首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
‘No-take’ marine protected areas (MPAs) are successful in protecting populations of many exploited fish species, but it is often unclear whether networks of MPAs are adequately spaced to ensure connectivity among reserves, and whether there is spillover into adjacent exploited areas. Such issues are particularly important in species with low dispersal potential, many of which exist as genetically distinct regional stocks. The roman, Chrysoblephus laticeps, is an overexploited, commercially important sparid endemic to South Africa. Post-recruits display resident behavior and occupy small home ranges, making C. laticeps a suitable model species to study genetic structure in marine teleosts with potentially low dispersal ability. We used multilocus data from two types of highly variable genetic markers (mitochondrial DNA control region and seven microsatellite markers) to clarify patterns of genetic connectivity and population structure in C. laticeps using samples from two MPAs and several moderately or severely exploited regions. Despite using analytical tools that are sensitive to detect even subtle genetic structure, we found that this species exists as a single, well-mixed stock throughout its core distribution. The high levels of connectivity identified among sites support the findings of previous studies that have indicated that inshore MPAs are an adequate tool for managing overexploited temperate reef fishes. Even though dispersal of adult C. laticeps out of MPAs is limited, the fact that the large adults in these reserves produce exponentially more offspring than their smaller counterparts in exploited areas makes MPAs a rich source of recruits. We nonetheless caution against concluding that the lack of structure identified in C. laticeps and several other southern African teleosts can be considered to be representative of marine teleosts in this region in general. Many such species are represented in more than one marine biogeographic province and may be comprised of regionally adapted stocks that require individual management.  相似文献   

2.
Fishing the line near marine reserves in single and multispecies fisheries.   总被引:3,自引:0,他引:3  
Throughout the world "fishing the line" is a frequent harvesting tactic in communities where no-take marine reserves are designated. This practice of concentrating fishing effort at the boundary of a marine reserve is predicated upon the principle of spillover, the net export of stock from the marine reserve to the surrounding unprotected waters. We explore the consequences and optimality of fishing the line using a spatially explicit theoretical model. We show that fishing the line: (1) is part of the optimal effort distribution near no-take marine reserves with mobile species regardless of the cooperation level among harvesters; (2) has a significant impact on the spatial patterns of catch per unit effort (CPUE) and fish density both within and outside of the reserve; and (3) can enhance total population size and catch simultaneously under a limited set of conditions for overexploited populations. Additionally, we explore the consequences of basing the spatial distribution of fishing effort for a multispecies fishery upon the optimality of the most mobile species that exhibits the greatest spillover. Our results show that the intensity of effort allocated to fishing the line should instead be based upon more intermediate rates of mobility within the targeted community. We conclude with a comparison between model predictions and empirical findings from a density gradient study of two important game fish in the vicinity of a no-take marine-life refuge on Santa Catalina Island, California (USA). These results reveal the need for empirical studies to account for harvester behavior and suggest that the implications of spatial discontinuities such as fishing the line should be incorporated into marine-reserve design.  相似文献   

3.
Although the rapid recovery of fishes after establishment of a marine reserve is well known, much less is known about the response of long-lived, sessile, benthic organisms to establishment of such reserves. Since antiquity, Mediterranean red coral (Corallium rubrum) has been harvested intensively for use in jewelry, and its distribution is currently smaller than its historical size throughout the Mediterranean Sea. To assess whether establishment of marine reserves is associated with a change in the size and number of red coral colonies that historically were not harvested sustainably, we analyzed temporal changes in mean colony diameter and density from 1992 to 2005 within red coral populations at different study sites in the Medes Islands Marine Reserve (established in 1992) and in adjacent unprotected areas. Moreover, we compared colony size in the Medes Islands Marine Reserve, where recreational diving is allowed and poaching has been observed after reserve establishment, with colony size in three other marine protected areas (Banyuls, Carry-le-Rouet, and Scandola) with the enforced prohibition of fishing and diving. At the end of the study, the size of red coral colonies at all sampling sites in the Medes Islands was significantly smaller than predicted by growth models and smaller than those in marine protected areas without fishing and diving. The annual number of recreational dives and the percent change in the basal diameter of red coral colonies were negatively correlated, which suggests that abrasion by divers may increase the mortality rates of the largest red coral colonies within this reserve . Our study is the first quantitative assessment of a poaching event, which was detected during our monitoring in 2002, inside the marine reserve. Poaching was associated with a loss of approximately 60% of the biomass of red coral colonies.  相似文献   

4.
A fine-mesh seine net was used at regular intervals to collect fishes from the entrance channel and basin of the Blackwood River Estuary (south-western Australia), from Deadwater Lagoon, which is joined to the entrance channel by a narrow and shallow water-course and thus constitutes part of this estuary, and from Flinders Bay into which the estuary discharges. Sampling was at six-weekly intervals between February and December 1994. The juveniles of some marine species, such as Pelates sexlineatus, Rhabdosargus sarba and Aldrichetta forsteri, were either found only in the estuary or were in far higher densities in the estuary than in Flinders Bay. In contrast, the juveniles of some other marine species, such as Sillago schomburgkii, were relatively abundant in both environments, while others such as S. bassensis, Pelsartia humeralis, Lesueurina platycephala and Spratelloides robustus were either far more abundant in Flinders Bay or entirely restricted to this marine embayment. The various marine species found in inshore waters thus apparently vary considerably in their “preference” for estuaries as nursery areas. Although some marine species were abundant in the shallows of the estuary, the fish fauna of these waters was dominated by the estuarine-spawning species Leptatherina wallacei, Favonigobius lateralis, L. presbyteroides and Atherinosoma elongata. The above regional differences help account␣for the very marked difference that was found between the compositions of the shallow-water␣ichthyofaunas of Flinders Bay and each of the three estuarine regions. The ichthyofaunal compositions of the basin and channel underwent pronounced changes during winter, when freshwater discharge increased markedly and salinities in the estuary thus declined precipitously. This faunal change was mainly attributable to the emigration of marine stragglers, a reduction in the densities of marine estuarine-opportunist species such as Pelates sexlineatus and R. sarba, and the immigration of large numbers of both young 0+ Aldrichetti forsteri from the sea and of L. wallacei from the river. Although most of the above species were also abundant in Deadwater Lagoon, the ichthyofaunal composition of this region did not undergo the same seasonal changes, presumably due to the lack of riverine input and thus the maintenance of relatively high salinities throughout the year. The number of marine straggler species was much lower in Deadwater Lagoon than in the estuary basin, reflecting a far more restricted tidal exchange with the entrance channel. However, the overall density of fishes was far higher in Deadwater Lagoon than in the estuary basin or entrance channel, due mainly to the far higher densities of the estuarine species Atherinosoma elongata and L. wallacei and of the 0+ age class of the marine species R. sarba. The high densities of certain species in Deadwater Lagoon are assumed to be related, at least in part, to the high level of productivity and protection that is provided by the presence of patches of Ruppia megacarpa, an aquatic angiosperm that was not present in the estuary basin or entrance channel. Received: 3 December 1996 / Accepted: 19 December 1996  相似文献   

5.
The designation of no‐take marine reserves involves social and economic concerns due to the resulting displacement of fishing effort, when fishing rights are removed from those who traditionally fished within an area. Displacement can influence the functioning of the fishery and success of the reserve, yet levels of displacement are seldom quantified after reserve implementation and very rarely before that. We devised a simple analytical framework based on set theory to facilitate reserve placement. Implementation of the framework requires maps of fishing grounds, fishing effort, or catch per unit effort for at least 2 years. The framework quantifies the level of conflict that a reserve designation might cause in the fishing sector due to displacement and the opportunities to offset the conflict through fisher spatial mobility (i.e., ability of fishers to fish elsewhere). We also considered how the outputs of the framework can be used to identify targeted management interventions for each fishery. We applied the method in Honduras, where the largest marine protected area in Central America is being placed, for which spatial data on fishing effort were available for 6 fisheries over 3 years. The proposed closure had a greater negative impact on the shrimp and lobster scuba fisheries, which concentrated respectively 28% and 18% of their effort inside the reserve. These fisheries could not accommodate the displacement within existing fishing grounds. Both would be forced to stretch into new fishing grounds, which are available but are of unknown quality. These stakeholders will likely require compensation to offset costly exploratory fishing or to travel to fishing grounds farther away from port.  相似文献   

6.
We analysed fisheries trends in the northern region of the Gulf of California, within the Biosphere Reserve of the Upper Gulf of California and Colorado Delta River and the Vaquita Refuge Area, and suggest measures to protect the vaquita, Phocoena sinus. We compiled and analysed catch reports of artisanal fishermen in the three fishing communities of the Upper Gulf of California (San Felipe in the State of Baja California, and Golfo de Santa Clara and Puerto Peñasco in the State of Sonora) from 1995 to 2007. This information was categorised with respect to geographic information systems, and all fishing sites within two marine protected areas in the region were identified. In addition, from a survey based on direct interviews with artisanal fishermen in each of the three ports, we identified that 23% of fishermen will continue fishing despite on-going fishing buy-out programmes in the region. We suggest several specific courses of action to decrease the fishing impact on this critically endangered cetacean. However, given the critical situation of this critically endangered species, it is very uncertain whether enforcing a no-take zone within the biosphere reserve and the Vaquita Refuge Area, or even a wider fishing moratorium, will be enough to save this endangered species from extinction.  相似文献   

7.
E. Sala 《Marine Biology》1997,129(3):531-539
Direct observations of predation on 436 individuals of the sea urchin Paracentrotus lividus (Lamarck) were carried out in infralittoral rocky bottoms (between 5 and 20 m deep) in three Mediterranean marine reserves. The predator guild was composed of six fish species, the sparids Diplodus sargus and D. vulgaris being the main predators, and the labrid Coris julis a major predator of juvenile sea urchins. Four species attempted but failed to open sea urchins. The scavenger guild was most rich in species, with 17 species observed. Predation was size-dependent; the size of predators increased with increasing size of the sea urchins. The presence of two feeding guilds is suggested, one composed of sparids (Diplodus spp.), able to kill juvenile and adult sea urchins, and the other composed of labrids (mainly C. julis), which feed on juvenile sea urchins. To avoid the extension of overgrazed, barren areas created by P. lividus populations, fisheries' regulations should focus on major sea-urchin predators, chiefly D. sargus, D. vulgaris and C. julis. Received: 23 April 1997 / Accepted: 30 May 1997  相似文献   

8.
Closure of areas to fishing is expected to result in an increase in the abundance of targeted species; however, changes to populations of species not targeted by fishermen will depend upon their role in the ecosystem and their relationship with targeted species. The effects of protection on targeted and non-targeted reef fish species at the Houtman Abrolhos Islands, Western Australia were studied using baited remote underwater stereo–video cameras. Video images were collected from shallow (8–12 m) and deep (22–26 m) reef sites inside a Marine Protected Area (MPA) at each of three island groups and from three replicate fished locations at each of these groups that span a temperate-tropical transition area. The MPAs were established in 1994 and vary in size from 13.72 km2 at the Pelsaert group in the south to 22.29 km2 at the Easter group to 27.44 km2 at the Wallabi group in the north. The relative abundances of 137 fish species from 42 families were recorded. Large differences in fish assemblage structure existed between MPA and fished locations, and also between shallow and deep regions. Targeted fish species Plectropomus leopardus, Lethrinus miniatus, Lethrinus nebulosus, Pagrus auratus and Glaucosoma hebraicum were more abundant inside MPAs than in areas open to fishing. Their abundance inside MPAs was between 1.13 and 8 times greater than their abundance at fished locations. For non-targeted fish species many were more abundant in areas open to fishing, e.g. Coris auricularis, Thalassoma lutescens, Thalassoma lunare, Dascyllus trimaculatus, however others were conversely more abundant inside MPAs, e.g. Gymnothorax spp, Kyphosus sydneyanus, Scarus microhinos, Chromis westaustralis, Chaetodon spp. This study demonstrates that the removal of abundant targeted species from an ecosystem by fishing can indirectly impact non-fished species and alter the trophic structure of fish assemblages. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
The effect of predation on artificial reef juvenile demersal fish species   总被引:1,自引:0,他引:1  
There is a concern that artificial reefs (AR) may act purely as fishing aggregation devices. Predators attracted to ARs can influence the distribution and abundance of prey fish species. Determining the role of predators in AR is important in advancing the understanding of community interactions. This paper documents the effects of predation on fish assemblages of AR located near a coastal lagoon fish nursery. The Dicentrarchus labrax is a very opportunistic species preying on juveniles (0+ and 1+ age classes) of several demersal fish species on the ARs. Reef prey and sea bass abundance were negatively correlated. The mean numbers of prey per sea bass stomach increased with the increase of reef fish prey abundance, suggesting that predation has a significant influence, resulting in a decrease in prey abundance. Prey mortality (4–48%) of demersal reef fish associated species depends on bass density. Prey selection was related both with prey abundance and vulnerability. Results showed that D. labrax predation on AR-fish associated species can increase prey natural mortality. However, the role of bass predation on the ecological functioning of exploited ARs is not clear. There may be increases in local fishing yields due either to an increase in predator biomass through aggregation of sea bass attracted to ARs or to greater production. In contrast, predation on juveniles of economically important reef fish preys, especially the most frequent and abundant (Boops boops), can contribute to a decrease in recruitment to the fishery. Our results indicate that inter-specific interactions (predator–prey) are important in terms of conservation and management, as well as for the evaluation of the long-term effects of reef deployment. Thus, it is necessary to consider ecological interactions, such as predation, prior to the development and deployment of artificial habitats as a tool for rehabilitation.  相似文献   

10.
Colony size is an important life-history characteristic of corals and changes in colony size will have significant effects on coral populations. This study summarizes ∼21,000 haphazard colony size measurements of 26 common coral taxa (mostly coral genera) collected annually between 1992 and 2006 in seven Kenyan reef lagoons. There was a major coral bleaching and mortality event in early 1998 and all seven reefs were affected. The seven locations include two long-protected Marine National Parks (Malindi and Watamu), one relatively recently established park (Mombasa), and four unprotected locations (Vipingo, Kanamai, Ras Iwatine, and Diani). They span about 150 km and represent three distinct fishery management regimes: old protected (OP), newly protected (NP), and unprotected (UP). Seventeen taxa had statistically significant different sizes for comparisons of the management regimes, with only one genus, Pavona, having larger sizes in the unprotected reefs. The size of eight coral genera showed a significant time and management interaction, and size frequency differences that existed in management areas prior to 1998 were further increased after the bleaching event. Time alone was a significant factor for eleven genera, and in all cases colonies were smaller after 1998. For most taxa, colony size distributions were significantly skewed and had right-tailed distributions. After 1998, the right-tailed distributions of Acropora, Hydnophora, and Montipora were significantly reduced. Most taxa had peaky distributions and only Acropora experienced a statistically significant change from peaky to flat. The mean sizes of taxa were not related to their mortality across 1998, which indicates that the size effect was within rather than between taxa. Astreopora and Platygyra were well-sampled taxa that did not show an effect of management, but had reduced median sizes across 1998. Consequently, no taxa were tolerant of both fishing and bleaching disturbances and the combined effect was to reduce the size of all corals.  相似文献   

11.
The temporal patterns and the effect of shell size and depth on growth and mortality rates of the endangered fan mussel Pinna nobilis were investigated in the marine Lake Vouliagmeni (Korinthiakos Gulf, Greece). A total of 160 individuals were tagged and monitored monthly for a period of 17 months. At each visit, the size of the tagged individuals (shell width, w) was measured in situ and recorded. Any mortality event was also recorded and attributed to natural causes or (illegal) fishing. Growth and mortality rates were modeled with generalized additive models, which are non-parametric flexible models that free the researcher from the limiting concept of a strict parametric shape. The use of GAMs allowed the exploration of shapes of growth and mortality response curves in relation to predictor variables and allowed the fitting of statistical models that better agree with ecological theory. Growth rates had a seasonal pattern, with an extended period of very slow growth between late autumn and early spring, i.e., during the cold season, another short period of slow growth during August (when water temperatures reached their maximum values exceeding 29°C), and a peak in growth rates during late spring–early summer, probably related to an optimum combination of temperature and food availability. Growth rates varied with shell size, with a peak at w ∼4.5 cm, followed by a sharp decline to an approximately constant level, with sizes ranging from 9 to 15 cm, and a further decline with larger sizes down to almost zero for w > 20 cm. Growth rates did not vary substantially with depth. Although P. nobilis is a protected species in the EU and its fishing is strictly prohibited, fishing mortality was very high in Lake Vouliagmeni (much greater than natural mortality), especially during the hot season when the lake was crowded by summer visitors. The fan mussels were poached exclusively by free-diving and due to the high turbidity of the lake’s water, fishing mortality was higher in shallow areas (and mostly for large individuals) and was practically zero at depths >9 m. Due to fishing mortality, a size segregation of P. nobilis was observed in the lake: large individuals were restricted to deeper areas, while young and small individuals were more abundant in shallow areas where there was preferential recruitment. Natural mortality was strikingly size dependent and P. nobilis suffered high natural mortality during the first year of life; the probability of death by natural causes quickly diminished as the fan mussels grew in size. No depth-related differences in natural mortality were found.  相似文献   

12.
Abstract: Many populations of marine megafauna, including seabirds, sea turtles, marine mammals, and elasmobranchs, have declined in recent decades due largely to anthropogenic mortality. To successfully conserve these long‐lived animals, efforts must be prioritized according to feasibility and the degree to which they address threats with the highest relative impacts on population dynamics. Recently, Wilcox and Donlan (2007, Frontiers in Ecology and the Environment) and Donlan and Wilcox (2008, Biological Invasions) proposed a conservation strategy of “compensatory mitigation” in which fishing industries offset bycatch of seabirds and sea turtles by funding eradication of invasive mammalian predators from the terrestrial reproductive sites of these marine animals . Although this is a creative and conceptually compelling approach, we find it flawed as a conservation tool because it has narrow applicability among marine megafauna, it does not address the most pervasive threats to marine megafauna, and it is logistically and financially infeasible. Invasive predator eradication does not adequately offset the most pressing threat to most marine megafauna populations—fisheries bycatch. For seabird populations, fisheries bycatch and invasive predators infrequently are overlapping threats. Invasive predators have limited population‐level impacts on sea turtles and marine mammals and no impacts on elasmobranchs, all of which are threatened by bycatch. Implementing compensatory mitigation in marine fisheries is unrealistic due to inadequate monitoring, control, and surveillance in the majority of fleets. Therefore, offsetting fisheries bycatch with eradication of invasive predators would be less likely to reverse population declines than reducing bycatch. We recommend that efforts to mitigate bycatch in marine capture fisheries should address multiple threats to sensitive bycatch species groups, but these efforts should first institute proven bycatch avoidance and reduction methods before considering compensatory mitigation.  相似文献   

13.
A metapopulation, time-invariant, stage-classified matrix model was developed to assess the dynamics of an important Pinna nobilis population in the marine Lake Vouliagmeni (Korinthiakos Gulf, Greece). The main aim of the study was to provide insight on the life cycle of the fan mussel and reveal influential factors for its population dynamics, with a special focus on the effect of poaching. The size of the fan mussel shell was selected as a state variable, and the model consisted of five size classes. The lake was divided in two regions, a shallow region of high (illegal) fishing mortality and high recruitment (region 1) and a deeper region of low mortality and low recruitment (region 2). The estimation of the transition matrix (stage-specific growth and mortality probabilities) was based on a tagging survey between 2005 and 2006, while independent annual surveys for abundance estimation using distance sampling techniques were utilized for the estimation of recruitment and stage-specific fertilities. The population was found to be increasing with an intrinsic rate of increase r = 0.038; however, r was not statistically different from zero. The life expectancy and expected lifetime offspring production of individuals in region 1 was markedly lower than that of individuals in region 2. Due to poaching, the life expectancy of a yearling fan mussel was less than 2.5 years in region 1, while it was almost 12 years in region 2. The highest expected annual natural mortality of fan mussels occurred on their first year of life after settlement (~43%) and greatly declined at greater sizes. Perturbation analysis revealed that the population growth rate was most sensitive to the vital rates of the larger size classes in region 2 and to fertilities corresponding to offspring that settled in the same region. The spatial distribution and abundance of the species was greatly dependent on the extent of poaching, which caused a size segregation of individuals, with small and young individuals being abundant in region 1, and larger and older individuals being restricted in region 2. If poaching ceased, the fan mussel population would be increasing with a significantly higher intrinsic rate of increase (r = 0.186), while if region 2 was also illegally exploited at the same intensity as region 1, the fan mussel population would be decreasing with r = −0.364 and would eventually collapse. The existence of refuge areas, where fan mussels may grow and reproduce, providing adjacent areas with offspring, seems crucial for the viability of local populations. Transplantation of fan mussels from high mortality areas to low mortality refuges might prove to be an effective measure to protect local populations of the species.  相似文献   

14.
Instantaneous natural mortality rates and a nonparametric hunting mortality function are estimated from a multiple-year tagging experiment with arbitrary, time-dependent fishing or hunting mortality. Our theory allows animals to be tagged over a range of times in each year, and to take time to mix into the population. Animals are recovered by hunting or fishing, and death events from natural causes occur but are not observed. We combine a long-standing approach based on yearly totals, described by Brownie et al. (1985, Statistical Inference from Band Recovery Data: A Handbook, Second edition, United States Fish and Wildlife Service, Washington, Resource Publication, 156), with an exact-time-of-recovery approach originated by Hearn, Sandland and Hampton (1987, Journal du Conseil International pour l’Exploration de la Mer, 43, 107–117), who modeled times at liberty without regard to time of tagging. Our model allows for exact times of release and recovery, incomplete reporting of recoveries, and potential tag shedding. We apply our methods to data on the heavily exploited southern bluefin tuna (Thunnus maccoyii).  相似文献   

15.
Factors affecting population recovery from depletion are at the focus of wildlife management. Particularly, it has been debated how life‐history characteristics might affect population recovery ability and productivity. Many exploited fish stocks have shown temporal changes towards earlier maturation and reduced adult body size, potentially owing to evolutionary responses to fishing. Whereas such life‐history changes have been widely documented, their potential role on stock's ability to recover from exploitation often remains ignored by traditional fisheries management. We used a marine ecosystem model parameterized for Southeastern Australian ecosystem to explore how changes towards “faster” life histories might affect population per capita growth rate r. We show that for most species changes towards earlier maturation during fishing have a negative effect (3–40% decrease) on r during the recovery phase. Faster juvenile growth and earlier maturation were beneficial early in life, but smaller adult body sizes reduced the lifetime reproductive output and increased adult natural mortality. However, both at intra‐ and inter‐specific level natural mortality and trophic position of the species were as important in determining r as species longevity and age of maturation, suggesting that r cannot be predicted from life‐history traits alone. Our study highlights that factors affecting population recovery ability and productivity should be explored in a multi‐species context, where both age‐specific fecundity and survival schedules are addressed simultaneously. It also suggests that contemporary life‐history changes in harvested species are unlikely to increase their resilience and recovery ability.  相似文献   

16.
Studies investigating disease resistance in marine plants have indicated that secondary metabolites may have important defensive functions against harmful marine microorganisms. The goal of this study was to systematically screen extracts from marine plants for antimicrobial effects against marine pathogens and saprophytes. Lipophilic and hydrophilic extracts from species of 49 marine algae and 3 seagrasses collected in the tropical Atlantic were screened for antimicrobial activity against five ecologically relevant marine microorganisms from three separate kingdoms. These assay microbes consisted of the pathogenic fungus Lindra thalassiae, the saprophytic fungus Dendryphiella salina, the saprophytic stramenopiles, Halophytophthora spinosa and Schizochytrium aggregatum, and the pathogenic bacterium Pseudoaltermonas bacteriolytica. Overall, 90% of all species surveyed yielded extracts that were active against one or more, and 77% yielded extracts that were active against two or more assay microorganisms. Broad-spectrum activity against three or four assay microorganisms was observed in the extracts from 48 and 27% of all species, respectively. The green algae Halimeda copiosa and Penicillus capitatus (Chlorophyta) were the only species to yield extracts active against all assay microorganisms. Among all assay microorganisms, both fungi were the most resistant to the extracts tested, with less than 21% of all extracts inhibiting the growth of either L. thalassiae or D. salina. In contrast, over half of all lipophylic extracts were active against the stramenopiles H. spinosa and S. aggregatum, and the bacterium P. bacteriolytica. Growth sensitivity to hydrophilic extracts varied considerably between individual assay microorganisms. While 48% of all hydrophilic extracts were active against H. spinosa, 27% were active against P. bacteriolytica, and only 14% were active against S. aggregatum. Overall, more lipophilic extracts inhibited microbial growth than hydrophilic extracts. The variability observed in the antimicrobial effects of individual extracts against each assay microorganism reflects the importance of choosing appropriate test microbes in assays from which ecologically relevant information is sought. Results from this survey demonstrate that antimicrobial activities are prevalent among extracts from marine algae and seagrasses, suggesting that antimicrobial chemical defenses are widespread among marine plants.  相似文献   

17.
Abstract: The establishment of marine protected areas is often viewed as a conflict between conservation and fishing. We considered consumptive and nonconsumptive interests of multiple stakeholders (i.e., fishers, scuba divers, conservationists, managers, scientists) in the systematic design of a network of marine protected areas along California's central coast in the context of the Marine Life Protection Act Initiative. With advice from managers, administrators, and scientists, a representative group of stakeholders defined biodiversity conservation and socioeconomic goals that accommodated social needs and conserved marine ecosystems, consistent with legal requirements. To satisfy biodiversity goals, we targeted 11 marine habitats across 5 depth zones, areas of high species diversity, and areas containing species of special status. We minimized adverse socioeconomic impacts by minimizing negative effects on fishers. We included fine‐scale fishing data from the recreational and commercial fishing sectors across 24 fisheries. Protected areas designed with consideration of commercial and recreational fisheries reduced potential impact to the fisheries approximately 21% more than protected areas designed without consideration of fishing effort and resulted in a small increase in the total area protected (approximately 3.4%). We incorporated confidential fishing data without revealing the identity of specific fisheries or individual fishing grounds. We sited a portion of the protected areas near land parks, marine laboratories, and scientific monitoring sites to address nonconsumptive socioeconomic goals. Our results show that a stakeholder‐driven design process can use systematic conservation‐planning methods to successfully produce options for network design that satisfy multiple conservation and socioeconomic objectives. Marine protected areas that incorporate multiple stakeholder interests without compromising biodiversity conservation goals are more likely to protect marine ecosystems.  相似文献   

18.
Understanding ecosystem responses to global and local anthropogenic impacts is paramount to predicting future ecosystem states. We used an ecosystem modeling approach to investigate the independent and cumulative effects of fishing, marine protection, and ocean acidification on a coastal ecosystem. To quantify the effects of ocean acidification at the ecosystem level, we used information from the peer‐reviewed literature on the effects of ocean acidification. Using an Ecopath with Ecosim ecosystem model for the Wellington south coast, including the Taputeranga Marine Reserve (MR), New Zealand, we predicted ecosystem responses under 4 scenarios: ocean acidification + fishing; ocean acidification + MR (no fishing); no ocean acidification + fishing; no ocean acidification + MR for the year 2050. Fishing had a larger effect on trophic group biomasses and trophic structure than ocean acidification, whereas the effects of ocean acidification were only large in the absence of fishing. Mortality by fishing had large, negative effects on trophic group biomasses. These effects were similar regardless of the presence of ocean acidification. Ocean acidification was predicted to indirectly benefit certain species in the MR scenario. This was because lobster (Jasus edwardsii) only recovered to 58% of the MR biomass in the ocean acidification + MR scenario, a situation that benefited the trophic groups lobsters prey on. Most trophic groups responded antagonistically to the interactive effects of ocean acidification and marine protection (46%; reduced response); however, many groups responded synergistically (33%; amplified response). Conservation and fisheries management strategies need to account for the reduced recovery potential of some exploited species under ocean acidification, nonadditive interactions of multiple factors, and indirect responses of species to ocean acidification caused by declines in calcareous predators.  相似文献   

19.
Parasite assemblages are increasingly being used as indicators of their hosts’ biology and ecology, especially for economically important marine species such as the Soleidae. In this study, seven species inhabiting Portuguese coastal waters were examined for external and internal macroparasite infections using standard procedures: Dicologlossa cuneata, Microchirus azevia, Microchirus variegatus, Solea lascaris, Solea senegalensis, Solea solea and Synaptura lusitanica. Despite being closely related, these species present different life history patterns and ecological preferences which were expected to be mirrored by their macroparasite assemblages. The aim of the study was, therefore, to study the variation of these assemblages, within and between host species, along the Portuguese coast in order to evaluate the importance of the hosts’ features and environmental factors in the assemblage compositions. Flatfish were obtained seasonally from commercial fishing vessels operating in three areas (northern, central and southern) along the Portuguese coast. Prevalence and mean abundance were calculated and tested for differences between host sex, areas and seasons. The host specificity index and the importance of the host–parasite relationship were computed based on mean abundance. The total number of parasite individuals, species richness, total prevalence, total mean abundance, diversity and evenness were also calculated. A canonical correspondence analysis (CCA) was performed using prevalence and mean abundance data. A total of 44 macroparasite species were found. No significant differences were observed in prevalence and mean abundance between sexes and sampling seasons but, for three of the parasite species, significant differences were found between areas. The highest values of the parasitological and ecological indices were generally registered in the hosts S. lascaris and S. senegalensis and in the southern area. The CCA using the prevalence data revealed the differentiation of S. lascaris samples, which was mainly related to the total prevalence and to the number of important species of macroparasites. When using mean abundance data, the CCA revealed the differentiation of D. cuneata from the south, S. lascaris from the three areas and S. senegalensis from the south, mainly related to total prevalence and richness. The differences found between infection levels and assemblages’ composition were mainly due to differences in hosts’ diet, namely prey type consumption, given that most macroparasites found were transmitted through the food web. However, environmental factors were also important given that they regulate the distribution of ectoparasites and the availability of prey, and therefore the infections’ pattern. These findings were in agreement with the ones from similar studies performed in other species, revealing the importance of parasites as indicators of their hosts’ ecology.  相似文献   

20.
Observations and experiments were made at 2 intertidal areas near Beaufort, North Carolina, USA from May 1977 to July 1978 to determine why the oyster Crassostrea virginica dominated the community in areas protected from wave action but not in areas directly exposed to waves. Barnacles, oysters, the green alga Enteromorpha sp. and the mussel Brachiodontes exustus were the main occupiers of primary space at the mid and low intertidal levels of exposed areas. The intertidal community at the protected site consisted of a mid intertidal occupied by the barnacles Balanus amphitrite and Chthamalus fragilis, and the oyster C. virginica, and a low intertidal dominated by C. virginica. The exposed area was highly variable with high colonization and mortality for all species producing large seasonal changes in structure. The protected site remained constant throughout the year; there was no evidence of further colonization of either barnacles or oysters and mortality was very low. Recolonization experiments, selective removal of species, and growth and survival data demonstrated that C. virginica does not become dominant at exposed locations because (1) the constant wave shock at the ocean site reduces growth and increases mortality of young and adult oysters and (2) oysters are outcompeted by the mussel B. exustus. The monopolization of space by C. virginica at protected sites contrasts with studies north of Cape Hatteras where the abundance of predators produces a more diverse and heterogeneous community. Predation was unimportant in Beaufort because predators were absent at the exposed areas and the oyster drill Urosalpinx cinerea was restricted to the subtidal zone at the protected site. This absence of predators indicates a higher level of environmental stress near Beaufort compared to areas farther north.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号