首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Sanitary landfills for Municipal Solid Waste (MSW) disposal have been identified as one of the most important anthropogenic sources of methane (CH4) emissions; in order to minimize its negative effects on the environment, landfill gas (LFG) recovery is a suitable tool to control CH4 emissions from a landfill site; further, the measurement of CH4 emissions can represent a good way to evaluate the effectiveness of LFG recovering systems. In general, LFG will escape through any faults in the landfill capping or in the LFG collection system. Indeed, some areas of the capping can be more permeable than others (e.g. portions of a side slope), especially when considering a temporarily capped zone (covered area that is not expected to receive any further waste for a period of at least 3 months, but for engineering reasons does not have a permanent cap yet). These areas, which are characterized by abnormal emissions, are usually defined as “features”: in particular, a feature is a small, discrete area or an installation where CH4 emissions significantly differ from the surrounding zones. In the present study, the influence that specific features have on CH4 emissions has been investigated, based on direct measurements carried out in different seasons by means of a flux chamber to the case study of Palermo (IT) landfill (Bellolampo). The results showed that the flux chamber method is reliable and easy to perform, and the contoured flux maps, obtained by processing the measured data were found to be a suitable tool for identifying areas with abnormal (high) emissions. Further, it was found that a relationship between methane emission rates and landfill side slope can be established. Concerning the influence of the temporary HDPE cover system on CH4 recovery efficiency, it contributed to a significant decrease of the free surface area available for uncontrolled emissions; this aspect, coupled to the increase of the CH4 volumes collected by the LFG recovery system, led to a significant increase of the recovery efficiency.  相似文献   

2.
Spatially variable refuse gas permeability and landfill gas (LFG) generation rate, cracking of the soil cover, and reduced refuse gas permeability because of liquid addition can all affect CH4 collection efficiency when intermediate landfill covers are installed. A new gas collection system that includes a near-surface high permeability layer beneath the landfill cover was evaluated for enhancing capture of LFG and mitigating CH4 emissions. Simulations of gas transport in two-dimensional domains demonstrated that the permeable layer reduces CH4 emissions up to a factor of 2 for particular spatially variable gas permeability fields. When individual macrocracks formed in the cover soil and the permeable layer was absent, CH4 emissions increased to as much as 24% of the total CH4 generated, double the emissions when the permeable layer was installed. CH4 oxidation in the cover soil was also much more uniform when the permeable layer was present: local percentages of CH4 oxidized varied between 94% and 100% across the soil cover with the permeable layer, but ranged from 10% to 100% without this layer for some test cases. However, the permeable layer had a minor effect on CH4 emissions and CH4 oxidation in the cover soil when the ratio of the gas permeability of the cover soil to the mean refuse gas permeability ?0.05. The modeling approach employed in this study may be used to assess the utility of other LFG collection systems and management practices.  相似文献   

3.
Many developed countries have targeted landfill methane recovery among greenhouse gas mitigation strategies, since methane is the second most important greenhouse gas after carbon dioxide. Major questions remain with respect to actual methane production rates in field settings and the relative mass of methane that is recovered, emitted, oxidized by methanotrophic bacteria, laterally migrated, or temporarily stored within the landfill volume. This paper presents the results of extensive field campaigns at three landfill sites to elucidate the total methane balance and provide field measurements to quantify these pathways. We assessed the overall methane mass balance in field cells with a variety of designs, cover materials, and gas management strategies. Sites included different cell configurations, including temporary clay cover, final clay cover, geosynthetic clay liners, and geomembrane composite covers, and cells with and without gas collection systems. Methane emission rates ranged from -2.2 to >10,000 mg CH(4) m(-2) d(-1). Total methane oxidation rates ranged from 4% to 50% of the methane flux through the cover at sites with positive emissions. Oxidation of atmospheric methane was occurring in vegetated soils above a geomembrane. The results of these studies were used as the basis for guidelines by the French environment agency (ADEME) for default values for percent recovery: 35% for an operating cell with an active landfill gas (LFG) recovery system, 65% for a temporary covered cell with an active LFG recovery system, 85% for a cell with clay final cover and active LFG recovery, and 90% for a cell with a geomembrane final cover and active LFG recovery.  相似文献   

4.
Mechanical biological treatment (MBT) is an effective technique, which removes organic carbon from municipal solid waste (MSW) prior to deposition. Thereby, methane (CH4) production in the landfill is strongly mitigated. However, direct measurements of greenhouse gas emissions from full-scale MBT landfills have not been conducted so far. Thus, CH4 and nitrous oxide (N2O) emissions from a German MBT landfill in operation as well as their concentrations in the landfill gas (LFG) were measured. High N2O emissions of 20–200 g CO2 eq. m?2 h?1 magnitude (up to 428 mg N m?2 h?1) were observed within 20 m of the working face. CH4 emissions were highest at the landfill zone located at a distance of 30–40 m from the working face, where they reached about 10 g CO2 eq. m?2 h?1. The MBT material in this area has been deposited several weeks earlier. Maximum LFG concentration for N2O was 24.000 ppmv in material below the emission hotspot. At a depth of 50 cm from the landfill surface a strong negative correlation between N2O and CH4 concentrations was observed. From this and from the distribution pattern of extractable ammonium, nitrite, and nitrate it has been concluded that strong N2O production is associated with nitrification activity and the occurrence of nitrite and nitrate, which is initiated by oxygen input during waste deposition. Therefore, CH4 mitigation measures, which often employ aeration, could result in a net increase of GHG emissions due to increased N2O emissions, especially at MBT landfills.  相似文献   

5.
Methane emissions, concentrations, and oxidation were measured on eleven MSW landfills in eleven states spanning from California to Pennsylvania during the three year study. The flux measurements were performed using a static chamber technique. Initial concentration samples were collected immediately after placement of the flux chamber. Oxidation of the emitted methane was evaluated using stable isotope techniques. When reporting overall surface emissions and percent oxidation for a landfill cover, central tendencies are typically used to report “averages” of the collected data. The objective of this study was to determine the best way to determine and report central tendencies. Results showed that 89% of the data sets of collected surface flux have lognormal distributions, 83% of the surface concentration data sets are also lognormal. Sixty seven percent (67%) of the isotope measured percent oxidation data sets are normally distributed. The distribution of data for all eleven landfills provides insight of the central tendencies of emissions, concentrations, and percent oxidation. When reporting the “average” measurement for both flux and concentration data collected at the surface of a landfill, statistical analyses provided insight supporting the use of the geometric mean. But the arithmetic mean can accurately represent the percent oxidation, as measured with the stable isotope technique. We examined correlations between surface CH4 emissions and surface air CH4 concentrations. Correlation of the concentration and flux values using the geometric mean proved to be a good fit (R2 = 0.86), indicating that surface scans are a good way of identifying locations of high emissions.  相似文献   

6.
This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH(4) flux values calculated through tessellation, inverse distance weighing and kriging were 0.188±0.014, 0.224±0.012 and 0.237±0.008lCH(4)/m(2)hr, respectively, compared to an arithmetic mean of 0.24l/m(2)hr. The flux values are within the reported range for closed landfills (0.06-0.89l/m(2)hr), and lower than the reported range for active landfills (0.42-2.46l/m(2)hr). Simulation results matched field measurements for low methane generation potential (L(0)) values in the range of 19.8-102.6m(3)/ton of waste. LFG generation dropped rapidly to half its peak level only 4yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.  相似文献   

7.
Landfills are significant sources of atmospheric methane (CH4) that contributes to climate change, and therefore there is a need to reduce CH4 emissions from landfills. A promising cost efficient technology is to integrate compost into landfill covers (so-called “biocovers”) to enhance biological oxidation of CH4. A full scale biocover system to reduce CH4 emissions was installed at Fakse landfill, Denmark using composted yard waste as active material supporting CH4 oxidation. Ten biowindows with a total area of 5000 m2 were integrated into the existing cover at the 12 ha site. To increase CH4 load to the biowindows, leachate wells were capped, and clay was added to slopes at the site. Point measurements using flux chambers suggested in most cases that almost all CH4 was oxidized, but more detailed studies on emissions from the site after installation of the biocover as well as measurements of total CH4 emissions showed that a significant portion of the emission quantified in the baseline study continued unabated from the site. Total emission measurements suggested a reduction in CH4 emission of approximately 28% at the end of the one year monitoring period. This was supported by analysis of stable carbon isotopes which showed an increase in oxidation efficiency from 16% to 41%. The project documented that integrating approaches such a whole landfill emission measurements using tracer techniques or stable carbon isotope measurements of ambient air samples are needed to document CH4 mitigation efficiencies of biocover systems. The study also revealed that there still exist several challenges to better optimize the functionality. The most important challenges are to control gas flow and evenly distribute the gas into the biocovers.  相似文献   

8.
This paper describes a method developed for quantification of gas emissions from the leachate collection system at landfills and present emission data measured at two Danish landfills with no landfill gas collection systems in place: Fakse landfill and AV Miljø. Landfill top covers are often designed to prevent infiltration of water and thus are made from low permeable materials. At such sites a large part of the gas will often emit through other pathways such as the leachate collection system. These point releases of gaseous constituents from these locations cannot be measured using traditional flux chambers, which are often used to measure gas emissions from landfills. Comparing tracer measurements of methane (CH4) emissions from leachate systems at Fakse landfill and AV Miljø to measurements of total CH4 emissions, it was found that approximately 47% (351 kg CH4 d?1) and 27% (211 kg CH4 d?1), respectively, of the CH4 emitting from the sites occurred from the leachate collection systems. Emission rates observed from individual leachate collection wells at the two landfills ranged from 0.1 to 76 kg CH4 d?1. A strong influence on emission rates caused by rise and fall in atmospheric pressure was observed when continuously measuring emission from a leachate well over a week. Emission of CH4 was one to two orders of magnitude higher during periods of decreasing pressure compared to periods of increasing pressure.  相似文献   

9.
According to the European Landfill Directive 1999/31/EC and the related Italian Legislation (“D. Lgs. No. 36/2003”), monitoring and control procedures of landfill gas emissions, migration and external dispersions are clearly requested. These procedures could be particularly interesting in the operational circumstance of implementing a temporary cover, as for instance permitted by the Italian legislation over worked-out landfill sections, awaiting the evaluation of expected waste settlements.A possible quantitative approach for field measurement and consequential evaluation of landfill CO2, CH4 emission rates in pairs consists of the static, non-stationary accumulation chamber technique. At the Italian level, a significant and recent situation of periodical landfill gas emission monitoring is represented by the sanitary landfill for non-hazardous waste of the “Fano” town district, where monitoring campaigns with the static chamber have been annually conducted during the last 5 years (2005-2009). For the entire multiyear monitoring period, the resulting CO2, CH4 emission rates varied on the whole up to about 13,100 g CO2 m−2 d−1 and 3800 g CH4 m−2 d−1, respectively.The elaboration of these landfill gas emission data collected at the “Fano” case-study site during the monitoring campaigns, presented and discussed in the paper, gives rise to a certain scientific evidence of the possible negative effects derivable from the implementation of a temporary HDPE cover over a worked-out landfill section, notably: the lateral migration and concentration of landfill gas emissions through adjacent, active landfill sections when hydraulically connected; and consequently, the increase of landfill gas flux velocities throughout the reduced overall soil cover surface, giving rise to a flowing through of CH4 emissions without a significant oxidation. Thus, these circumstances are expected to cause a certain increase of the overall GHG emissions from the given landfill site.  相似文献   

10.
Landfill gas (LFG) emissions from municipal solid waste (MSW) landfills are an important environmental concern in Brazil due to the existence of several uncontrolled disposal sites. A program of laboratory and field tests was conducted to investigate gas generation in and emission from an Experimental Cell with a 36,659-ton capacity in Recife/PE - Brazil. This investigation involved waste characterisation, gas production and emission monitoring, and geotechnical and biological evaluations and was performed using three types of final cover layers. The results obtained in this study showed that waste decomposes 4-5 times faster in a tropical wet climate than predicted by traditional first-order models using default parameters. This fact must be included when considering the techniques and economics of projects developed in tropical climate countries. The design of the final cover layer and its geotechnical and biological behaviour proved to have an important role in minimising gas emissions to the atmosphere. Capillary and methanotrophic final cover layers presented lower CH4 flux rates than the conventional layer.  相似文献   

11.
A survey was conducted between 2006 and 2008 in order to identify municipal solid waste (MSW) composition and its influence on leachate generation and to assess the amount of biogas yield from the Jebel Chakir landfill in Tunis City. The organic fraction was the predominant compound in the MSW, followed by paper, fine, plastic, leather, rubber, metal, textile, glass and ceramic. The average MSW moisture content varies from 60 % in the wet season to 80 % in the dry one. The recognised MSW composition is well representative if compared to that of cities in developing countries. A large leachate quantity is produced in the landfill of Jebel Chakir, despite the negative water balance of the site. Based on the annual MSW landfilled quantities and using the LandGEM model, the expected peak landfill gas (LFG) production is estimated to occur 1 year after the landfill closure with a rate of 3.53 × 107 m3/year. The analysis of the potential conversion of LFG to electric energy shows it at a total LFG-to-electricity energy of around 257 GWh with a heating value of 4,475 kcal/m3 based on an LFG collection efficiency of 33 % and energy efficiency of 33 % giving an economic feasibility for a 10 MW power plant.  相似文献   

12.
When landfill gas is collected, air inflow into the landfill can reduce CH4 productivity. The decline of CH4 content in landfill gas (LFG) negatively affects energy projects. We studied air inflow rates and LFG characteristics from 699 vertical collection facilities (VCFs) in the 2nd landfill at the Sudokwon Landfill in South Korea. We first determined whether or not N2 was an effective indicator of air inflow at this site using argon assays. The results of this analysis showed that the denitrification processes could be disregarded and that N2 was an effective indicator of air inflow. Using the composition of N2 in LFG samples, we found that air inflow occurred at 73.6 % of the VCFs, and 25.6 % of samples from these facilities showed more than 80 vol% of air inflow. In addition, we observed that the O2 consumption rate was more than 70 % of the volume in all samples. $ R_{{{\text{CH}}_{ 4} }} $ , which is the ratio of CH4 to the sum of CH4 and CO2, decreased with increasing air inflow. Finally, we found that, as air inflow increased, the variation in $ R_{{{\text{CH}}_{ 4} }} $ values for samples with equal air inflow ratios also increased due to differences in air inflow routes.  相似文献   

13.
A low-cost alternative approach to reduce landfill gas (LFG) emissions is to integrate compost into the landfill cover design in order to establish a biocover that is optimized for biological oxidation of methane (CH4). A laboratory and field investigation was performed to quantify respiration in an experimental compost biocover in terms of oxygen (O2) consumption and carbon dioxide (CO2) production and emission rates. O2 consumption and CO2 production rates were measured in batch and column experiments containing compost sampled from a landfill biowindow at Fakse landfill in Denmark. Column gas concentration profiles were compared to field measurements. Column studies simulating compost respiration in the biowindow showed average CO2 production and O2 consumption rates of 107 ± 14 g m−2 d−1 and 63 ± 12 g m−2 d−1, respectively. Gas profiles from the columns showed elevated CO2 concentrations throughout the compost layer, and CO2 concentrations exceeded 20% at a depth of 40 cm below the surface of the biowindow. Overall, the results showed that respiration of compost material placed in biowindows might generate significant CO2 emissions. In landfill compost covers, methanotrophs carrying out CH4 oxidation will compete for O2 with other aerobic microorganisms. If the compost is not mature, a significant portion of the O2 diffusing into the compost layer will be consumed by non-methanotrophs, thereby limiting CH4 oxidation. The results of this study however also suggest that the consumption of O2 in the compost due to aerobic respiration might increase over time as a result of the accumulation of biomass in the compost after prolonged exposure to CH4.  相似文献   

14.
The biochemical methane potential (BMP) is an essential parameter when using first order decay (FOD) landfill gas (LFG) generation models to estimate methane (CH4) generation from landfills. Different categories of waste (mixed, shredder and sludge waste) with a low-organic content and temporarily stored combustible waste were sampled from four Danish landfills. The waste was characterized in terms of physical characteristics (TS, VS, TC and TOC) and the BMP was analyzed in batch tests. The experiment was set up in triplicate, including blank and control tests. Waste samples were incubated at 55 °C for more than 60 days, with continuous monitoring of the cumulative CH4 generation. Results showed that samples of mixed waste and shredder waste had similar BMP results, which was in the range of 5.4–9.1 kg CH4/ton waste (wet weight) on average. As a calculated consequence, their degradable organic carbon content (DOCC) was in the range of 0.44–0.70% of total weight (wet waste). Numeric values of both parameters were much lower than values of traditional municipal solid waste (MSW), as well as default numeric values in current FOD models. The sludge waste and temporarily stored combustible waste showed BMP values of 51.8–69.6 and 106.6–117.3 kg CH4/ton waste on average, respectively, and DOCC values of 3.84–5.12% and 7.96–8.74% of total weight. The same category of waste from different Danish landfills did not show significant variation. This research studied the BMP of Danish low-organic waste for the first time, which is important and valuable for using current FOD LFG generation models to estimate realistic CH4 emissions from modern landfills receiving low-organic waste.  相似文献   

15.
This research concentrates the design, construction and evaluation of simulated pilot scale landfill lysimeter at KUET campus, Khulna, Bangladesh. Both the aerobic and anaerobic conditions having a base liner and two different types of cap liner were simulated. After the design of a reference cell, the construction of landfill lysimeter was started in January 2008 and completed in July 2008. In all construction process locally available civil construction materials were used. The municipal solid waste (MSW) of 2800–2985 kg having the total volume of 2.80 m3 (height 1.6 m) and moisture content of 65% was deposited in each lysimeter by applying required compaction energy. In contrast, both the composition in terms of methane (CH4), carbon dioxide (CO2) and oxygen (O2) as well as the flow rate of landfill gas (LFG) generated from MSW in landfill lysimeter were measured and varied significantly in relation to the variation of lysimeter operational condition. Moreover, anaerobic lysimeter-C shows the highest composition of LFG in compare to the anaerobic lysimeter-B due to the providing of lower compaction of cap liner in anaerobic lysimeter-C. Here, it is interesting to note that in absence of compacted clay liner (CCL) and hence percolation of rainwater that facilitates rapid degradation of MSW in aerobic lysimeter-A has resulted in the highest settlement than that of anaerobic landfill lysimeter-B and C. Moreover, in case of anaerobic lysimeter-B and C, the leachate generation was lower than that of aerobic lysimeter-A due to the providing of cap liner in anaerobic lysimeter-B and C, played an important role to reduce the percolation of rainwater. The study also reveals that the leachate pollution index (LPI) has decreased in relation to the increasing of elapsed period as well as the LPI for collection system of aerobic lysimeter-A was higher than that of the collection system of anaerobic lysimeter-B and C. Finally, it can be depicted that LPI for lysimeter was significantly high and proper treatment will be necessary before discharging the lysimeter leachate into the water bodies.  相似文献   

16.
The current landfill gas (LFG) management (based on flaring and utilization for heat generation of the collected gas) and three potential future gas management options (LFG flaring, heat generation and combined heat and power generation) for the Old Ämmässuo landfill (Espoo, Finland) were evaluated by life-cycle assessment modeling. The evaluation accounts for all resource utilization and emissions to the environment related to the gas generation and management for a life-cycle time horizon of 100 yr. The assessment criteria comprise standard impact categories (global warming, photo-chemical ozone formation, stratospheric ozone depletion, acidification and nutrient enrichment) and toxicity-related impact categories (human toxicity via soil, via water and via air, eco-toxicity in soil and in water chronic).The results of the life-cycle impact assessment show that disperse emissions of LFG from the landfill surface determine the highest potential impacts in terms of global warming, stratospheric ozone depletion, and human toxicity via soil. Conversely, the impact potentials estimated for other categories are numerically-negative when the collected LFG is utilized for energy generation, demonstrating that net environmental savings can be obtained. Such savings are proportional to the amount of gas utilized for energy generation and the gas energy recovery efficiency achieved, which thus have to be regarded as key parameters. As a result, the overall best performance is found for the heat generation option – as it has the highest LFG utilization/energy recovery rates – whereas the worst performance is estimated for the LFG flaring option, as no LFG is here utilized for energy generation.Therefore, to reduce the environmental burdens caused by the current gas management strategy, more LFG should be used for energy generation. This inherently requires a superior LFG capture rate that, in addition, would reduce fugitive emissions of LFG from the landfill surface, bringing further environmental benefits.  相似文献   

17.
Landfills that generate too little biogas for economic energy recovery can potentially offset methane (CH4) emissions through biological oxidation by methanotrophic bacteria in cover soils. This study reports on the CH4 oxidation efficiency of a 10-year old landfill cap comprising a volcanic pumice soil. Surface CH4 and CO2 fluxes were measured using field chambers during three sampling intervals over winter and summer. Methane fluxes were temporally and spatially variable (?0.36 to 3044 mg CH4 m?2 h?1); but were at least 15 times lower than typical literature CH4 fluxes reported for older landfills in 45 of the 46 chambers tested. Exposure of soil from this landfill cover to variable CH4 fluxes in laboratory microcosms revealed a very strong correlation between CH4 oxidation efficiency and CH4/CO2 ratios, confirming the utility of this relationship for approximating CH4 oxidation efficiency. CH4/CO2 ratios were applied to gas concentrations from the surface flux chambers and indicated a mean CH4 oxidation efficiency of 72%. To examine CH4 oxidation with soil depth, we collected 10 soil depth profiles at random locations across the landfill. Seven profiles exhibited CH4 removal rates of 70–100% at depths <60 cm, supporting the high oxidation rates observed in the chambers. Based on a conservative 70% CH4 oxidation efficiency occurring at the site, this cover soil is clearly offsetting far greater CH4 quantities than the 10% default value currently adopted by the IPCC.  相似文献   

18.
This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price.  相似文献   

19.
Observations on the methane oxidation capacity of landfill soils   总被引:1,自引:0,他引:1  
The objective of this study was to determine the role of CH4 loading to a landfill cover in the control of CH4 oxidation rate (g CH4 m−2 d−1) and CH4 oxidation efficiency (% CH4 oxidation) in a field setting. Specifically, we wanted to assess how much CH4 a cover soil could handle. To achieve this objective we conducted synoptic measurements of landfill CH4 emission and CH4 oxidation in a single season at two Southeastern USA landfills. We hypothesized that percent oxidation would be greatest at sites of low CH4 emission and would decrease as CH4 emission rates increased. The trends in the experimental results were then compared to the predictions of two differing numerical models designed to simulate gas transport in landfill covers, one by modeling transport by diffusion only and the second allowing both advection and diffusion. In both field measurements and in modeling, we found that percent oxidation is a decreasing exponential function of the total CH4 flux rate (CH4 loading) into the cover. When CH4 is supplied, a cover’s rate of CH4 uptake (g CH4 m−2 d−2) is linear to a point, after which the system becomes saturated. Both field data and modeling results indicate that percent oxidation should not be considered as a constant value. Percent oxidation is a changing quantity and is a function of cover type, climatic conditions and CH4 loading to the bottom of the cover. The data indicate that an effective way to increase the % oxidation of a landfill cover is to limit the amount of CH4 delivered to it.  相似文献   

20.
Micrometeorological measurements of methane (CH4) and nitrous oxide (N2O) emissions were made at the decommissioned Park Road Landfill in Grimsby, Ontario, Canada between June and August 2002. The influence of precipitation, air temperature, wind speed and barometric pressure on the temporal variability of landfill biogas emissions was assessed. Gas flux measurements were obtained using a micrometeorological mass balance measurement technique [integrated horizontal flux (IHF)] in conjunction with two tunable diode laser trace gas analyser (TDLTGA) systems. This method allows for continuous, non-intrusive measurements of gas flux at high temporal resolution. Mean fluxes of N2O were negligible over the duration of the study (-0.23 to 0.02 microg m(-2) s(-1)). In contrast, mean emissions of CH4 were much greater (80.4 to 450.8 microg m(-2) s(-1)) and varied both spatially and temporally. Spatial variations in CH4 fluxes were observed between grass kill areas (biogas 'hot spots') and the densely grass-covered areas of the landfill. Temporal variations in CH4 fluxes were also observed, due at least in part to barometric pressure, wind speed and precipitation effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号