首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, the systems for the collection and intermediate processing of used beverage cans (UBCs) are compared and analyzed, focusing on the time taken and the cost of processing, the energy consumption, and the emissions of CO2, SO x , and NO x , during the process. We found that cases where the UBCs were crushed in the discharging process gave better results, and how the UBCs were collected was the most important factor. It was more desirable to treat UBCs in one place than in two places. When the transportation distance was longer, the pressed form of UBCs was more convenient. When the transportation distance was short, the original form, the crushed form, and the shredded form of UBCs were all suitable. That is, the contribution of the transportation process to the evaluation was large when the transport distance was long, and the contribution of the treatment process was large when the transport distance was short.  相似文献   

2.
In the Beijing area, March and April have the highest frequency of sand-dust weather. Floating dust, blowing sand, and dust storms, primarily from Mongolia, account for 71%, 20%, and 9% of sand-dust weather, respectively. Ambient air monitoring and analysis of recent meteorological data from Beijing sand-dust storm periods revealed that PM10 mass concentrations during dust storm events remained at 1500 μg m−3, which is five to ten times higher than during non-dust storm periods, for fourteen hours on both April 6 and 25, 2000. During the same period, the concentrations in urban areas were comparable to those in suburban areas, while the concentrations of gaseous pollutants, such as SO2, NO x , NO2, and O3, remained at low levels, owing to strong winds. Furthermore, during sand-dust storm periods, aerosols were created that consisted not only of many coarse particles, but also of a large quantity of fine particles. The PM2.5 concentration was approximately 230 μg m−3, accounting for 28% of the total PM10 mass concentration. Crustal elements accounted for 60–70% of the chemical composition of PM2.5, and sulfate and nitrate for much less, unlike the chemical composition of PM2.5 on pollution days, which was primarily composed of sulfates, nitrates, and organic material. Although the very large particle specific surface area provided by dust storms would normally be conducive to heterogeneous reactions, the conversion rate from SO2 to SO4 2− was very low, because the relative humidity, less than 30%, was not high enough.  相似文献   

3.
Airborne particulate matter (PM) concentrations were measured in Iksan, a suburban area in South Korea during April, 2003. PM2.5 (particles with an aerodynamic diameter less than 2.5 μm) and PM10 (particles with an aerodynamic diameter less than 10 μm) samples were collected, and the chemical characteristics of particles were examined for diurnal patterns, yellow dust/rainfall influences, and scavenging effects. Average concentrations of PM2.5 and PM10 mass measured were 37.3 ± 16.2 μg m−3 and 60.8 ± 29.5 μg m−3, respectively. The sum of ionic chemical species concentrations for PM2.5 and PM10 was 16.9 ± 7.3 and 23.1 ± 10.1 μg/m3, respectively. A significant reduction in PM mass concentrations during rainfall days was observed for coarse mode (PM2.5 − 10) particles, but less reduction was found for fine (PM2.5) mass concentration. SO4 2−, NH4 +, and K+ predominated in fine particulate mode, NO3 and Cl predominated in fine particle mode and coarse particle mode, but Na+, Mg2+, and Ca2+ mostly existed in coarse mode. The high concentration of ammonium due to local emissions and long-range transport neutralized sulfate and nitrate to ammonium sulfate and ammonium nitrate, which were major forms of airborne PM in Iksan. Average mass concentrations of PM10 in daytime and at night were 57.6 and 70.0 μg m−3, and those of PM2.5 were 35.4 and 42.5 μg m−3, respectively. NO3 and Cl in both PM2.5 and PM10 were about double at night than in the daytime, while the rest of the chemical species were equal or a little higher at night than in the daytime. The results suggest the formation of ammonium nitrate and chloride when high ammonia concentration and low air temperature are allowed. Backward air trajectory analyses showed that air masses arriving at the site during yellow dust period were transported from arid Chinese regions, which resulted in high concentrations of airborne PM mass concentrations. In the meantime, air mass trajectories during a rainfall period were mostly from the Pacific Ocean or the East China Sea, along with a relatively low PM concentration.  相似文献   

4.
The effects of meteorology on ambient aerosol concentrations and aerosol transport, within the Greater Athens Area during the summer period, was investigated. Measurements of size fractionated anions and cations were made at two sites (inland at Ag. Stefanos and on the coast at Pireas) within the Greater Athens Area. The wind regime exhibited a distinctinfluence such that the sea-breeze circulation strongly enhanced the formation of secondary aerosols. For sulphate the difference in concentration between the two sites was,on average, 8 times greater on sea-breeze days compared with Etesian days (warm days with NE winds). During `normal' days,any differences in concentrations were possibly due to localemissions. Elevated concentrations in the fine mode were detectedat both sites during the sea-breeze days. The sea-breezecirculation enhances the development of secondary aerosolswhich was clearly shown at the inland site. Nitrous acid,hydrochloric acid and particulate nitrate, sulphate andammonium increase during sea-breeze days. Elevated levelsof nitrate, 4 m diameter, were particularly observedon the days with a strong sea-breeze circulation. Sulphatewas well correlated with both sulphur dioxide and ammoniumsuggesting the production of NH4HSO4/(NH4)2SO4 aerosols, formedthrough the neutralisation of NH3 with sulphuric acids.Ammonium sulphate was found to be the major ammoniumcomponent in Athens.  相似文献   

5.
Regular additions of NH4NO3 (35–140 kg N ha−1 yr−1) and (NH4)2SO4 (140 kg N ha−1 yr−1) to a calcareous grassland in northern England over a period of 12 years have resulted in a decline in the frequency of the indigenous bryophyte species and the establishment of non-indigenous calcifuge species, with implications for the structure and composition of this calcareous bryophyte community. The lowest NH4NO3 additions of 35 kg N ha−1 yr−1 produced significant declines in frequency of Hypnum cupressiforme, Campylium chrysophyllum, and Calliergon cuspidatum. Significant reductions in frequency at higher NH4NO3 application rates were recorded for Pseudoscleropodium purum, Ctenidum molluscum, and Dicranum scoparium. The highest NH4NO3 and (NH4)2SO4 additions provided conditions conducive for the establishment of two typical calcifuges – Polytrichum spp. and Campylopus introflexus, respectively. Substrate-surface pH measurements showed a dose-related reduction in pH with increasing NH4NO3 deposition rates of 1.6 pH units between the control and highest deposition rate, and a further significant fall in pH, of >1 pH unit, between the NH4NO3 and (NH4)2SO4 treatments. These results suggest that indigenous bryophyte composition may be at risk from nitrogen deposition rates of 35 kg N ha−1 yr−1 or less. These effects are of particular concern for rare or endangered species of low frequency.  相似文献   

6.
A co-product stream from soy-based biodiesel production (CSBP) containing glycerol, fatty acid soaps, and residual fatty acid methyl esters (FAME) was utilized as a fermentation feedstock for the bacterial synthesis of poly(3-hydroxybutyrate) (PHB) and medium-chain-length poly(hydroxyalkanoate) (mcl-PHA) polymers. Pseudomonas oleovorans NRRL B-14682 and P. corrugata 388 grew and synthesized PHB and mcl-PHA, respectively, when cultivated in up to 5% (w/v) CSBP. In shake flask culture, P. oleovorans grew to 1.3 ± 0.1 g/L (PHA cellular productivity = 13–27% of the bacterial cell dry weight; CDW) regardless of the initial CSBP concentration, whereas P. corrugata reached maximum cell yields of 2.1 g/L at 1% CSBP, which tapered off to 1.7 g/L as the CSBP media concentration was increased to 5% (maximum PHA cellular productivity = 42% of the CDW at 3% CSBP). While P. oleovorans synthesized PHB from CSBP, P. corrugata produced mcl-PHA consisting primarily of 3-hydroxyoctanoic acid (C8:0; 39 ± 2 mol%), 3-hydroxydecanoic acid (C10:0; 26 ± 2 mol%) and 3-hydroxytetradecadienoic acid (C14:2; 15 ± 1 mol%). The molar mass (Mn) of the PHB polymer decreased by 53% as the initial CSBP culture concentration was increased from 1% to 5% (w/v). In contrast, the Mn of the mcl-PHA polymer produced by P. corrugata remained constant over the range of CSBP concentrations used.  相似文献   

7.
The thermal cracking of HDPE in presence of different amounts of decalin was studied and compared with the reaction carried out in the absence of solvent. The decalin favours the mass and heat transfer during the reaction. In addition, it modifies the thermal degradation mechanism, which facilitates the formation of specific products. The use of decalin substantially increases the C5–C32 yield in comparison with the solventless reaction. In all cases, linear hydrocarbons such as n-paraffins, α-olefins and α,ω-dienes were detected. Increasing the decalin/plastic ratio led to enhanced α-olefin and n-paraffins yields, but the increase was more significant in the case of α-olefins, which are valuable compounds useful as raw chemicals. A reaction mechanism was proposed to explain the results obtained in presence of decalin. In these reactions, intramolecular radical transfer, secondary radical β-scission and hydrogen transfer from both decalin to intermediate radicals and from the polymer chain to regenerate the decalin play a significant role in determining the plastic conversion and the relative amounts of each product.  相似文献   

8.
Measurements of indoor and outdoor PM10, as well as indoor O3 and CO concentrations were conducted and are presented here. These measurements were carried out at an institute building, located in a suburban industrial area in Greece. Both indoor and outdoor PM10 samples were also collected and their elemental composition was identified by ED-XRF analysis. Twenty seven major, minor and trace elements were identified. The measurements took place generally in different periods of institute operation, from June 2004 to February 2005. The indoor PM10 concentrations which were measured during the normal operation period of the institute were found to be many times higher than the respective outdoor PM10 concentrations of the same periods. On the contrary, the indoor PM10 concentrations which were measured during the holiday period were found to be lower than their corresponding outdoor values. Indoor O3 and CO concentrations were found to be in low level. Indoor PM10 concentrations were found to be in a relative good correlation with O3 (r = 0.45) and in high correlation (r = 0.98) with CO concentrations. On average, total elements concentrations were much higher indoors relative to outdoors. Based on above findings we attempted to determine the pollution sources of the indoor environment and to investigate some parameters or chemical processes that affect indoor pollutants’ levels.  相似文献   

9.
Six strains of Pseudomonas were tested for their abilities to synthesize poly(hydroxyalkanoate) (PHA) polymers from crude Pollock oil, a large volume byproduct of the Alaskan fishing industry. All six strains were found to produce PHA polymers from hydrolyzed Pollock oil with productivities (P; the percent of the cell mass that is polymer) ranging from 6 to 53% of the cell dry weight (CDW). Two strains, P. oleovorans NRRL B-778 (P = 27%) and P. oleovorans NRRL B-14682 (P = 6%), synthesized poly(3-hydroxybutyrate) (PHB) with number average molecular weights (Mn) of 206,000 g/mol and 195,000 g/mol, respectively. Four strains, P. oleovorans NRRL B-14683 (P = 52%), P. resinovorans NRRL B-2649 (P = 53%), P. corrugata 388 (P = 43%), and P. putida KT2442 (P = 39%), synthesized medium-chain-length PHA (mcl-PHA) polymers with Mn values ranging from 84,000 g/mol to 153,000 g/mol. All mcl-PHA polymers were primarily composed of 3-hydroxyoctanoic acid (C8:0) and 3-hydroxydecanoic acid (C10:0) amounting to at least 75% of the total monomers present. Unsaturated monomers were also present in the mcl-PHA polymers at concentrations between 13% and 16%, providing loci for polymer derivatization and/or crosslinking. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

10.
This study uses a combination of data from U.K. monitoringstations and from modelling undertaken with the U.K.Meteorological Office's NAME Model to investigate therelative influences of primary and secondary particulateson total PM10 levels at sites in the United Kingdom. Co-located PM10 and sulphate aerosol measurementsindicate that sulphate has a disproportionately largeinfluence on the variation of PM10 levels incomparison to its contribution to their total mass.Comparisons of measured PM10 at urban centre, roadsideand rural sites suggest that local primary sources havevery little influence on daily mean levels. NAME has beenused to model both primary particles and sulphate aerosolfrom sources across the whole of Europe. The discrepanciesbetween modelled and observed PM10 suggest that coarseparticles, such as windblown dust and resuspended roaddust,may comprise a very large, if not dominant, proportion ofobserved PM10 levels. The apparently minor role ofprimary particles (especially locally-sourced ones) raisesa number of issues regarding the suitability of current U.K.and European legislation to addressing the particle problem.  相似文献   

11.
This work presents the first results of a study concerning on-road and in-vehicle exposure to particulate matter in the area of Athens. PM10 concentration measurements were conducted by TSI DustTrak, while driving along routes with different characteristics of traffic density, during September 2003–March 2004. Concurrent measurements of the ultrafine particles (UFPs) number concentration were also conducted, by condensation particle counter during part of the days. Pedestrian exposure to PM10 and UFPs was also studied through stationary measurements on the kerbside of selected roads on November 2003 and February 2004. A major avenue, a heavy-trafficked road across a children hospital and two central roads, one in a residential and one in a commercial area were selected for measurement. The results indicate that every day commuters are exposed to significant concentration levels. Higher exposures were observed in heavy-trafficked areas and during rush hours. Mean PM10 in-vehicle and on-road concentrations ranged from 30–320 μg/m3 and 70–285 μg/m3, respectively. The ultrafine particles number concentrations were in the range of 5.0 × 104–17.3 × 104 particles/cm3 in-vehicle and 3.1 × 104–7.3 × 104 particles/cm3 on the kerbside of a central residential road. Both PM10 and UFPs concentrations presented repeated short-term peak exposures. The results clearly point out the importance of the road microenvironment (in-vehicle and on kerbside) for population exposure in urban areas.  相似文献   

12.
Paper sludge is a waste product from the paper and pulp manufacturing industry that is generally disposed of in landfills. Pyrolysis of paper sludge can potentially provide an option for managing this waste by thermal conversion to higher calorific value fuels, bio-gas, bio-oils and charcoal. This work investigates the properties of paper sludge during pyrolysis and energy required to perform thermal conversion. The products of paper sludge pyrolysis were also investigated to determine their properties and potential energy value. The dominant volatile species of paper sludge pyrolysis at 10 °C/min were found to be CO and CO2, contributing to almost 25% of the paper sludge dry weight loss at 500 °C. The hydrocarbons (CH4, C2H4, C2H6) and hydrogen contributed to only 1% of the total weight loss. The bio-oils collected at 500 °C were primarily comprised of organic acids with the major contribution being linoleic acid, 2,4-decadienal acid and oleic acid. The high acidic content indicates that in order to convert the paper sludge bio-oil to bio-diesel or petrochemicals, further upgrading would be necessary. The charcoal produced at 500 °C had a calorific value of 13.3 MJ/kg.  相似文献   

13.
In experiments employing the lignocellulose-decaying basidiomycetes Trametes versicolor and Stropharia rugosoannulata degrading uniformly14C-labelled 2,4-dichlorophenol and pentachlorophenol, acombination of size exclusion chromatography (SEC),fractionation, and -scintillation counting wasapplied to quantify polymerisation products formed duringchlorophenol degradation. Time-dependent mass balances weregenerated by analysis of 14C in polymerisation products,CO2, as well as monomer non-polar and polar metabolites.Approximately 30% of the chlorophenols were found to bepolymerised. A major fraction of the polymerised productscorresponded to a molecular weight range from 0.24 – 40 kDa.Only a minor fraction could be attributed to a molecularweight >40 kDa. This method proved to be useful inquantification of polymerisation products and kinetics of thepolymerisation processes, whereas UV/Vis detection ofpolymerisation products separated by SEC led to false positiveresults. The SEC-14C method could also be applied forother complex processes where polymerisation ordepolymerisation occurs (humification, degradation oflignocellulose, formation of bound residues from xenobioticssuch as polycyclic aromatic hydrocarbons or 2,4,6-trinitrotoluene) and where spectrophotometric determinationsare difficult or impossible.  相似文献   

14.
Partly because of the low bioavailability of metals, the soil cleaning-up using phytoremediation is usually time-consuming. In order to enhance the amount of metals at the plant's disposal, the soil bioaugmentation coupled together with phytoextraction is an emerging technology. In this preliminary work, two agricultural soils which mainly differed in their Cr, Hg and Pb contents (LC, low-contaminated soil; HC, high-contaminated soil) were bioaugmented in laboratory conditions by either bacterial (Bacillus subtilis, Pseudomonas aeruginosa, Pseudomonas fluorescens or Ralstonia metallidurans) or fungal inocula (Aspergillus niger or Penicillium simplicissimum) and incubated during three weeks. The LC soil pots bioaugmented with A. niger and P. aeruginosa contained higher concentrations of Cr (0.08 and 0.25 mg.kg−1 dw soil) and Pb (0.25 and 0.3 mg.kg−1 dw soil) in the exchangeable fraction F1 (extraction with MgCl2) by comparison with the non-bioaugmented soil where neither Cr nor Pb was detected. Conversely, immobilization of Cr and Pb in the soil were observed with the other microorganisms. The soil bioaugmentation not only modified the metal speciation for the most easily extractable fractions but also modified the distribution of metals in the other fractions, to a lesser extent nevertheless. The difference in microbial concentrations between the bioaugmented or not HC soils reached up to 1.8 log units. Thus the microorganisms that we chose for the soil bioaugmentation were competitive towards the indigenous microflora. The PCA analysis showed close positive relationships between the microorganisms which potentially produced siderophores in the soil and the amount of Cr and Pb in the fraction F1.  相似文献   

15.
This study focuses on providing a direct insight into the process by which sulfate is formed on mineral dust surface in the actual atmosphere. Six sets of aerosol measurements were conducted in the outskirts of Beijing, China, in 2002–2003 using a tethered balloon. The mineralogy of individual dust particles, as well as its influence on the S (sulfur) loadings was investigated by SEM-EDX analysis of the directly collected particles. The mixed layer in the urban atmosphere was found to be quite low (500–600m), often appearing as a particle dense stagnant layer above the surface. It is suggested that mineral dust is a common and important fraction of the coarse particles in Beijing (35–68%), and that it is relatively enriched with Calcite (>28%). An exceptional amount of S was detected in the mineral particles, which can be explained neither by their original composition, nor by coagulation processes between the submicron sulfates and the dust. Heterogeneous uptake of gaseous SO2, and its subsequent oxidation on dust was suggested as the main pathway that has actually taken place in the ambient environment. The mineral class found with the largest number of particles containing S was Calcite, followed by Dolomite, Clay, Amphibole etc., Feldspar, and Quartz. Among them, Calcite and Dolomite showed distinctly higher efficiency in collecting sulfate than the other types. A positive correlation was found with the number of S containing particles and the relative humidity. Calcite in particular, since almost all of its particles was found to contain S above 60% r.h. On the other hand, the active uptake of SO2 by the carbonates was not suggested in the free troposphere downwind, and all the mineral classes exhibited similar S content. Relative humidity in the free troposphere was suggested as the key factor controlling the SO2 uptake among the mineral types. In terms of sulfate loadings, the relationship was not linear, but rather increased exponentially as a function of relative humidity. The humidity-dependent uptake capacity of mineral types altogether showed an intermediate value of 0.07 gSO4 2− g−1 mineral at 30% r.h. and 0.40 gSO4 2− g−1 mineral at 80%, which is fairly consistent with laboratory experiments.  相似文献   

16.
17.
Oxidation of methanol over V2O5 catalysts supported on anatase TiO2 that were prepared using sol-gel formation and impregnation procedures were investigated. The effects of incorporating Mg in sol-gel to influence the properties of the catalyst were also studied. The process provides an alternative low temperature reaction pathway for reducing emissions of hazardous air pollutant (HAPs) such as methanol and total reduced sulfur compounds (TRS) from pulp and paper mills. The bulk and surface composition of the catalysts were determined by XRD and SEM-EDAX, respectively. The X-ray diffraction patterns of the vanadia–titania catalysts showed mainly the anatase phase of TiO2. Temperature programmed desorption of methanol from the different catalyst showed that the α and β peaks differ significantly with V content and addition of Mg. The combination of gas phase and surface reactions on the V/TiO2 catalysts reduced the amount of ozone required for high degradation of methanol to mainly CO x with small quantities of methyl formate. In the absence of ozone the catalysts showed very low activity. It is hypothesized that the ozone is directly influencing the V4+ and V5+ redox cycle of the catalyst. Oxidation of methanol is influenced by the operation variables and catalyst properties. The results of this study revealed that the V content has significant influence on the catalyst activity, and the optimum vanadia loading of about 6 wt%. Higher turnover frequencies were observed over sol-gel catalysts than with catalysts prepared by the impregnation method.  相似文献   

18.
In recent years thermal utilization of mixed wastes and solid recovered fuels has become of increasing importance in European waste management. Since wastes or solid recovered fuels are generally composed of fossil and biogenic materials, only part of the CO2 emissions is accounted for in greenhouse gas inventories or emission trading schemes. A promising approach for determining this fraction is the so-called radiocarbon method. It is based on different ratios of the carbon isotopes 14C and 12C in fossil and biogenic fuels. Fossil fuels have zero radiocarbon, whereas biogenic materials are enriched in 14C and reflect the 14CO2 abundance of the ambient atmosphere. Due to nuclear weapons tests in the past century, the radiocarbon content in the atmosphere has not been constant, which has resulted in a varying 14C content of biogenic matter, depending on the period of growth. In the present paper 14C contents of different biogenic waste fractions (e.g., kitchen waste, paper, wood), as well as mixtures of different wastes (household, bulky waste, and commercial waste), and solid recovered fuels are determined. The calculated 14C content of the materials investigated ranges between 98 and 135 pMC.  相似文献   

19.
Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest in pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H2, C1–C4 hydrocarbons, CO2, CO and H2S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale.  相似文献   

20.
The treatment of soils and ground waters polluted by heavy metals is of economical and environmental interest. Reduction of Cr(VI) to the less toxic Cr(III) associated to its precipitation is a potentially useful process for bioremediation. In order to develop ecological processes using micro-organisms, we have compared various sulfate-reducing bacteria for enzymatic reduction of chromate. The best Cr(VI) reductase activity was obtained with Desulfomicrobium norvegicum. Despite morphological changes induced by the presence of chromate, this strain can grow in the presence of up to 500 M Cr(VI) and can decontaminate waters polluted by Cr(VI) when seeded in bioreactors. We have demonstrated the ability of several metalloenzymes (cytochromes c 3 and hydrogenases) to reduce chromate. Biophysical investigations of the chromate/protein interaction in order to get further informations on the mechanism of metal reduction by cytochromes c 3 are under the way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号