首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
ABSTRACT

To evaluate the validity of fixed-site fine particle levels as exposure surrogates in air pollution epidemiology, we considered four indicator groups: (1) PM25 total mass concentrations, (2) sulfur and potassium for regional air pollution, (3) lead and bromine for traffic-related particles, and (4) calcium for crustal particles. Using data from the European EXPOLIS (Air Pollution Exposure Distribution within Adult Urban Populations in Europe) study, we assessed the associations between 48-hr personal exposures and home outdoor levels of the indicators. Furthermore, within-city variability of fine particle levels was evaluated.

Personal exposures to PM2.5 mass were not correlated to corresponding home outdoor levels (n = 44, rS (S) =r o v ' Spearman (Sp) 0.07). In the group reporting neither relevant indoor sources nor relevant activities, personal exposures and home outdoor levels of sulfur were highly correlated (n = 40, rSp = 0.85). In contrast, the associations were weaker for traffic (Pb: n = 44, rSp = 0.53; Br: n = 44, rSp = 0.21) and crustal (Ca: n = 44, rSp = 0.12) indicators. This contrast is consistent with spatially homogeneous regional pollution and higher spatial variability of traffic and crustal indicators observed in Basel, Switzerland.

We conclude that for regional air pollution, fixed-site fine particle levels are valid exposure surrogates. For source-specific exposures, however, fixed-site data are probably not the optimal measure. Still, in air pollution epidemiology, ambient PM2.5 levels may be more appropriate exposure estimates than total personal PM2.5 exposure, since the latter reflects a mixture of indoor and outdoor sources.  相似文献   

2.
Individuals are exposed to particulate matter from both indoor and outdoor sources. The aim of this study was to compare the relative contributions of three sources of personal exposure to fine particles (PM2.5) by using chemical tracers. The study design incorporated repeated 24-hr personal exposure measurements of air pollution from 28 cardiac-compromised residents of Toronto, Ontario, Canada. Each study participant wore the Rupprecht & Patashnick ChemPass Personal Sampling System 1 day a week for a maximum of 10 weeks. During their individual exposure measurement days the subjects reported to have spent an average of 89% of their time indoors. Particle phase elemental carbon, sulfate, and calcium personal exposure data were used in a mixed-effects model as tracers for outdoor PM2.5 from traffic-related combustion, regional, and local crustal materials, respectively. These three sources were found to contribute 13% +/- 10%, 17% +/- 16%, and 7% +/- 6% of PM2.5 exposures. The remaining fraction of the personal PM2.5 is hypothesized to be predominantly related to indoor sources. For comparison, central site outdoor PM2.5 measurements for the same dates as personal measurements were used to construct a receptor model using the same three tracers. In this case, traffic-related combustion, regional, and local crustal materials were found to contribute 19% +/- 17%, 52% +/- 22%, and 10% +/- 7%, respectively. Our results indicate that the three outdoor PM2.5 sources considered are statistically significant contributors to personal exposure to PM2.5. Our results also suggest that among the Toronto subjects, who spent a considerable amount of time indoors, exposure to outdoor PM2.5 includes a greater relative contribution from combustion sources compared with outdoor PM2.5 measurements where regional sources are the dominant contributor.  相似文献   

3.
In researching health effects of air pollution, pollutant levels from fixed-site monitors are commonly assigned to the subjects. However, these concentrations may not reflect the exposure these individuals actually experience. A previous study of ozone (O3) exposure and lung function among shoe-cleaners working in central Mexico City used fixed-site measurements from a monitoring station near the outdoor work sites as surrogates for personal exposure. The present study assesses the degree to which these estimates represented individual exposures. In 1996, personal O3 exposures of 39 shoe-cleaners working outdoors were measured using an active integrated personal sampler. Using mixed models, we assessed the relationship between measured personal O3 exposure and ambient O3 measurements from the fixed-site monitoring station. Ambient concentrations were approximately 50 parts per billion higher, on average, than personal exposures. The association between personal and ambient O3 was highly significant (mixed model slope p < 0.0001). The personal/ambient ratio was not constant, so use of the outdoor monitor would not be appropriate to rank O3 exposure and evaluate health effects between workers. However, the strong within-worker longitudinal association validates previous findings associating day-to-day changes in fixed-site O3 levels with adverse health effects among these shoe-cleaners and suggests fixed-site O3 monitors may adequately estimate exposure for other repeated-measure health studies of outdoor workers.  相似文献   

4.
Mot time-series studies of particulate air pollution and acute health outcomes assess exposure of the study population using fixed-site outdoor measurements. To address the issue of exposure misclassification, we evaluate the relationship between ambient particle concentrations and personal exposures of a population expected to be at risk of particle health effects. Sampling was conducted within the Vancouver metropolitan area during April-September 1998. Sixteen subjects (non-smoking, ages 54-86) with physician-diagnosed chronic obstructive pulmonary disease (COPD) wore personal PM2.5 monitors for seven 24-hr periods, randomly spaced approximately 1.5 weeks apart. Time-activity logs and dwelling characteristics data were also obtained for each subject. Daily 24-hr ambient PM10 and PM2.5 concentrations were measured at five fixed sites spaced throughout the study region. SO4(2-), which is found almost exclusively in the fine particle fraction and which does not have major indoor sources, was measured in all PM2.5 samples as an indicator of accumulation mode particulate matter of ambient origin. The mean personal and ambient PM2.5 concentrations were 18 micrograms/m3 and 11 micrograms/m3, respectively. In analyses relating personal and ambient measurements, ambient concentrations were expressed either as an average of the values obtained from five ambient monitoring sites for each day of personal sampling, or as the concentration obtained at the ambient site closest to each subject's home. The mean personal to ambient concentration ratio of all samples was 1.75 (range = 0.24 to 10.60) for PM2.5, and 0.75 (range = 0.09 to 1.42) for SO4(2-). Regression analyses were conducted for each subject separately and on pooled data. The median correlation (Pearson's r) between personal and average ambient PM2.5 concentrations was 0.48 (range = -0.68 to 0.83). Using SO4(2-) as the exposure metric, the median r between personal and average ambient concentrations was 0.96 (range = 0.66 to 1.0). Use of the closest ambient site did not improve the median correlation of the group for either PM2.5 or SO4(2-). All pooled analyses resulted in lower correlation coefficients than the median correlation coefficient of individual regressions. Personal SO4(2-) was more highly correlated with all ambient measures than PM2.5. Inclusion of time-activity and dwelling characteristics data did not result in a useful predictive regression model for PM2.5 personal exposure, but improved the model fit from simply regressing against ambient concentration (R2 = 0.27). The model for SO4(2-) was predictive (R2 = 0.82), as personal exposures were largely explained by ambient levels. These results indicate a relatively low correlation between personal exposure and ambient PM2.5 that is not improved by assigning exposure to the closest ambient monitor. The correlation between personal exposure and ambient concentration is high, however, when using SO4(2-), an indicator of accumulation mode particulate matter of ambient origin.  相似文献   

5.
An exposure study of 18 subjects with chronic obstructive pulmonary disease (COPD) living in the Boston, MA, area was conducted. The objective was to examine determinants of personal exposures to particulate matter (PM) with aerodynamic diameters of less than 2.5 microm (PM2.5), less than 10 microm (PM10), and between 2.5 and 10 microm (PM2.5-10). In a previous publication, the analyses of the longitudinal individual-specific relationships among indoor, outdoor, and personal levels showed that the relationships varied by subject and by particle size fraction. In the present paper, statistical and physical models were used to examine personal PM2.5, PM10, and PM2.5-10 exposure covariates. Results indicated that time-weighted indoor concentrations were significant predictors of personal PM2.5, PM10, and PM2.5-10 exposures. Also, time-weighted outdoor concentrations, time spent near smokers, and time spent during transportation were important predictors for PM2.5 but not for personal PM2.5-10 exposures. In turn, time spent cleaning contributed to all size-fraction personal exposures, whereas cooking affected only personal PM2.5-10 exposures. The findings showed that the relationship between personal PM2.5 exposures and the corresponding ambient concentrations was influenced by home air exchange rates (or by ventilation status). Because the particle properties or components causing the health effects are unknown, it is not certain to what extent the risk posed by ambient particles can be reduced by controlling any one of these factors.  相似文献   

6.
Epidemiological studies of particulate matter (PM) routinely use concentrations measured with stationary outdoor monitors as surrogates for personal exposure. Despite the frequently reported poor correlations between ambient concentrations and total personal exposure, the epidemiologic associations between ambient concentrations and health effects depend on the correlation between ambient concentrations and personal exposure to ambient-generated PM. This paper separates personal PM exposure into ambient and nonambient components and estimates the outdoor contribution to personal PM exposures with continuous light scattering data collected from 38 subjects in Seattle, WA. Across all subjects, the average exposure encountered indoors at home was lower than in all other microenvironments. Cooking and being at school were associated with elevated levels of exposure. Previously published estimates of particle infiltration (Finf) were combined with time-location data to estimate an ambient contribution fraction (alpha, mean = 0.66+/-0.21) for each subject. The mean alpha was significantly lower for subjects monitored during the heating season (0.55+/-0.16) than for those monitored during the nonheating season (0.80+/-0.17). Our modeled alpha estimates agreed well with those estimated with the sulfur-tracer method (slope = 1.08; R2 = 0.67). We modeled exposure to ambient and nonambient PM with both continuous light scattering and 24-hr gravimetric data and found good agreement between the two methods. On average, ambient particles accounted for 48% of total personal exposure (range = 21-80%). The personal activity exposure was highly influenced by time spent away from monitored microenvironments. The median hourly longitudinal correlation between central site concentrations and personal exposures was 0.30. Although both alpha and the nonambient sources influence the personal-central relationship, the latter seems to dominate. Thus, total personal exposure may be poorly predicted by stationary outdoor monitors, particularly among persons whose PM exposure is dominated by nonambient exposures, for example, those living in tightly sealed homes, those who cook, and children.  相似文献   

7.
Apart from its traditionally considered objective impacts on health, air pollution can also have perceived effects, such as annoyance. The psychological effects of air pollution may often be more important to well-being than the biophysical effects. Health effects of perceived annoyance from air pollution are so far unknown. More knowledge of air pollution annoyance levels, determinants and also associations with different air pollution components is needed. In the European air pollution exposure study, EXPOLIS, the air pollution annoyance as perceived at home, workplace and in traffic were surveyed among other study objectives. Overall 1736 randomly drawn 25–55-yr-old subjects participated in six cities (Athens, Basel, Milan, Oxford, Prague and Helsinki). Levels and predictors of individual perceived annoyances from air pollution were assessed. Instead of the usual air pollution concentrations at fixed monitoring sites, this paper compares the measured microenvironment concentrations and personal exposures of PM2.5 and NO2 to the perceived annoyance levels. A considerable proportion of the adults surveyed was annoyed by air pollution. Female gender, self-reported respiratory symptoms, downtown living and self-reported sensitivity to air pollution were directly associated with high air pollution annoyance score while in traffic, but smoking status, age or education level were not significantly associated. Population level annoyance averages correlated with the city average exposure levels of PM2.5 and NO2. A high correlation was observed between the personal 48-h PM2.5 exposure and perceived annoyance at home as well as between the mean annoyance at work and both the average work indoor PM2.5 and the personal work time PM2.5 exposure. With the other significant determinants (gender, city code, home location) and home outdoor levels the model explained 14% (PM2.5) and 19% (NO2) of the variation in perceived air pollution annoyance in traffic. Compared to Helsinki, in Basel and Prague the adult participants were more annoyed by air pollution while in traffic even after taking the current home outdoor PM2.5 and NO2 levels into account.  相似文献   

8.
As part of a large exposure assessment and health-effects panel study, 33 trace elements and light-absorbing carbon were measured on 24-hr fixed-site filter samples for particulate matter with an aerodynamic diameter <2.5 microm (PM2.5) collected between September 26, 2000, and May 25, 2001, at a central outdoor site, immediately outside each subject's residence, inside each residence, and on each subject (personal sample). Both two-way (PMF2) and three-way (PMF3) positive matrix factorization were used to deduce the sources contributing to PM2.5. Five sources contributing to the indoor and outdoor samples were identified: vegetative burning, mobile emissions, secondary sulfate, a source rich in chlorine, and a source of crustal-derived material. Vegetative burning contributed more PM2.5 mass on average than any other source in all microenvironments, with average values estimated by PMF2 and PMF3, respectively, of 7.6 and 8.7 microg/m3 for the outdoor samples, 4 and 5.3 microg/m3 for the indoor samples, and 3.8 and 3.4 microg/m3 for the personal samples. Personal exposure to the combustion-related particles was correlated with outdoor sources, whereas exposure to the crustal and chlorine-rich particles was not. Personal exposures to crustal sources were strongly associated with personal activities, especially time spent at school among the child subjects.  相似文献   

9.
ABSTRACT

Most time-series studies of particulate air pollution and acute health outcomes assess exposure of the study population using fixed-site outdoor measurements. To address the issue of exposure misclassification, we evaluate the relationship between ambient particle concentrations and personal exposures of a population expected to be at risk of particle health effects.

Sampling was conducted within the Vancouver metropolitan area during April-September 1998. Sixteen subjects (non-smoking, ages 54-86) with physician-diagnosed chronic obstructive pulmonary disease (COPD) wore personal PM2 5 monitors for seven 24-hr periods, randomly spaced approximately 1.5 weeks apart. Time-activity logs and dwelling characteristics data were also obtained for each subject. Daily 24-hr ambient PM10 and PM2.5 concentrations were measured at five fixed sites spaced throughout the study region. SO4 2-, which is found almost exclusively in the fine particle fraction and which does not have major indoor sources, was measured in all PM2 5 samples as an indicator of accumulation mode particu-late matter of ambient origin.  相似文献   

10.
Continued development of personal air pollution monitors is rapidly improving government and research capabilities for data collection. In this study, we tested the feasibility of using GPS-enabled personal exposure monitors to collect personal exposure readings and short-term daily PM2.5 measures at 15 fixed locations throughout a community. The goals were to determine the accuracy of fixed-location monitoring for approximating individual exposures compared to a centralized outdoor air pollution monitor, and to test the utility of two different personal monitors, the RTI MicroPEM V3.2 and TSI SidePak AM510. For personal samples, 24-hr mean PM2.5 concentrations were 6.93 μg/m3 (stderr = 0.15) and 8.47 μg/m3 (stderr = 0.10) for the MicroPEM and SidePak, respectively. Based on time–activity patterns from participant journals, exposures were highest while participants were outdoors (MicroPEM = 7.61 µg/m3, stderr = 1.08, SidePak = 11.85 µg/m3, stderr = 0.83) or in restaurants (MicroPEM = 7.48 µg/m3, stderr = 0.39, SidePak = 24.93 µg/m3, stderr = 0.82), and lowest when participants were exercising indoors (MicroPEM = 4.78 µg/m3, stderr = 0.23, SidePak = 5.63 µg/m3, stderr = 0.08). Mean PM2.5 at the 15 fixed locations, as measured by the SidePak, ranged from 4.71 µg/m3 (stderr = 0.23) to 12.38 µg/m3 (stderr = 0.45). By comparison, mean 24-h PM2.5 measured at the centralized outdoor monitor ranged from 2.7 to 6.7 µg/m3 during the study period. The range of average PM2.5 exposure levels estimated for each participant using the interpolated fixed-location data was 2.83 to 19.26 µg/m3 (mean = 8.3, stderr = 1.4). These estimated levels were compared with average exposure from personal samples. The fixed-location monitoring strategy was useful in identifying high air pollution microclimates throughout the county. For 7 of 10 subjects, the fixed-location monitoring strategy more closely approximated individuals’ 24-hr breathing zone exposures than did the centralized outdoor monitor. Highlights are: Individual PM2.5 exposure levels vary extensively by activity, location and time of day; fixed-location sampling more closely approximated individual exposures than a centralized outdoor monitor; and small, personal exposure monitors provide added utility for individuals, researchers, and public health professionals seeking to more accurately identify air pollution microclimates.

Implications: Personal air pollution monitoring technology is advancing rapidly. Currently, personal monitors are primarily used in research settings, but could they also support government networks of centralized outdoor monitors? In this study, we found differences in performance and practicality for two personal monitors in different monitoring scenarios. We also found that personal monitors used to collect outdoor area samples were effective at finding pollution microclimates, and more closely approximated actual individual exposure than a central monitor. Though more research is needed, there is strong potential that personal exposure monitors can improve existing monitoring networks.  相似文献   

11.
Paired indoor and outdoor concentrations of fine and coarse particulate matter (PM), PM2.5 reflectance [black carbon(BC)], and nitrogen dioxide (NO2) were determined for sixteen weeks in 2008 at four elementary schools (two in high and two in low traffic density zones) in a U.S.-Mexico border community to aid a binational health effects study. Strong spatial heterogeneity was observed for all outdoor pollutant concentrations. Concentrations of all pollutants, except coarse PM, were higher in high traffic zones than in the respective low traffic zones. Black carbon and NO2 appear to be better traffic indicators than fine PM. Indoor air pollution was found to be well associated with outdoor air pollution, although differences existed due to uncontrollable factors involving student activities and building/ventilation configurations. Results of this study indicate substantial spatial variability of pollutants in the region, suggesting that children’s exposures to these pollutants vary based on the location of their school.  相似文献   

12.
The time-series correlation between ambient levels, indoor levels, and personal exposure to PM2.5 was assessed in panels of elderly subjects with cardiovascular disease in Amsterdam, the Netherlands, and Helsinki, Finland. Subjects were followed for 6 months with biweekly clinical visits. Each subject's indoor and personal exposure to PM2.5 was measured biweekly, during the 24-hr period preceding the clinical visits. Outdoor PM2.5 concentrations were measured at fixed sites. The absorption coefficients of all PM2.5 filters were measured as a marker for elemental carbon (EC). Regression analyses were conducted for each subject separately, and the distribution of the individual regression and correlation coefficients was investigated. Personal, indoor, and ambient concentrations were highly correlated within subjects over time. Median Pearson's R between personal and outdoor PM2.5 was 0.79 in Amsterdam and 0.76 in Helsinki. For absorption, these values were 0.93 and 0.81 for Amsterdam and Helsinki, respectively. The findings of this study provide further support for using fixed-site measurements as a measure of exposure to PM2.5 in epidemiological time-series studies.  相似文献   

13.
Oxygenated additives in gasoline are designed to decrease the ozone-forming hydrocarbons and total air toxics, yet they can increase the emissions of aldehydes and thus increase human exposure to these toxic compounds. This paper describes a study conducted to characterize targeted aldehydes in microenvironments in Sacramento, CA, and Milwaukee, WI, and to improve our understanding of the impact of the urban environment on human exposure to air toxics. Data were obtained from microenvironmental concentration measurements, integrated, 24-h personal measurements, indoor and outdoor pollutant monitors at the participants' residences, from ambient pollutant monitors at fixed-site locations in each city, and from real-time diaries and questionnaires completed by the technicians and participants. As part of this study, a model to predict personal exposures based on individual time/activity data was developed for comparison to measured concentrations. Predicted concentrations were generally within 25% of the measured concentrations. The microenvironments that people encounter daily provide for widely varying exposures to aldehydes. The activities that occur in those microenvironments can modulate the aldehyde concentrations dramatically, especially for environments such as “indoor at home.” By considering personal activity, location (microenvironment), duration in the microenvironment, and a knowledge of the general concentrations of aldehydes in the various microenvironments, a simple model can do a reasonably good job of predicting the time-averaged personal exposures to aldehydes, even in the absence of monitoring data. Although concentrations of aldehydes measured indoors at the participants' homes tracked well with personal exposure, there were instances where personal exposures and indoor concentrations differed significantly. Key to the ability to predict exposure based on time/activity data is the quality and completeness of the microenvironmental characterizations for the chemicals of interest. Consistent with many earlier studies, personal exposures are difficult to predict using data from regional outdoor monitors.  相似文献   

14.
Roadside particulate air pollution in Bangkok   总被引:1,自引:0,他引:1  
Airborne fine particles of PM(2.5-10) and PM2.5 in Bangkok, Nonthaburi, and Ayutthaya were measured from December 22, 1998, to March 26, 1999, and from November 30, 1999, to December 2, 1999. Almost all the PM10 values in the high-polluted (H) area exceeded the Thailand National Ambient Air Quality Standards (NAAQS) of 120 microg/m3. The low-polluted (L) area showed low PM10 (34-74 microg/m3 in the daytime and 54-89 microg/m3 at night). PM2.5 in the H area varied between 82 and 143 microg/m3 in the daytime and between 45 and 146 microg/m3 at night. In the L area, PM2.5 was quite low both day and night and varied between 24 and 54 microg/m3, lower than the U.S. Environmental Protection Agency (EPA) standard (65 microg/m3). The personal exposure results showed a significantly higher proportion of PM2.5 to PM10 in the H area than in the L area (H = 0.80 +/- 0.08 and L = 0.65 +/- 0.04). Roadside PM10 was measured simultaneously with the Thailand Pollution Control Department (PCD) monitoring station at the same site and at the intersections where police work. The result from dual simultaneous measurements of PM10 showed a good correlation (correlation coefficient: r = 0.93); however, PM levels near the roadside at the intersections were higher than the concentrations at the monitoring station. The relationship between ambient PM level and actual personal exposures was examined. Correlation coefficients between the general ambient outdoors and personal exposure levels were 0.92 for both PM2.5 and PM10. Bangkok air quality data for 1997-2000, including 24-hr average PM10, NO2, SO2, and O3 from eight PCD monitoring stations, were analyzed and validated. The annual arithmetic mean PM10 of the PCD data at the roadside monitoring stations for the last 3 years decreased from 130 to 73 microg/m3, whereas the corresponding levels at the general monitoring stations decreased from 90 to 49 microg/m3. The proportion of days when the level of the 24-hr average PM10 exceeded the NAAQS was between 13 and 26% at roadside stations. PCD data showed PM10 was well correlated with NO2 but not with SO2, suggesting that automobile exhaust is the main source of the particulate air pollution. The results obtained from the simultaneous measurement of PM2.5 and PM10 indicate the potential environmental health hazard of fine particles. In conclusion, Bangkok traffic police were exposed to high levels of automobile-derived particulate air pollution.  相似文献   

15.
Metropolitan residents are concerned about their exposure to airborne pollutants. But establishing these exposures is challenging. A compact personal exposure kit (PEK) was developed to evaluate personal integrated exposure (PIE) from time-resolved data to particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) in five microenvironments, including office, home, commuting, other indoor activities (other than home and office), and outdoor activities experienced both on weekdays and weekends. The study was conducted in Hong Kong. The PEK measured PM2.5, reported location and several other factors, stored collected data, as well as reported the data back to the investigators using global system for mobile communication (GSM) telemetry. Generally, PM2.5 concentrations in office microenvironment were found to be the smallest (13.0 μg/m3), whereas the largest PM2.5 concentration microenvironments were experienced during outdoor activities (54.4 μg/m3). Participants spent more than 85% of their time indoors, including in offices, homes, and other public indoor venues. On average, 42% and 81% of the time were spent in homes, which contributed 52% and 79% of PIE (during weekdays and weekends, respectively), suggesting that improvement of air quality in homes may reduce overall exposures and indicating the need for actions to mitigate possible public health burdens in Hong Kong. This study also found that various indoor/outdoor microenvironments experienced by urban office workers cannot be accurately represented by general urban air quality data reported from the regulatory monitoring. Such personalized air quality information, especially while in transit or in offices and homes, may provide improved information on population exposures to air pollution.

Implications: A newly developed personal exposure kit (PEK) was used to monitor PM2.5 exposure of metropolitan citizens in their daily life. Different microenvironments and time durations caused various personal integrated exposure (PIE). The stationary monitoring method for PIE was also compared and evaluated with PEK. Positive protection actions can be taken after understanding the major contribution to PM2.5 exposure.  相似文献   


16.
Measurement campaigns for airborne particles along a pedestrian route in the city center of Milan were performed by means of a portable instrument consisting of an optical particle counter and a global positioning system (GPS) signal receiver. Based on the size-resolved particle number concentration data and on proper density factors experimentally determined for Milan urban area, the mass concentrations were calculated in terms of particulate matter with aerodynamic diameters < or =10 microm (PM10), < or =2.5 pm (PM2.5), and < or =1 microm (PM1). Besides directly measuring the personal exposure to PM throughout the route, the measurement campaigns pointed out small spatial and temporal variations of the concentration ranges in the different urban microenvironments visited along the route as well as very peculiar features of the particles levels in the underground subway. These findings suggested that the personal exposure of pedestrians in the city center could be estimated by simply taking into account the exposure at the open air and in the subway. The comparison between measured and calculated exposures according to the microenvironment-based estimation results in reasonable accordance, even though the estimations tend to slightly underestimate (12%) the actual measured exposure.  相似文献   

17.
Particle infiltration is a key determinant of the indoor concentrations of ambient particles. Few studies have examined the influence of particle composition on infiltration, particularly in areas with high concentrations of volatile particles, such as ammonium nitrate (NH4NO3). A comprehensive indoor monitoring study was conducted in 17 Los Angeles-area homes. As part of this study, indoor/outdoor concentration ratios during overnight (nonindoor source) periods were used to estimate the fraction of ambient particles remaining airborne indoors, or the particle infiltration factor (FINF), for fine particles (PM2.5), its nonvolatile (i.e., black carbon [BC]) and volatile (i.e., nitrate [NO3-]) components, and particle sizes ranging between 0.02 and 10 microm. FINF was highest for BC (median = 0.84) and lowest for NO3- (median = 0.18). The low FINF for NO3- was likely because of volatilization of NO3- particles once indoors, in addition to depositional losses upon building entry. The FINF for PM2.5 (median = 0.48) fell between those for BC and NO3-, reflecting the contributions of both particle components to PM25. FINF varied with particle size, air-exchange rate, and outdoor NO3- concentrations. The FINF for particles between 0.7 and 2 microm in size was considerably lower during periods of high as compared with low outdoor NO3- concentrations, suggesting that outdoor NO3- particles were of this size. This study demonstrates that infiltration of PM2.5 varies by particle component and is lowest for volatile species, such as NH4NO3. Our results suggest that volatile particle components may influence the ability for outdoor PM concentrations to represent indoor and, thus, personal exposures to particles of ambient origin, because volatilization of these particles causes the composition of PM2.5 to differ indoors and outdoors. Consequently, particle composition likely influences observed epidemiologic relationships based on outdoor PM concentrations, especially in areas with high concentrations of NH4NO3 and other volatile particles.  相似文献   

18.
We initiated the PETER (pedestrian environmental traffic pollutant exposure research) project to investigate pedestrians' exposure to traffic related atmospheric pollutants, based on data obtained with the collaboration of selected categories of pedestrian urban workers. We investigated relations between roadside personal exposure levels of volatile aromatic hydrocarbons (including benzene) and particulate matter <10 microm (PM10) among traffic police (n = 126) and parking wardens (n = 50) working in downtown Bologna, Italy. Data were collected from workshifts throughout four 1-week periods in different seasons of 2000-2001. For benzene and PM10, comparisons were made with measurements by fixed monitoring stations, and influence of localized traffic intensity and meteorological parameters was examined. Roadside personal exposure to benzene correlated more strongly with other volatile aromatic hydrocarbons (toluene, xylenes and ethylbenzene) than with PM10. Benzene and PM10 personal exposure levels were higher than fixed monitoring station values (both p<0.0001). At multivariate analysis, benzene and PM10 data from fixed monitoring stations both correlated with meteorological variables, and were also influenced by localized traffic intensity. Plausibly because of the downtown canyon-like streets, weather conditions (during a period of drought) only marginally affected benzene personal exposure, and moderately affected PM10 personal exposure. These findings reinforce the concept that urban atmospheric pollution data from fixed air monitoring stations cannot automatically be taken as indications of roadside exposures.  相似文献   

19.
The Windsor, Ontario Exposure Assessment Study evaluated the contribution of ambient air pollutants to personal and indoor exposures of adults and asthmatic children living in Windsor, Ontario, Canada. In addition, the role of personal, indoor, and outdoor air pollution exposures upon asthmatic children's respiratory health was assessed. Several active and passive sampling methods were applied, or adapted, for personal, indoor, and outdoor residential monitoring of nitrogen dioxide, volatile organic compounds, particulate matter (PM; PM < or = 2.5 microm [PM2.5] and < or = 10 microm [PM10] in aerodynamic diameter), elemental carbon, ultrafine particles, ozone, air exchange rates, allergens in settled dust, and particulate-associated metals. Participants completed five consecutive days of monitoring during the winter and summer of 2005 and 2006. During 2006, in addition to undertaking the air pollution measurements, asthmatic children completed respiratory health measurements (including peak flow meter tests and exhaled breath condensate) and tracked respiratory symptoms in a diary. Extensive quality assurance and quality control steps were implemented, including the collocation of instruments at the National Air Pollution Surveillance site operated by Environment Canada and at the Michigan Department of Environmental Quality site in Allen Park, Detroit, MI. During field sampling, duplicate and blank samples were also completed and these data are reported. In total, 50 adults and 51 asthmatic children were recruited to participate, resulting in 922 participant days of data. When comparing the methods used in the study with standard reference methods, field blanks were low and bias was acceptable, with most methods being within 20% of reference methods. Duplicates were typically within less than 10% of each other, indicating that study results can be used with confidence. This paper covers study design, recruitment, methodology, time activity diary, surveys, and quality assurance and control results for the different methods used.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号