a Ni catalyst on a mesoporous silica–based SBA-15 support (NiO/SBA-15), which we newly developed. Experiments using wood feedstock revealed that H2 production by the catalyst was better when the NiO content was 20 % (W/W) or more than when another catalyst or the Ni catalyst with a lower Ni loading was used. Tar formation as a by-product was also well controlled by the catalyst, and use of a catalyst with 40 % NiO reduced the tar concentration to less than 0.2 g/\( {\text{m}}^{3}_{\text{N}} \). Experiments using a mixed feedstock of wood and RPF resulted in an increase in hydrocarbon concentration because of insufficient reforming. This finding suggests that future work is required to find a better solution to wood and RPF co-gasification.  相似文献   

8.
Pyrolysis of plastic waste is an alternative way of plastic recovery and could be a potential solution for the increasing stream of solid waste. The objective of this work was to increase the yield the gaseous olefins (monomers) as feedstock for polymerization process and to test the applicability of a commercial Ziegler-Natta (Z-N): TiCl(4)/MgCl(2) for cracking a mixture of polyolefins consisted of 46%wt. of low density polyethylene (LDPE), 30%wt. of high density polyethylene (HDPE) and 24%wt. of polypropylene (PP). Two sets of experiments have been carried out at 500 and 650°C via catalytic pyrolysis (1% of Z-N catalyst) and at 650 and 730°C via only-thermal pyrolysis. These experiments have been conducted in a lab-scale, fluidized quartz-bed reactor of a capacity of 1-3kg/h at Hamburg University. The results revealed a strong influence of temperature and presence of catalyst on the product distribution. The ratios of gas/liquid/solid mass fractions via thermal pyrolysis were: 36.9/48.4/15.7%wt. and 42.4/44.7/13.9%wt. at 650 and 730°C while via catalytic pyrolysis were: 6.5/89.0/4.5%wt. and 54.3/41.9/3.8%wt. at 500 and 650°C, respectively. At 650°C the monomer generation increased by 55% up to 23.6%wt. of total pyrolysis products distribution while the catalyst was added. Obtained yields of olefins were compared with the naphtha steam cracking process and other potentially attractive processes for feedstock generation. The concept of closed cycle material flow for polyolefins has been discussed, showing the potential benefits of feedstock recycling in a plastic waste management.  相似文献   

9.
Waste plastics contribute to serious environmental and social problems, such as the loss of natural resources, environmental pollution, and depletion of landfill space, but they also create demands on the environmentally-oriented part of the society. Feedstock recycling of scrap polymers by thermal and chemical methods is well known and environmentally accepted. The paper presents the results of thermodynamic analysis of the conversion of polyolefins in a fuel-like mixture of hydrocarbons using thermal cracking in a new type of tubular reactor with molten metal. Evaluation of the efficiency of the process was based on exergy calculations. Calculated exergy efficiency was ca. 79.5 %. It means that feedstock recycling of waste is better from an energetic and environmental point of view than other processes, particularly incineration.  相似文献   

10.
Here, we focused on the recycling of waste printed circuit boards (WPCBs) using vacuum pyrolysis-centrifugation coupling technology (VPCT) aiming to obtain valuable feedstock and resolve environmental pollution. The two types of WPCBs were pyrolysed at 600°C for 30 min under vacuum condition. During the pyrolysis process, the solder of WPCBs was separated and recovered when the temperature range was 400-600°C, and the rotating drum was rotated at 1000 rpm for 10 min. The type-A of WPCBs pyrolysed to form an average of 67.91 wt.% residue, 27.84 wt.% oil, and 4.25 wt.% gas; and pyrolysis of the type-B of WPCBs led to an average mass balance of 72.22 wt.% residue, 21.57 wt.% oil, and 6.21 wt.% gas. The GC-MS and FT-IR analyses showed that the two pyrolysis oils consisted mainly of phenols and substituted phenols. The pyrolysis oil can be used for fuel or chemical feedstock for further processing. The recovered solder can be recycled directly and it can also be a good resource of lead and tin for refining. The pyrolysis residues contained various metals, glass fibers and other inorganic materials, which could be recovered after further treatment. The pyrolysis gases consisted mainly of CO, CO(2), CH(4), and H(2), which could be collected and recycled.  相似文献   

11.
Thermal gasification and reforming technologies applicable over a wide temperature range were investigated for high efficiency and for the calorific value of the gas evolved from organic waste such as woody debris. The durability of the reforming catalyst and the availability of catalyst regeneration were investigated using laboratory-scale catalytic reformers and a gasifier. Commercial Ni-based catalyst and calcined limestone (CaO) were applied to the reforming reaction. The results of woody waste gasification and reforming revealed the hydrogen concentration produced to be sustained at a high catalyst temperature of 1123 K, which prevented the catalyst from deactivating. The results also indicated that catalyst regeneration by air oxidation at the same temperature would be effective for enhancing catalytic activity.  相似文献   

12.
Dehalogenation is a key technology in the feedstock recycling of mixed halogenated waste plastics. In this study, two different methods were used to clarify the effectiveness of our proposed catalytic dehalogenation process using various carbon composites of iron oxides and calcium carbonate as the catalyst/sorbent. The first approach (a two-step process) was to develop a process for the thermal degradation of mixed halogenated waste plastics, and also develop dehalogenation catalysts for the catalytic dehydrochlorination of organic chlorine compounds from mixed plastic-derived oil containing polyvinyl chloride (PVC) using a fixed-bed flow-type reactor. The second approach (a single-step process) was the simultaneous degradation and dehalogenation of chlorinated (PVC) and brominated (plastic containing brominated flame retardant, HIPS–Br) mixed plastics into halogen-free liquid products. We report on a catalytic dehalogenation process for the chlorinated and brominated organic compounds formed by the pyrolysis of PVC and brominated flame retardant (HIPS–Br) mixed waste plastics [(polyethylene (PE), polypropylene (PP), and polystyrene (PS)], and also other plastics. During dehydrohalogenation, the iron- and calcium-based catalysts were transformed into their corresponding halides, which are also very active in the dehydrohalogenation of organic halogenated compounds. The halogen-free plastic-derived oil (PDO) can be used as a fuel oil or feedstock in refineries.  相似文献   

13.
Although composting has been successfully used at pilot scale to manage waste algae removed from eutrophied water environments and the compost product applied as a fertiliser, clear guidelines are not available for full scale algae composting. The review reports on the application of composting to stabilize waste algae, which to date has mainly been macro-algae, and identifies the peculiarities of algae as a composting feedstock, these being: relatively low carbon to nitrogen (C/N) ratio, which can result in nitrogen loss as NH3 and even N2O; high moisture content and low porosity, which together make aeration challenging; potentially high salinity, which can have adverse consequence for composting; and potentially have high metals and toxin content, which can affect application of the product as a fertiliser. To overcome the challenges that these peculiarities impose co-compost materials can be employed.  相似文献   

14.
Polyethylene terephthalate (PET) waste fibers were initially depolymerized using a glycolysis route in the presence of sodium sulfate as a catalyst, which is a commonly used chemical and ecofriendly as compared to heavy metal catalysts. Good yield of the pure monomer bis(2-hydroxyethylene terephthalate) (BHET) was obtained. Further, to attempt its reuse, the purified BHET was converted to different fatty amide derivatives to obtain quaternary ammonium compounds that have a potential for use as softener in the textile finishing process. The products were characterized by infrared spectroscopy. Application of these synthesized compounds was carried out on cotton fabric; they were evaluated for performance and were found to give good results. The chemicals used during depolymerization and reuse of PET are inexpensive and comparatively less harmful to the environment, and thus offer advantages in the chemical recycling of polyester waste fibers.  相似文献   

15.
The purpose of this study was to explore ways to extend the chemical recycling of poly(ethylene terephthalate) (PET) as a valuable feedstock for chemical processes. First, PET wastes were depolymerised using a glycolysis method in the presence of sodium carbonate, which is considered to be a less environmentally damaging option for a catalyst. Good yields of the monomer bis(2-hydroxyethyl) terephthalate (BHET) were obtained (80 %). Second, to develop an economically viable recycling programme for the reclaimed BHET, the conversion of purified BHET into unsaturated polyester resins (UPR) was studied. The recovered monomer was thus polyesterified with maleic anhydride and subsequently mixed with styrene monomer to prepare UPRs. The resins were casted by a crosslinking reaction using methyl ethyl ketone peroxide and cobalt 2-ethylhexanoate as the initiator and catalyst, respectively. The polyesterification reaction was followed by gel permeation chromatography. The curing process was studied by differential scanning calorimetry and infrared spectroscopy. The cured resin was subjected to various characterisation methods in order to determine its chemical, physical and mechanical properties. Resins with suitable properties for commercial application were obtained.  相似文献   

16.
All too often, waste authorities either assume that they know enough about their bulky waste stream or that it is too insignificant to deserve attention. In this paper, we use Hong Kong as an example to illustrate that official bulky waste figures can actually be very different from the reality and therefore important waste management decisions made based on such statistics may be wrong too. This study is also the first attempt in Hong Kong to outline the composition of bulky waste.It was found that about 342 tonnes/day of wood waste were omitted by official statistics owing to incomplete records on actual bulky waste flow. This is more than enough to provide all the feedstock needed for one regular-sized wood waste recycling facility in Hong Kong. In addition, the proportion of bulky waste in the municipal solid waste (MSW) streams in Hong Kong should be about 6.1% instead of the officially stated 1.43%. Admittedly, there are limitations with this study. Yet, present findings are suggestive of significant MSW data distortion in Hong Kong.  相似文献   

17.
The aim of this study was to investigate the possibilities of using a by-product (red mud) from alumina production as a catalyst for recovery of waste. The conversion of waste mineral oil (WMO) and waste mineral oil/municipal waste plastic (WMO/MWP) blends over red mud (RM), a commercial hydrocracking catalyst (silica–alumina), and a commercial hydrotreating catalyst (Ni–Mo/alumina) to fuel has been studied. The effect of the catalyst and the temperature on the product distribution (gas, liquid, and wax) and the properties of liquid products were investigated. In the case of hydrotreatment of WMO, the liquids obtained over RM at both 400° and 425°C had larger amounts of low-boiling hydrocarbons than that of thermal or catalytic treatment with hydrotreating catalyst. Gas chromatography and nuclear magnetic resonance analysis of the liquid products showed that RM had hydrogenation and cracking activity in hydrotreatment of WMO. In coprocessing of WMO with municipal waste plastics, temperature had an important effect as well as the amount of MWP in the blend and the catalyst type. The hydrocracking at 400°C produced no liquid product. In hydrocracking at 425°C, the product distribution varied with catalyst type and MWP amount. The commercial hydrocracking catalyst had more cracking ability in the conversion of WMO/MWP to liquid and gas fuel than RM. In the case of hydrocracking over RM, the largest amount of liquid having satisfactory quality was obtained only from the blend containing 20% MWP.  相似文献   

18.
Biodiesel is commonly produced from vegetable oils, mostly edible and more expensive than petroleum diesel. By considering the cost of the conversion processes, cheap feedstock such as triglycerides and fatty acids (FA) extracted from early stage of food waste liquefaction has become a better choice than vegetable oils, as it could provide high yield of biodiesel without any compromise to food supply and other resources. In this study, FA from early stage of food waste liquefaction was extracted and tested for use as feedstock for biodiesel synthesis. The raw material was not pretreated but extraction was done by dry and wet methods. It was found that wet method could minimized the lost of short and medium-chained FA as well as reducing the number of steps required, thus, yielding higher amount of FA as feedstock. The effects of mixing, methanol ratio, reaction time and catalyst content were investigated for the acid-catalyzed esterification. The maximum biodiesel conversion obtained was 97.4 %.  相似文献   

19.
In the European Union (EU), waste management is almost totally regulated by EU directives, which supply a framework for national regulations. The main target in view of sustainability is the prevention of direct disposal of reactive waste in landfills. The tools to comply with these principles are recycling and material recovery as well as waste incineration with energy recovery for final inertization. The adaptation of the principles laid down in EU directives is an ongoing process. A number of countries have already enacted respective national regulations and their realization shows that recycling and incineration are not in competition but are both essential parts of integrated waste management systems. In the EU, the amount of residual waste available for energy recovery can supply approximately 1% of the primary energy demand. About 50% of the energy inventory of municipal solid waste (MSW) in most EU countries is of biogenic origin, and MSW is to the same extent to be looked upon as regenerative fuel. Hence part of the CO2 released from waste incineration is climate neutral. In the EU, this share could produce savings of the order of 1% of annual CO2 emissions if energy from MSW replaced that derived from fossil fuel.  相似文献   

20.
Biodiesel from waste cooking oil (WCO) and soybean oil (SO) mixture was produced by changing the alkali catalyst (NaOH) content and the WCO to SO ratio in the feedstock. All the prepared biodiesel samples satisfied the standard requirement in terms of free glycerol, density, and acid value. The minimum catalyst content and the highest WCO composition to get biodiesel from the WCO/SO mixture feedstock without ruining the biodiesel properties were 1.0 and 60 wt %, respectively. This conclusion implies that the waste cooking oil mixture, which contains 40 wt % fresh soybean oil, could be treated like the fresh soybean oil to produce biodiesel, and that this behavior would be helpful to reduce the biodiesel production cost when waste cooking oil used as feedstock. The unsaturated methyl esters such as linoleic, and oleic acid were dominant (almost 80 % w/w) in the fresh soybean oil. However the saturated methyl ester was increased due to the double bond breaking during the frying process. These results may deteriorate the biodiesel quality by changing the methyl ester composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号