首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibiotics may appear in the environment when manure, sewage sludge, and other organic amendments are added to soils. There is concern that the presence of antibiotics in soils may lead to the development of antibiotic-resistant bacteria which may spread to the rest of the environment. This paper aims at evaluating the sorption kinetics of two antibiotics frequently used in pig production. The results indicate that sorption of chlortetracycline (CTC) and tylosin (TYL) in sandy loam and clay occurs very fast. More than 95% of the CTC adsorption is completed within 10 min on both soils and of TYL within 3 h. These results suggest that 24-h soil and antibiotic solution mixtures is enough for sorption studies. Also, there is less likelihood that these antibiotics will leach through soil and appear in the ground water since their sorption on soils is very high unless they are carried by soil particles through preferential flow. There was also no effect of soil sterilization on sorption kinetics of these antibiotics thus suggesting that there is minimal probability of the antibiotics degrading by microorganisms during 24- to 48-h adsorption studies.  相似文献   

2.
Phosphorus (P) leaching losses from manure applications may be of concern when artificial drainage systems allow for hydrologic short-cuts to surface waters. This study quantified P leaching losses from liquid manure applications on two soil textural extremes, a clay loam and loamy sand soil, as affected by cropping system and timing of application. For each soil type, manure was applied at an annual rate of 93 800 L ha(-1) on replicated drained plots under maize (Zea mays L.) in early fall, late fall, early spring, and as a split application in early and late spring. Manure was applied on orchardgrass (Dactylis glomerata L.) in split applications in early fall and late spring, and early and late spring. Drain water was sampled at least weekly when lines were flowing, and outflow rate and total P content were determined. High P leaching losses were measured in the clay loam as soon as drain lines initiated flow after manure application. Flow-weighted mean P leaching losses on clay loam plots averaged 39 times higher (0.504 mg L(-1)) than those on loamy sand plots (0.013 mg L(-1)), and were above the USEPA level of concern of 0.1 mg L(-1). Phosphorus losses varied among application seasons on the clay loam soil, with highest losses generally measured for early fall applications. Phosphorus leaching patterns in clay loam showed short-term spikes and high losses were associated with high drain outflow rates, suggesting preferential flow as the main transport mechanism. Phosphorus leaching from manure applications on loamy sand soils does not pose environmental concerns as long as soil P levels remain below the saturation level.  相似文献   

3.
Two commercially available enzyme-linked immunosorbent assay (ELISA) kits that are commonly used for tylosin or tetracycline residues in meat and milk were adapted for ultratrace analysis of these antibiotics in surface and ground waters. These two antibiotics are commonly fed to swine, turkeys, and cattle at subtherapeutic doses for growth promotion purposes. Both ELISA techniques were found to be highly sensitive and selective for the respective antibiotics with detection limits of 0.10 and 0.05 microg L(-1) for tylosin and tetracycline, respectively. The recovery of both tylosin and tetracycline from spiked samples of lake waters, runoff samples, soil saturation extracts, and nanopure water was close to 100%. Tetracycline ELISA was highly specific for tetracycline and chlortetracycline but not for other forms of tetracycline (oxytetracycline, demeclocycline, and doxycycline). Analysis of a few liquid swine manure samples by liquid chromatography-mass spectrometry (LC-MS) showed lower concentrations for chlortetracycline as compared with concentrations obtained using ELISA. However, the concentrations of tylosin from ELISA were comparable with that of LC-MS. The lower concentrations of chlortetracycline obtained by LC-MS in manure samples indicate the presence of other similar or transformed compounds that were detected by ELISA but not determined by LC-MS. These results indicate that both ELISA kits can be useful tools for low-cost screening of tylosin, tetracycline, and chlortetracycline in environmental waters. Furthermore, both ELISA procedures are rapid, portable, and easily adaptable for testing of multiple samples simultaneously.  相似文献   

4.
Antibiotic uptake by plants from soil fertilized with animal manure   总被引:19,自引:0,他引:19  
Antibiotics are commonly added to animal feed as supplements to promote growth of food animals. However, absorption of antibiotics in the animal gut is not complete and as a result substantial amounts of antibiotics are excreted in urine and feces that end up in manure. Manure is used worldwide not only as a source of plant nutrients but also as a source of organic matter to improve soil quality especially in organic and sustainable agriculture. Greenhouse studies were conducted to determine whether or not plants grown in manure-applied soil absorb antibiotics present in manure. The test crops were corn (Zea mays L.), green onion (Allium cepa L.), and cabbage (Brassica oleracea L. Capitata group). All three crops absorbed chlortetracycline but not tylosin. The concentrations of chlortetracycline in plant tissues were small (2-17 ng g(-1) fresh weight), but these concentrations increased with increasing amount of antibiotics present in the manure. This study points out the potential human health risks associated with consumption of fresh vegetables grown in soil amended with antibiotic laden manures. The risks may be higher for people who are allergic to antibiotics and there is also the possibility of enhanced antimicrobial resistance as a result of human consumption of these vegetables.  相似文献   

5.
This study examined the effects of tetracycline and streptomycin on microorganisms in three different soil habitats: forest soil, agricultural soil, and compost. These antibiotics are commonly used in both medical and veterinary therapy as well as in the production of plant biomass and until quite recently, the production of animal biomass. Microcosms were used as model systems in which the number of microorganisms in environments containing different amounts of antibiotics was analyzed. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of tetracycline and streptomycin were determined. The MIC and MBC values of tetracycline against the tested strains were 20 to 180 microg/ mL and 30 to 300 microg/mL, respectively, and of streptomycin, 360 to 500 microg/mL and > or =500 microg/mL, respectively. Resistant bacterial strains were identified and their physiological profiles assessed. Streptomycin and tetracycline were found to reduce the number of bacteria in the studied soils by between 50 and 80%. Soil bacteria were found to be more resistant to streptomycin than to tetracycline. The bacterial species showing the highest resistance to tetracycline were Rhizobium radiobacter, Burkholderia cepacia, Brevundimonas vesicularis, and Pasteurella multocida. Most soils with high concentrations of streptomycin (5 mg/kg) contained Rhizobium radiobacter, Burkholderia cepacia, and Sphingomonas multivorum, among others. The strains most resistant to tetracycline were isolated from agricultural soil that is constantly subjected to tetracycline pressure from animal manures and biosolids. Among resistant strains, opportunistic pathogens were identified.  相似文献   

6.
Land application of manure can exacerbate nutrient and contaminant transfers to the aquatic environment. This study examined the effect of injecting a dairy cattle (Bostaurus L.) manure slurry on mobilization and leaching of dissolved, nonreactive slurry components across a range of agricultural soils. We compared leaching of slurry-applied bromide through intact soil columns (20 cm diam., 20 cm high) of differing textures following surface application or injection of slurry. The volumetric fraction of soil pores >30 microm ranged from 43% in a loamy sand to 28% in a sandy loam and 15% in a loam-textured soil. Smaller active flow volumes and higher proportions of preferential flow were observed with increasing soil clay content. Injection of slurry in the loam soil significantly enhanced diffusion of applied bromide into the large fraction of small pores compared with surface application. The resulting physical protection against leaching of bromide was reflected by 60.2% of the bromide tracer was recovered in the effluent after injection, compared with 80.6% recovery after surface application. No effect of slurry injection was observed in the loamy sand and sandy loam soils. Our findings point to soil texture as an important factor influencing leaching of dissolved, nonreactive slurry components in soils amended with manure slurry.  相似文献   

7.
A 3-yr field study quantified leaching and runoff losses of antibiotics from land application of liquid hog (chlortetracycline and tylosin) and solid beef (chlortetracycline, monensin, and tylosin) manures under chisel plowing and no-tillage systems. The study was conducted in southwestern Wisconsin, a karst area with steep, shallow, macroporous soils. Relative mass losses of chlortetracycline, monensin, and tylosin were <5% of the total amount applied with manure. Chlortetracycline was only detected in runoff, whereas monensin and tylosin were detected in leachate and runoff. Highest concentrations of monensin and tylosin in the leachate were 40.9 and 1.2 microg L(-1), respectively. Highest chlortetracycline, monensin, and tylosin concentrations in runoff were 0.5, 57.5, and 6.0 microg L(-1), respectively. For all three antibiotics, >90% of detections and 99% of losses occurred during the non-growing season due to fall manure application and slow degradation of antibiotics at cold temperatures. During years of high snowmelt, runoff accounted for nearly 100% of antibiotic losses, whereas during years of minimal snowmelt, runoff accounted for approximately 40% of antibiotic losses. Antibiotic losses were generally higher from the no-tillage compared with chisel plow treatment due to greater water percolation as a result of macroporosity and greater runoff due to lack of surface roughness in the no-tillage plots during the non-growing season. The results from this study suggest that small quantities of dissolved antibiotics could potentially reach surface and ground waters in the Upper Midwestern USA from manure-amended shallow macroporous soils underlain with fractured bedrock.  相似文献   

8.
Addition of animal manure to soil can provide opportunity for Salmonella contamination of soil, water, and food. This study examined how exposure of hog manure-treated loamy sand and clay soils to different simulated seasonal temperature sequences influenced the length of Salmonella survival. A six-strain cocktail of Salmonella serovars (Agona, Hadar, Heidelberg, Montevideo, Oranienburg, and Typhimurium) was added to yield 5 log cfu/g directly to about 5 kg of the two soils and moisture adjusted to 60 or 80% of field capacity (FC). Similarly, the Salmonella cocktail was mixed with fresh manure slurry from a hog nursery barn and the latter added to the two soils at 25 g/kg to achieve 5 log cfu/g Salmonella. Manure was mixed either throughout the soil or with the top kilogram of soil and the entire soil volume was adjusted to 60 or 80% FC. Soil treatments were stored 180 d at temperature sequences representing winter to summer (-18, 4, 10, 25 degrees C), spring to summer (4, 10, 25, 30 degrees C), or summer to winter (25, 10, 4, -18 degrees C) seasonal periods with each temperature step lasting 45 d. Samples for Salmonella recovery by direct plating or enrichment were taken at 0, 7, and 15 d post-inoculation and thereafter at 15-d intervals to 180 d. Salmonella numbers decreased during application to soil and the largest decreases occurred within the first week. Higher soil moisture, manure addition, and storage in the clay soil increased Salmonella survival. Salmonella survived longest (> or = 180 d) in both soils during summer-winter exposure but was not isolated after 160 d from loamy sand soil exposed to other seasonal treatments. For all but one treatment decimal reduction time (DRT45d) values calculated from the first 45 d after application were < or = 30 d and suggested that a 30-d delay between field application of manure in the spring or fall and use of the land would provide reasonable assurance that crop and animal contamination by Salmonella would be minimized.  相似文献   

9.
Timing of manure application affects N leaching. This 3-yr study quantified N losses from liquid manure application on two soils, a Muskellunge clay loam and a Stafford loamy sand, as affected by cropping system and timing of application. Dairy manure was applied at an annual rate of 93 800 L ha(-1) on replicated drained plots under continuous maize (Zea mays L.) in early fall, late fall, early spring, and as a split application in early and late spring. Variable rates of supplemental sidedress N fertilizer were applied as needed. Manure was applied on orchardgrass (Dactylis glomerata L.) in split applications in early fall and late spring, and early and late spring, with supplemental N fertilizer topdressed as NH4NO3 in early spring at 75 kg N ha(-1). Drain water was sampled at least weekly when lines were flowing. Three-year FWM (flow-weighted mean) NO3-N concentrations on loamy sand soil averaged 2.5 times higher (12.7 mg L(-1)) than those on clay loam plots (5.2 mg L(-1)), and those for fall applications on maize-cropped land averaged >10 mg L(-1) on the clay loam and >20 mg L(-1) on the loamy sand. Nitrate-N concentrations among application seasons followed the pattern early fall > late fall > early spring = early + late spring. For grass, average NO3-N concentrations from manure application remained well below 10 mg L(-1). Fall manure applications on maize show high NO3-N leaching risks, especially on sandy soils, and manure applications on grass pose minimal leaching concern.  相似文献   

10.
Antibiotic Transport via Runoff and Soil Loss   总被引:1,自引:0,他引:1  
Research has verified the occurrence of veterinary antibiotics in manure, agricultural fields, and surface water bodies, yet little research has evaluated antibiotic runoff from agricultural fields. The objective of this study was to evaluate the potential for agricultural runoff to contribute antibiotics to surface water bodies in a worst-case scenario. Our hypothesis was that there would be significant differences in antibiotic concentrations, partitioning of losses between runoff and sediment, and pseudo-partitioning coefficients (ratio of sediment concentration to runoff concentration) among antibiotics. An antibiotic solution including tetracycline (TC), chlortetracycline (CTC), sulfathiazole (STZ), sulfamethazine (SMZ), erythromycin (ERY), tylosin (TYL), and monensin (MNS) was sprayed on the soil surface 1 h before rainfall simulation (average intensity = 60 mm h(-1) for 1 h). Runoff samples were collected continuously and analyzed for aqueous and sediment antibiotic concentrations. MNS had the highest concentration in runoff, resulting in the highest absolute loss, although the amount of loss associated with sediment transport was <10%. ERY had the highest concentrations in sediment and had a relative loss associated with sediment >50%. TYL also had >50% relative loss associated with sediment, and its pseudo-partitioning coefficient (P-PC) was very high. The tetracyclines (TC and CTC) had very low aqueous concentrations and had the lowest absolute losses. If agricultural runoff is proven to result in development of resistance genes or toxicity to aquatic organisms, then erosion control practices could be used to reduce TC, ERY, and TYL losses leaving agricultural fields. Other methods will be needed to reduce transport of other antibiotics.  相似文献   

11.
Long-term use of conventional tillage and wheat (Triticum aestivum L.)-fallow systems in the northern Great Plains have resulted in low soil organic carbon (SOC) levels. We examined the effects of two tillage practices [conventional till (CT) and no-till (NT)], five crop rotations [continuous spring wheat (CW), spring wheat-fallow (W-F), spring wheat-lentil (Lens culinaris Medic.) (W-L), spring wheat-spring wheat-fallow (W-W-F), and spring wheat-pea (Pisum sativum L.)-fallow (W-P-F)], and Conservation Reserve Program (CRP) planting on plant C input, SOC, and particulate organic carbon (POC). A field experiment was conducted in a mixture of Scobey clay loam (fine-loamy, mixed, Aridic Argiborolls) and Kevin clay loam (fine, montmorillonitic, Aridic Argiborolls) from 1998 to 2003 in Havre, MT. Total plant biomass returned to the soil from 1998 to 2003 was greater in CW (15.5 Mg ha(-1)) than in other rotations. Residue cover, amount, and C content in 2004 were 33 to 86% greater in NT than in CT and greater in CRP than in crop rotations. Residue amount (2.47 Mg ha(-1)) and C content (0.96 Mg ha(-1)) were greater in NT with CW than in other treatments, except in CT with CRP and W-F and in NT with CRP and W-W-F. The SOC at the 0- to 5-cm depth was 23% greater in NT (6.4 Mg ha(-1)) than in CT. The POC was not influenced by tillage and crop rotation, but POC to SOC ratio at the 0- to 20-cm depth was greater in NT with W-L (369 g kg(-1) SOC) than in CT with CW, W-F, and W-L. From 1998 to 2003, SOC at the 0- to 20-cm depth decreased by 4% in CT but increased by 3% in NT. Carbon can be sequestered in dryland soils and plant residue in areas previously under CRP using reduced tillage and increased cropping intensity, such as NT with CW, compared with traditional practice, such as CT with W-F system, and the content can be similar to that in CRP planting.  相似文献   

12.
The purpose of this study was to determine the response of antibiotics and antibiotic resistance genes (ARG) to manure management. A pilot field study was conducted using horse manure containing no antibiotics, into which chlortetracycline (CTC), tylosin (TYL), and monensin (MON) were spiked and compared to unspiked controls. Subsequently, a large-scale field study was conducted comparing manure from a dairy with minimal use of antibiotics and a feedlot with regular subtherapeutic use of antibiotics. The manures were subjected to high-intensity management (HIM) (amending, watering, and turning) and low-intensity management (LIM) (no amending, watering, or turning) and were monitored for antibiotic concentrations and levels of tetracycline ARG [tet(W) and tet(O)] using quantitative real-time polymerase chain reaction. All three antibiotics in the pilot study dissipated more rapidly in HIM manure, with half-lives ranging from 4 to 15 d, compared to LIM manure, with half-lives ranging from 8 to 30 d. Levels of tet(W) were significantly higher after 141 d of treatment, but levels of tet(O) were significantly lower in all treatments. In the large-scale study, the feedlot manure had higher initial concentrations than the dairy manure of tetracycline (TC), oxytetracycline (OTC), and CTC as well as tet(W) and tet(O). Tetracycline and OTC dissipated more rapidly in HIM manure, with half-lives ranging from 6 to 15 d, compared to LIM manure, with half-lives ranging from 7 to 31 d. After 6 mo of treatment, tet(W) and tet(O) decreased significantly in feedlot manure, whereas dairy manure required only 4 mo of treatment for similar results.  相似文献   

13.
Adsorption of sulfapyridine, tetracycline, and tylosin to a commercial microporous activated carbon (AC) and its potassium hydroxide (KOH)-, CO-, and steam-treated counterparts (prepared by heating at 850°C) was studied to explore efficient adsorbents for the removal of selected pharmaceuticals from water. Phenol and nitrobenzene were included as additional adsorbates, and nonporous graphite was included as a model adsorbent. The activation treatments markedly increased the specific surface area and enlarged the pore sizes of the mesopores of AC (with the strongest effects shown on the KOH-treated AC). Adsorption of large-size tetracycline and tylosin was greatly enhanced, especially for the KOH-treated AC (more than one order of magnitude), probably due to the alleviated size-exclusion effect. However, the treatments had little effect on adsorption of low-size phenol and nitrobenzene due to the predominance of micropore-filling effect in adsorption and the nearly unaffected content of small micropores causative to such effect. These hypothesized mechanisms on pore-size dependent adsorption were further tested by comparing surface area-normalized adsorption data and adsorbent pore size distributions with and without the presence of adsorbed antibiotics. The findings indicate that efficient adsorption of bulky pharmaceuticals to AC can be achieved by enlarging the adsorbent pore size through suitable activation treatments.  相似文献   

14.
The interactive effects of soil texture and type of N fertility (i.e., manure vs. commercial N fertilizer) on N(2)O and CH(4) emissions have not been well established. This study was conducted to assess the impact of soil type and N fertility on greenhouse gas fluxes (N(2)O, CH(4), and CO(2)) from the soil surface. The soils used were a sandy loam (789 g kg(-1) sand and 138 g kg(-1) clay) and a clay soil (216 g kg(-1) sand, and 415 g kg(-1) clay). Chamber experiments were conducted using plastic buckets as the experimental units. The treatments applied to each soil type were: (i) control (no added N), (ii) urea-ammonium nitrate (UAN), and (iii) liquid swine manure slurry. Greenhouse gas fluxes were measured over 8 weeks. Within the UAN and swine manure treatments both N(2)O and CH(4) emissions were greater in the sandy loam than in the clay soil. In the sandy loam soil N(2)O emissions were significantly different among all N treatments, but in the clay soil only the manure treatment had significantly higher N(2)O emissions. It is thought that the major differences between the two soils controlling both N(2)O and CH(4) emissions were cation exchange capacity (CEC) and percent water-filled pore space (%WFPS). We speculate that the higher CEC in the clay soil reduced N availability through increased adsorption of NH(4)(+) compared to the sandy loam soil. In addition the higher average %WFPS in the sandy loam may have favored higher denitrification and CH(4) production than in the clay soil.  相似文献   

15.
Organic wastes are considered to be a source for the potentially pathogenic microorganisms found in surface and sub-surface water resources. Following their release from the organic waste matrix, bacteria often infiltrate into soil and may be transported to significant depths contaminating aquifers. We investigated the influence of soil texture and structure and most importantly the organic waste properties on the transport and filtration coefficients of Escherichia coli and total bacteria in undisturbed soil columns. Intact soil columns (diameter 16 cm and height 25 cm) were collected from two soils: sandy clay loam (SCL) and loamy sand (LS) in Hamadan, western Iran. The cores were amended with cow manure, poultry manure and sewage sludge at a rate of 10 Mg ha(-1) (dry basis). The amended soil cores were leached at a steady-state flux of 4.8 cm h(-1) (i.e. 0.12 of saturated hydraulic conductivity of the SCL) to a total volume of up to 4 times the pore volume of the columns. The influent (C(0)) and effluent (C) were sampled at similar time intervals during the experiments and bacterial concentrations were measured by the plate count method. Cumulative numbers of the leached bacteria, filtration coefficient (lambda(f)), and relative adsorption index (S(R)) were calculated. The preferential pathways and stable structure of the SCL facilitated the rapid transport and early appearance of the bacteria in the effluent. The LS filtered more bacteria when compared with the SCL. The effluent contamination of poultry manure-treated columns was greater than the cow manure- and sewage sludge-treated ones. The difference between cow manure and sewage sludge was negligible. The lambda(f) and S(R) values for E. coli and total bacteria were greater in the LS than in the SCL. This indicates a predominant role for the physical pore-obstruction filtration mechanisms as present in the poorly structured LS vs. the retention at adsorptive sites (chemical filtration) more likely in the better structured SCL. While the results confirmed the significant role of soil structure and preferential (macroporous) pathways, manure type was proven to have a major role in determining the maximum penetration risk of bacteria by governing filtration of bacteria. Thus while the numbers of bacteria in waste may be of significance for shallow aquifers, the type of waste may determine the risk for microbial contamination of deep aquifers.  相似文献   

16.
The role of biochar as a soil amendment on the adsorption-desorption and transport of tylosin, a macrolide class of veterinary antibiotic, is little known. In this study, batch and column experiments were conducted to investigate the adsorption kinetics and transport of tylosin in forest and agricultural corn field soils amended with hardwood and softwood biochars. Tylosin adsorption was rapid at initial stages, followed by slow and continued adsorption. Amounts of adsorption increased as the biochar amendment rate increased from 1 to 10%. For soils with the hardwood biochar, tylosin adsorption was 10 to 18% higher than that when using the softwood biochar. Adsorption kinetics was well described by Elovich equation ( ≥ 0.921). As the percent of biochar was increased, the rates of initial reactions were generally increased, as indicated by increasing α value at low initial tylosin concentration, whereas the rates during extended reaction times were generally increased, as indicated by decreasing β value at high initial tylosin concentration. A considerably higher amount of tylosin remained after desorption in the corn field soil than in the forest soil regardless of the rate of biochar amendment, which was attributed to the high pH and silt content of the former. The breakthrough curves of tylosin showed that the two soils with biochar amendment had much greater retardation than those of soils without biochar. The CXTFIT model for the miscible displacement column study described well the peak arrival time as well as the maximum concentration of tylosin breakthrough curves but showed some underestimation at advanced stages of tylosin leaching, especially in the corn field soil. Overall, the results indicate that biochar amendments enhance the retention and reduce the transport of tylosin in soils.  相似文献   

17.
Manure management is a major concern in livestock production systems. Although historically the primary concerns have been nutrients and pathogens, manure is also a source of emerging contaminants, such as antibiotics, to the environment. There is a growing concern that antibiotics in manure are reaching surface and ground waters and contributing to the development and spread of antibiotic resistance in the environment. One such pathway is through leaching and runoff from manure stockpiles. In this study, we quantified chlortetracycline, monensin, and tylosin losses in runoff from beef manure stockpiles during two separate but consecutive experiments representing different weather conditions (i.e., temperature and precipitation amount and form). Concentrations of chlortetracycline, monensin, and tylosin in runoff were positively correlated with initial concentrations of antibiotics in manure. The highest concentrations of chlortetracycline, monensin, and tylosin in runoff were 210, 3175, and 2544 microg L(-1), respectively. Relative antibiotic losses were primarily a function of water losses. In the experiment that had higher runoff water losses, antibiotic losses ranged from 1.2 to 1.8% of total extractable antibiotics in manure. In the experiment with lower runoff water losses, antibiotic losses varied from 0.2 to 0.6% of the total extractable antibiotics in manure. Manure analysis over time suggests that in situ degradation is an important mechanism for antibiotic losses. Degradation losses during manure stockpiling may exceed cumulative losses from runoff events. Storing manure in protected (i.e., covered) facilities could reduce the risk of aquatic contamination associated with manure stockpiling and other outdoor manure management practices.  相似文献   

18.
ABSTRACT: A rainfall simulator was used on runoff plots to study the effects of simulated canopy cover, trampling disturbance, and soil type on nil and interrill erosion. Sandy loam soil was more erodible than clay loam soil. Furthermore, the simulated canopy cover signffi-Soilfactorsrelatedtonil cantly influenced nil and interrill erosion. The effect of trampling on rill and interrill erosion varied with soil type (clay loam versus sandy loam) and erosion type (nh versus interrill erosion). On large plots, where both nil and internill erosion were involved, 30 percent trampling significantly increased soil loss. However, on small plots, 30 percent trampling significantly reduced interrill erosion.  相似文献   

19.
The positive impact of elevated atmospheric CO(2) concentration on crop biomass production suggests more carbon inputs to soil. Further study on the effect of elevated CO(2) on soil carbon and nitrogen dynamics is key to understanding the potential for long-term carbon storage in soil. Soil samples (0- to 5-, 5- to 10-, and 10- to 20-cm depths) were collected after 2 yr of grain sorghum [Sorghum bicolor (L.) Moench.] production under two atmospheric CO(2) levels: (370 [ambient] and 550 muL L(-1) [free-air CO(2) enrichment; FACE]) and two water treatments (ample water and limited water) on a Trix clay loam (fine, loamy, mixed [calcareous], hyperthermic Typic Torrifluvents) at Maricopa, AZ. In addition to assessing treatment effects on soil organic C and total N, potential C and N mineralization and C turnover were determined in a 60-d laboratory incubation study. After 2 yr of FACE, soil C and N were significantly increased at all soil depths. Water regime had no effect on these measures. Increased total N in the soil was associated with reduced N mineralization under FACE. Results indicated that potential C turnover was reduced under water deficit conditions at the top soil depth. Carbon turnover was not affected under FACE, implying that the observed increase in soil C with elevated CO(2) may be stable relative to ambient CO(2) conditions. Results suggest that, over the short-term, a small increase in soil C storage could occur under elevated atmospheric CO(2) conditions in sorghum production systems with differing water regimes.  相似文献   

20.
Managing phosphorus (P) losses in soil leachate folllowing land application of manure is key to curbing eutrophication in many regions. We compared P leaching from columns of variably textured, intact soils (20 cm diam., 20 cm high) subjected to surface application or injection of dairy cattle (Bos taurus L.) manure slurry. Surface application of slurry increased P leaching losses relative to baseline losses, but losses declined with increasing active flow volume. After elution of one pore volume, leaching averaged 0.54 kg P ha(-1) from the loam, 0.38 kg P ha(-1) from the sandy loam, and 0.22 kg P ha(-1) from the loamy sand following surface application. Injection decreased leaching of all P forms compared with surface application by an average of 0.26 kg P ha(-1) in loam and 0.23 kg P ha(-1) in sandy loam, but only by 0.03 kg P ha(-1) in loamy sand. Lower leaching losses were attributed to physical retention of particulate P and dissolved organic P, caused by placing slurry away from active flow paths in the fine-textured soil columns, as well as to chemical retention of dissolved inorganic P, caused by better contact between slurry P and soil adsorption sites. Dissolved organic P was less retained in soil after slurry application than other P forms. On these soils with low to intermediate P status, slurry injection lowered P leaching losses from clay-rich soil, but not from the sandy soils, highlighting the importance of soil texture in manageing P losses following slurry application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号