首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new index for evaluating compost maturity was developed based on a germination test of Komatsuna seeds using water extract from compost. Several compost samples were collected from a kitchen-garbage composting plant to determine an index to evaluate compost maturity. Firstly, some extraction conditions for extracting compost ingredients with water were evaluated using the time course of total organic carbon concentration in water extract. The water temperature of 60?°C, periodic mixing, and extraction period >1 were selected. Secondly, applying these conditions, the germination test was performed using the water extract solutions at several dilution ratios. The relationship between the germination rate and the dilution ratio was expressed using a logistic regression curve. The dilution ratio to give a germination rate of 0.5, defined as DG50, was calculated with the parameters of the curve. Compared with other maturity indices, DG50 was the most effective. Moreover, it has a unique feature in that maturity is quantified even for the compost from which water extract results in a germination rate of 0. This feature can be used to compare the maturity of different kinds of composts and quantify the change in the levels of inhibitory substances in a composting process.  相似文献   

2.
Composting of animal manures is believed as an alternative way for directly recycling them in farms, and therefore assessment of compost maturity is crucial for achieving high quality compost. Fluorescence excitation-emission matrices (EEMs) combined with regional integration analysis is presented to assess compost maturity. The results showed that the EEM contours of water-extract organic matter (WEOM) from immature composts exhibited four peaks at excitation/emission (Ex/Em) of 220/340 nm, 280/340 nm, 220/410 nm, and 330/410 nm, whereas EEM contour of WEOM from mature composts had only two peaks at Ex/Em of 230/420 nm and 330/420 nm. Pearson correlation demonstrated that peaks intensity rather than their ratios had a significantly correlation with the common indices assessing compost maturity, whereas the normalized excitation-emission area volumes (Φi,ns) from regional integration analysis had a stronger correlation with the common indices assessing compost maturity than peaks intensity. It is concluded that the Φi,ns from regional integration analysis are more suitable to assess the maturity of compost than the intensities of peaks. Therefore, the fluorescence spectroscopy combined with regional integration analysis can be used as a valuable industrial and research tool for assessing compost maturity, given its high sensitivity and selectivity.  相似文献   

3.

This study presents the results obtained in compostability tests of organic fraction of municipal solid waste (OFMSW) digestate. The final aim was to obtain mature compost without phytotoxic effects. For the evaluation of the composting process, a novel parameter describing the performance of the composting process, the relative heat generation standardized with the initial volatile solid content (RHGVS0), was defined and evaluated at laboratory-scale. From these laboratory-scale test, the optimum operational conditions were obtained, a mixing ratio (v/v) of 1:1:0 (bulking agent:digestate:co-substrate) and with 15% of mature compost as inoculum. Subsequently, these optimum operational conditions were applied in the active phase of the composting pilot-scale reactor. The active composting stage took 7 days, subsequently a curing phase of 60 days was carried out at ambient conditions. After 30 days of curing, the mature compost showed a specific oxygen uptake rate (SOUR) of 0.14 mg O2/g VS·h, a germination index (GI) of 99.63% and a low volatile fatty acids (VFA) concentration (41.3 AcH mg/kgdm), being indicative of the good compost stability and maturity of the compost. The very good quality of the final compost obtained indicated that the RHGVS0 accurately describes the performance of the composting process.

  相似文献   

4.
Despite the long-time application of organic waste derived composts to crops, there is still no universally accepted index to assess compost maturity and stability. The research presented in this article investigated the suitability of seven types of seeds for use in germination bioassays to assess the maturity and phytotoxicity of six composts. The composts used in the study were derived from cow manure, sea weeds, olive pulp, poultry manure and municipal solid waste. The seeds used in the germination bioassays were radish, pepper, spinach, tomato, cress, cucumber and lettuce. Data were analyzed with an analysis of variance at two levels and with pair-wise comparisons. The analysis revealed that composts rendered as phytotoxic to one type of seed could enhance the growth of another type of seed. Therefore, germination indices, which ranged from 0% to 262%, were highly dependent on the type of seed used in the germination bioassay. The poultry manure compost was highly phytotoxic to all seeds. At the 99% confidence level, the type of seed and the interaction between the seeds and the composts were found to significantly affect germination. In addition, the stability of composts was assessed by their microbial respiration, which ranged from approximately 4 to 16 g O2/kg organic matter and from 2.6 to approximately 11 g CO2–C/kg C, after seven days. Initial average oxygen uptake rates were all less than approximately 0.35 g O2/kg organic matter/h for all six composts. A high statistically significant correlation coefficient was calculated between the cumulative carbon dioxide production, over a 7-day period, and the radish seed germination index. It appears that a germination bioassay with radish can be a valid test to assess both compost stability and compost phytotoxicity.  相似文献   

5.
A research project was carried out to evaluate ecotoxicological effects of mature compost addition to agricultural soil, using a battery of ecotoxicological tests. The following species were selected: plant of Lepidium sativum, earthworm Eisenia foetida, aquatic crustacean Daphnia magna and bacteria Vibrio fischeri. The tests were classified as “direct tests” using solid compost samples and “indirect tests” using compost leaching test eluate. The direct bioassays were performed using compost added to artificial soil in concentrations ranging from 2.5 to 100 % (w/w); the indirect ones considered compost eluate, added to a standard solution in the same concentrations used in the direct tests. Both tests aimed at obtaining the ecotoxicological parameters (LC50 and EC50). These values were then utilized to implement the Species Sensitivity Distribution (SSD) analysis and extrapolate the Hazard Concentration (HC), a useful threshold to preserve the biodiversity of agricultural ecosystems. Results indicated an increase in compost toxicity with greater compost concentrations; in particular, for direct tests compost dosage below 10 % showed low toxicity, while for indirect ones the toxicity was higher. Furthermore, SSD analysis showed a Hazardous Concentration (HC5) for direct bioassays of 3.5 % and for indirect of 14 %.  相似文献   

6.
Compost can provide a rich organic nutrient source and soil conditioner for agricultural and horticultural applications. Ideal compost amendment rates, however, vary based on starting material and compost maturity or their interaction, and there is little consensus on appropriate methods to gauge maturity. In this study, electrical conductivity, carbon-to-nitrogen ratio, and carbon mineralization measurements were made on compost-amended soils and compared to phytotoxicity measured as cress (Lepidium sativum) germination. Cress germination in soil and compost mixtures incubated for 8-10 days significantly decreased with increasing electrical conductivity and carbon mineralization rate of the mixture and with carbon mineralization rate and mineralizable carbon associated with the compost. Cress germination was not related to carbon-to-nitrogen ratio or pH of soil and compost mixtures. The electrical conductivity of the soil and compost mixtures significantly decreased with decreasing mineralizable carbon suggesting that compounds contributing to electrical conductivity were present in the compost and decomposed upon soil amendment. The results of this study indicate that measurements of mineralizable carbon and mineralization rate of composts in soil, and electrical conductivity and mineralization rate of soil and compost mixtures, can be used as indicators of compost maturity.  相似文献   

7.
A research project was carried out to evaluate toxicological effects of compost addition to agricultural soil using the earthworm Eisenia foetida (Annellida) as a representative organism of the soil fauna. Moreover, the correlation between compost biochemical stabilization and toxicity at different phases of the composting process was assessed. Samples were collected from three composting plants at three different maturation levels (beginning of the composting process, intermediate compost after bio-oxidation, and mature refined compost). Two tests were performed: a standard chronic solid-phase test and an acute solid-phase test (developed originally by the authors). In the first test, the measured end-points were mortality, growth and reproduction; while in the second test earthworms’ behavior was evaluated. The chosen compost concentrations in soil ranged from 2.5 to 100 %, with the aim of obtaining the toxicological parameters (LC50) and to mimic real agricultural dosages for the lower concentrations. Results indicated an increase in compost toxicity with greater compost concentrations; in particular, agricultural compost dosage below 10 % showed no toxicity. Moreover, toxicity did not decrease during composting; intermediate compost showed the highest LC50 values. As a consequence, no correlation was ascertained between the results of ecotoxicological analysis and waste biochemical stability parameters during the composting process.  相似文献   

8.
The co-composting of olive mill wastewater with a variety of agricultural wastes was investigated. To reduce the toxicity of the phenolic fraction and to improve the degree of maturity of the compost, inoculation with the white-rot fungus Phanerochaete chrysosporium was carried out during the maturation phase. The results showed that agricultural wastes that contain high levels of lignin-related compounds, such as the residue from trimmings, improved the microbial activity and thus reduced the soluble phenols residue. The inoculation of P. chrysosporium during compost maturation reduced and modified the phenolic fraction, allowing a reduction in the time to reach compost maturity with the improvement in the germination index of 100% after 36 days in two of three trials performed.  相似文献   

9.
It is challenging and expensive to monitor and test decentralized composting toilet systems, yet critical to prevent the mismanagement of potentially harmful and pathogenic end-product. Recent studies indicate that mixed latrine composting toilets can be inhibited by high ammonia content, a product of urea hydrolysis. Urine-diverting vermicomposting toilets are better able to accomplish the goals of remote site human waste management by facilitating the consumption of fecal matter by earthworms, which are highly sensitive to ammonia. The reliability of Solvita® compost stability and maturity tests were evaluated as a means of determining feedstock suitability for vermicomposting (ammonia) and end-product stability/completeness (carbon dioxide). A significant linear regression between Solvita® ammonia and free ammonia gas was found. Solvita® ranking of maturity did not correspond to ranking assigned by ammonium:nitrate standards. Solvita® ammonia values 4 and 5 contained ammonia levels below earthworm toxicity limits in 80% and 100% of samples respectively indicative of their use in evaluating feedstock suitability for vermicomposting. Solvita® stability tests did not correlate with carbon dioxide evolution tests nor ranking of stability by the same test, presumably due to in situ inhibition of decomposition and microbial respiration by ammonia which were reported by the Solvita® CO2 test as having high stability values.  相似文献   

10.
The production of compost and digestate from source-separated organic residues is well established in Europe. However, these products may be a source of pollutants when applied to soils. In order to assess this issue, composts, solid and liquid digestates from Switzerland were analyzed for heavy metals (Cd, Co, Cr, Cu, Ni, Pb and Zn) addressing factors which may influence the concentration levels: the treatment process, the composition, origin, particle size and impurity content of input materials, the season of input materials collection or the degree of organic matter degradation.Composts (n = 81) showed mean contents being at 60% or less of the legal threshold values. Solid digestates (n = 20) had 20–50% lower values for Cd, Co, Pb and Zn but similar values for Cr, Cu and Ni. Liquid digestates (n = 5) exhibited mean concentrations which were approximately twice the values measured in compost for most elements. Statistical analyses did not reveal clear relationships between influencing factors and heavy metal contents. This suggests that the contamination was rather driven by factors not addressed in the present study.According to mass balance calculations related to Switzerland, the annual loads to agricultural soils resulting from the application of compost and digestates ranged between 2% (Cd) and 22% (Pb) of total heavy metal loads. At regional scale, composts and digestates are therefore minor sources of pollution compared to manure (Co, Cu, Ni, Zn), mineral fertilizer (Cd, Cr) and aerial deposition (Pb). However, for individual fields, fertilization with compost or digestates results in higher heavy metal loads than application of equivalent nutrient inputs through manure or mineral fertilizer.  相似文献   

11.
The composting process of different organic wastes both in laboratory and on a large-scale was characterized using CIELAB color variables to evaluate compost stability for the better application in agriculture. The time courses of the CIELAB variables of composting materials were determined directly from the bottom of a glass petri dish filled with dried and ground samples using a Minolta Color Reader (CR-13) calibrated with clean empty petri dishes placed on a white tile. To compare the proposed method with conventional methods, the same materials were also evaluated using commonly used compost stability evaluation indices. Most of the CIELAB variables of a compost made from a mixture of green tea waste and rice bran reached a plateau after 84 days of composting and showed strong relationships with the commonly used compost stability evaluation indices. The time needed for CIELAB variables, especially the L*and b* values, to stabilize at large-scale composting plants of cattle litter, farmyard manure, kitchen garbage and bark compost, were more or less similar to the times of maturation evaluated by the respective compost producers. The CIELAB color variable offers a new, simple, rapid and inexpensive means of evaluating compost stability and its quality prior to agricultural use.  相似文献   

12.
A low-cost alternative approach to reduce landfill gas (LFG) emissions is to integrate compost into the landfill cover design in order to establish a biocover that is optimized for biological oxidation of methane (CH4). A laboratory and field investigation was performed to quantify respiration in an experimental compost biocover in terms of oxygen (O2) consumption and carbon dioxide (CO2) production and emission rates. O2 consumption and CO2 production rates were measured in batch and column experiments containing compost sampled from a landfill biowindow at Fakse landfill in Denmark. Column gas concentration profiles were compared to field measurements. Column studies simulating compost respiration in the biowindow showed average CO2 production and O2 consumption rates of 107 ± 14 g m−2 d−1 and 63 ± 12 g m−2 d−1, respectively. Gas profiles from the columns showed elevated CO2 concentrations throughout the compost layer, and CO2 concentrations exceeded 20% at a depth of 40 cm below the surface of the biowindow. Overall, the results showed that respiration of compost material placed in biowindows might generate significant CO2 emissions. In landfill compost covers, methanotrophs carrying out CH4 oxidation will compete for O2 with other aerobic microorganisms. If the compost is not mature, a significant portion of the O2 diffusing into the compost layer will be consumed by non-methanotrophs, thereby limiting CH4 oxidation. The results of this study however also suggest that the consumption of O2 in the compost due to aerobic respiration might increase over time as a result of the accumulation of biomass in the compost after prolonged exposure to CH4.  相似文献   

13.
Soil solarization is a method of soil heating used to eradicate plant pathogens and weeds that involves passive solar heating of moist soil mulched (covered) with clear plastic tarp. Various types of organic matter may be incorporated into soil prior to solarization to increase biocidal activity of the treatment process. Microbial activity associated with the decomposition of soil organic matter may increase temperatures during solarization, potentially enhancing solarization efficacy. However, the level of organic matter decomposition (stability) necessary for increasing soil temperature is not well characterized, nor is it known if various amendments render the soil phytotoxic to crops following solarization. Laboratory studies and a field trial were performed to determine heat generation in soil amended with compost during solarization. Respiration was measured in amended soil samples prior to and following solarization as a function of soil depth. Additionally, phytotoxicity was estimated through measurement of germination and early growth of lettuce seedlings in greenhouse assays. Amendment of soil with 10% (g/g) compost containing 16.9 mg CO2/g dry weight organic carbon resulted in soil temperatures that were 2–4 °C higher than soil alone. Approximately 85% of total organic carbon within the amended soil was exhausted during 22 days of solarization. There was no significant difference in residual respiration with soil depth down to 17.4 cm. Although freshly amended soil proved highly inhibitory to lettuce seed germination and seedling growth, phytotoxicity was not detected in solarized amended soil after 22 days of field solarization.  相似文献   

14.
The aim of this study was to investigate the feasibility of using visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) as an easy, inexpensive, and rapid method to predict compost enzymatic activity, which traditionally measured by fluorescein diacetate hydrolysis (FDA-HR) assay. Compost samples representative of five different compost facilities were scanned by DRS, and the raw reflectance spectra were preprocessed using seven spectral transformations for predicting compost FDA-HR with six multivariate algorithms. Although principal component analysis for all spectral pretreatments satisfactorily identified the clusters by compost types, it could not separate different FDA contents. Furthermore, the artificial neural network multilayer perceptron (residual prediction deviation = 3.2, validation r2 = 0.91 and RMSE = 13.38 μg g?1 h?1) outperformed other multivariate models to capture the highly non-linear relationships between compost enzymatic activity and VisNIR reflectance spectra after Savitzky–Golay first derivative pretreatment. This work demonstrates the efficiency of VisNIR DRS for predicting compost enzymatic as well as microbial activity.  相似文献   

15.
The effect of various operational conditions on the decomposition of organic material during the composting of night-soil treatment sludge was quantitatively examined. The optimum composting conditions were found to be a temperature of ca. 60 °C and an initial pH value of 8. Rapid decomposition of organic matter ceased by the sixth day of composting under these optimum conditions, and the final value of the cumulative emission of carbon (EC), which represents the degree of organic matter decomposition, was less than 40%, indicating that the sludge contained only a small amount of easily degradable organic material. A plant growth assay using Komatsuna (Brassica campestris L. var. rapiferafroug) in a 1/5000a standard cultivation pot was then conducted for the compost at various degrees of organic matter decomposition: the raw composting material, the final compost obtained on day 6, and the 2 intermediate compost products (i.e., EC = 10% and 20%). It was found that the larger the EC, the greater the yield of Komatsuna growth. It was also found that 6 days of composting is sufficient to promote Komatsuna growth at the standard loading level, which is equivalent to a 1.5 g N/pot, since the promotion effect was as high as that obtained using chemical fertilizer. It can therefore be concluded that well-matured compost could be obtained in a short period of time (i.e., as early as 6 days), when night-soil sludge is composted under optimum conditions.  相似文献   

16.
To evaluate the effect of vermiculite addition on composting food wastes from Korean households, food wastes were composted in three small bins to which different additives were added. The following three bins were employed: in Case I, only recycled compost was composted; in Case II, food wastes with recycled compost; and in Case III, food wastes with recycled compost and vermiculite. In the experiment performed for 30 days, it was confirmed that the supplementary addition of vermiculite to the composting mixture did not significantly improve the weight loss rate and the decomposition rate of food wastes. Due to dilution through the use of inorganic vermiculite, the vermiculite addition reduced the organic matter concentration of the composting mixtures. Vermiculite addition did not raise the pH value. Weight losses of roughly 70% were observed based on calculating moisture loss as well as dry food waste loss and not considering additives, while dry food waste loss was 29.4% and 35.8% with and without the addition of vermiculite, respectively. For these experiments, the major portion of the weight loss was the loss of water. The results indicate a need to differentiate between weight loss percentages and decomposition percentages, and a need to indicate if either of these percentages includes or excludes the mass of additives.  相似文献   

17.
The wide range of optimal values reported for the physical parameters of compost mixtures suggest that their interactive relationships should be investigated. The objective of this study was to examine the microbial O2 uptake rate (OUR) in 16 sludge waste recipes, offering a range of moisture content (MC), waste/bulking agent (W/BA) ratio and BA particle size levels determined using a central composite experimental design. The 3 kg samples were maintained at a constant temperature and aeration rate for 28 days, during which a respirometer recorded O2 uptake to provide a measure of microbial activity and biodegradability. The cumulative O2 consumption after 14 and 28 days was found to be significantly influenced by MC, W/BA ratio, BA particle size and the interaction between MC and W/BA ratio (p < 0.05). Using multivariate regression analysis, the experimental data was used to generate a model with good predictive ability for cumulative O2 consumption after 28 days as a function of the significant physical variables (R2 = 0.84). The prediction of O2 uptake by the model depended highly on the interaction between MC and W/BA ratio. A MC outside of the traditional 50–60% (wet basis) range still resulted in a high level of microbial O2 uptake as long as the W/BA ratio was adjusted to maintain a suitable O2 exchange in the sample. The evolution of OUR in the samples was also investigated, uncovering strong associations between short and long-term respirometric indices, such as peak OUR and cumulative O2 consumption (p < 0.005). Combining peak OUR data with cumulative O2 consumption after 14 days allowed for accurate predictions of cumulative O2 after 28 days of aeration (R2 = 0.96), implying that future studies need only run trials up to 14 days to evaluate the overall O2 consumption or biodegradability of similar sludge mixtures.  相似文献   

18.
Composting is the biological degradation and transformation of organic materials under controlled conditions to promote aerobic decomposition. To find effective ways to accelerate composting and improve compost quality, numerous methods including additive addition, inoculation of microorganisms, and the use of biosurfactants have been explored. Studies have shown that biosurfactant addition provides more favorable conditions for microorganism growth, thereby accelerating the composting process. However, biosurfactants have limited applications because they are expensive and their use in composting and microbial fertilizers is prohibited. Meanwhile, alkyl polyglycoside (APG) is considered a “green” surfactant. This study aims to determine whether APG addition into a compost reaction vessel during 28-day composting can enhance the organic matter degradation and composting process of dairy manure. Samples were periodically taken from different reactor depths at 0, 3, 5, 7, 14, 21, and 28 days. pH levels, electrical conductivity (EC), ammonium and nitrate nitrogen, seed germination indices, and microbial population were determined. Organic matter and total nitrogen were also measured.Compared with the untreated control, the sample with APG exhibited slightly increased microbial populations, such as bacteria, fungi, and actinomycetes. APG addition increased temperatures without substantially affecting compost pH and EC throughout the process. After 28 days, APG addition increased nitrate nitrogen concentrations, promoted matter degradation, and increased seed germination indices. The results of this study suggest that the addition of APG provides more favorable conditions for microorganism growth, slightly enhancing organic matter decomposition and accelerating the composting process, improving the compost quality to a certain extent.  相似文献   

19.
Composting is a waste management technology that is becoming more widespread as a response to the increasing production of sewage sludge and the pressure for its reuse in soil. In this study, different bioassays (plant germination, earthworm survival, biomass and reproduction, and collembolan survival and reproduction) were assessed for their usefulness in the compost quality assessment.Compost samples, from two different composting plants, were taken along the composting process, which were characterized and submitted to bioassays (plant germination and collembolan and earthworm performance). Results from our study indicate that the noxious effects of some of the compost samples observed in bioassays are related to the low organic matter stability of composts and the enhanced release of decomposition endproducts, with the exception of earthworms, which are favored. Plant germination and collembolan reproduction inhibition was generally associated with uncomposted sludge, while earthworm total biomass and reproduction were enhanced by these materials. On the other hand, earthworm and collembolan survival were unaffected by the degree of composting of the wastes. However, this pattern was clear in one of the composting procedures assessed, but less in the other, where the release of decomposition endproducts was lower due to its higher stability, indicating the sensitivity and usefulness of bioassays for the quality assessment of composts.  相似文献   

20.
This study is concerned with the performance of a Demo Compost Plant for the development of acceptable composting technology in Bangladesh. The Demo Compost Plant was setup at the adjacent area of an existing compost plant located at Khulna city in Bangladesh. Four different composting technologies were considered, where Municipal Solid Waste (MSW) were used as a raw material for composting, collected from the adjacent areas of the plant. Initially the whole composting system was conducted through two experimental setups. In the 1st setup three different types of aerators (horizontal and vertical passively aerator and forced aerator) were selected. For a necessary observation four piles, using only MSW as the input materials in the first three compost pile, the fourth one was the existing Samadhan’s compost pile. Based on the analysis of the experimental findings, the horizontal passively aerated composting technique is suitable for Bangladesh as it had better performance for reducing composting period than that of the others. It was being observed from the quality parameters of compost in the both 1st and 2nd setup that as the waste directly come from kitchen, degradation rate of waste shows a positive result for reducing this waste and there is no possibility of toxic contamination, when it would be used as a soil conditioner. Though there is no significant improvement in the quality of the final product in the 2nd setup as comparing with the 1st setup but it fulfills one of the main objectives of this study is to reduce the whole composting period as well as immediate management of the increasing amount of waste and reducing load on landfill. Selfheating tests reveal that degree of stability of compost with respect to maturation period was remained in the acceptable level, which was further accelerated due to the use of organic additives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号