首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 828 毫秒
1.
目的探究某型飞机液压泵安装座固定螺栓断裂原因。方法通过观察多组螺栓的断口形貌,以及对其进行力学性能测试和材料组织分析。结果螺栓断口边缘无明显的腐蚀氧化特征,有较为明显的氢脆断裂断面特征,螺栓的硬度均超过标准,并未发现有害的夹杂物和磷化物。结论螺栓在制造时可能存在缺陷,硬度超标和除氢不完全是造成断裂的主要原因。并根据分析结果对生产商提出相关建议和检查方向。  相似文献   

2.
目的研究车辆差速器螺栓失效原因。方法在化学成分、非金属夹杂物、力学性能、金相组织、断口形貌等检测分析的基础上,研究车辆差速器螺栓的失效行为,推断失效原因。结果差速器螺栓化学成分、氢含量、心部硬度及金相组织、材料抗拉强度及屈服强度等均未见明显异常,断口有明显的疲劳断裂特征,螺纹表层存在脱碳现象,脱碳层深度约为0.07 mm。裂纹起始于螺纹根部,裂纹两侧无脱碳现象,螺纹表面及裂纹内部均未见腐蚀产物。结论由于表面脱碳使得差速器螺栓表面硬度及疲劳强度降低,而螺纹根部存在的应力集中使早期裂纹在螺纹根部产生,并在交变载荷作用下进一步扩展,进而最终导致疲劳断裂。  相似文献   

3.
目的研究低温环境下不锈钢法兰螺栓连接失效机理。方法采用宏观检测、微观检测和化学成分分析、能谱分析等方法,对不锈钢螺栓材质的化学成分及断口处腐蚀产物的成分进行分析。结果引起螺栓断裂的主要原因为低温环境下引起的应力腐蚀开裂。结论根据不锈钢螺栓应力腐蚀的主要影响因素提出了低温加注系统中螺栓应力腐蚀的预防措施。  相似文献   

4.
目的 分析某型飞机在使用中其方向舵第4悬挂点连接螺栓出现不同程度断裂损伤的原因,并进行设计改进。方法 从宏观和微观2个方面研究螺栓的断口形貌和特征,对螺栓材料进行金相组织分析和力学性能测试,与同类型飞机相同位置螺栓的结构和功能进行对比分析。结果 螺栓断口边缘无明显的腐蚀和氧化特征,无有害的夹杂物和磷化物,硬度及拉伸强度符合材料力学性能要求。该型飞机方向舵第4悬挂点连接螺栓的结构较同类型飞机相同位置的螺栓结构应力集中更加明显,材料强度更低,存在设计缺陷。结论 连接螺栓断裂性质为疲劳断裂,螺栓受到异常的拉伸和弯曲循环载荷作用是导致其疲劳断裂的主要原因。基于裂纹原因及性能对比分析提出的设计改进方案,在螺栓选材、强度、刚度和耐久性等方面符合飞机结构设计规范,经验证,满足飞机装配技术要求,实践表明,能够确保飞机寿命期的安全使用。  相似文献   

5.
模拟深海环境下高强钢焊缝阴极保护研究   总被引:1,自引:0,他引:1  
目的研究海水中阴极极化电位下高强钢焊缝氢脆断裂的规律,确定合理的阴极保护电位区间。方法通过模拟深海压力环境,采用慢应变速率拉伸试验(SSRT)、电化学测量方法和腐蚀失重试验进行研究,结合电子显微镜对断口形貌进行观察。结果模拟深海4.50 MPa压力环境下,随着阴极保护电位负移,高强钢焊缝保护度逐渐提高,在极化电位为-0.77 V(vs Ag/Ag Cl/海水,下同)时,材料的保护度达到90%。在-0.71~-0.95 V的电位区间内,高强钢焊缝断裂的方式为韧性断裂;在-1.00 V电位下,高强钢焊缝断裂的方式为脆性断裂;在极化电位不超过-0.96 V时,材料的氢脆系数不超过25%。结论高强钢焊缝在深海环境下的合理保护电位区间为-0.77~0.96 V。  相似文献   

6.
目的研究不同p H值海水中阴极极化对X80管线钢应力腐蚀及氢脆的抑制作用。方法采用慢应变速率拉伸试验、电化学测试、微观组织观察等分析方法。结果 X80钢在天然海水中的析氢电位约为-940m V(vs.SCE,下同),海水p H为3.5时析氢电位发生正移。其应力腐蚀敏感性与极化电位有很大关系,随着极化电位负移,X80钢的氢脆敏感性增加。天然海水中当极化电位负于-950 m V时,断口出现准解理断裂特征形貌。在-1050 m V极化电位下,钢材进入氢脆断裂区发生脆性断裂。海水p H为3.5时,-900 m V钢材有发生氢脆的危险。结论与天然海水相比,X80钢在p H为3.5的酸性海水中具有较高的应力腐蚀敏感性,两种海水介质中X80钢的应力腐蚀敏感性均随极化电位负移而增加。  相似文献   

7.
军用风力发电机紧固螺栓断裂失效分析   总被引:3,自引:1,他引:2  
目的研究风力发电机紧固螺栓断裂失效原因。方法通过化学成分分析、力学性能分析、断口扫描分析、显微组织分析测试手段,对风力发电机紧固螺栓失效原因进行分析。结果断裂螺栓螺纹根部表面存在原始折叠缺陷,为疲劳裂纹的萌生提供了有利条件;同时,螺栓头部、紧固垫圈及法兰盘之间存在装配异常情况,外力作用下接触位置应力集中较大,有利于疲劳裂纹的萌生及进一步扩展。结论通过严格控制入厂螺栓质量,同时定期检查在服役螺栓的使用状态,及时更换存在安全隐患的螺栓,有效杜绝了紧固螺栓断裂失效情况再次发生。  相似文献   

8.
目的研究发动机凸轮轴和螺栓的失效原因。方法在化学成分、硬度、金相组织、断口形貌等检测分析的基础上,研究凸轮轴和螺栓的失效行为,推断整个失效过程的起因件,并分析导致其失效的原因。结果凸轮轴金相组织、表面和心部硬度无明显异常,断口表面有明显的疲劳断裂特征,裂纹起源于凸轮轴的螺栓孔壁,此处为凸轮轴热处理过程中的感应淬火和非感应淬火的交界处。结论凸轮轴顶端螺栓孔在感应淬火过程中产生尖角效应,导致螺栓孔壁被淬透,材料脆性增加,在长期使用过程中导致凸轮轴顶端疲劳断裂,进而导致连接螺栓发生断裂。  相似文献   

9.
针对滨海发射场用于低温管路法兰连接的高强度螺栓的环境腐蚀断裂问题进行失效机理分析.结合螺栓所处"高温、高湿、高盐雾"环境及低温高压工况,讨论分析了盐雾腐蚀、应力作用、微观形貌、化学成分及硬度等影响因素.结果表明,螺栓显微硬度均值(108HRB)超标,材质中C、S、Cr含量异常,螺栓实际受力达到许用应力的60%以上,微观组织裂纹均为典型的应力腐蚀裂纹.在海南"三高"海洋腐蚀环境影响下,耐腐蚀性能较差的螺栓在热应力作用下萌生裂纹,产生应力腐蚀,在热应力和拉应力的作用下进行扩展,发生应力腐蚀开裂,螺栓延迟脆性断裂导致失效.最后,针对螺栓应力腐蚀机理,提出了相应的改进措施.  相似文献   

10.
飞机起落架材料防护技术现状及研究进展   总被引:1,自引:1,他引:0  
介绍了飞机起落架高强度钢的防护工艺及其防护特点。传统的防护工艺主要是镀铬和镀镉工艺,目前出现了无氰镀镉-钛、高速火焰喷涂(HVOF)涂层、低氢脆刷镀镉等新型防护工艺。通过对各新型防护工艺与传统工艺的工艺性能及耐腐蚀性能进行对比发现,各新型防护工艺都能很好地取代传统的防护工艺应用于飞机起落架的保护。  相似文献   

11.
某型飞机对接螺栓微动疲劳裂纹分析   总被引:3,自引:2,他引:1  
通过断口形貌观察、X射线能谱检测、痕迹分析等试验方法,对某型飞机对接螺栓产生裂纹的原因进行了分析.结果表明,对接螺栓的裂纹性质为微动疲劳裂纹;表层微动疲劳裂纹产生后,进一步发生了镉脆开裂;微动疲劳裂纹在飞机末次大修前就已形成,在大修镀镉时镉渗入裂纹内部,并导致了对接螺栓在大修后的使用中裂纹发生镉脆扩展.  相似文献   

12.
简要介绍了某型飞机减速板钛合金梁断裂的情况。采用XL30场发射环境扫描电镜及能谱仪对断口进行了取样分析。结果表明,在减速板钛合金梁销钉孔周围的应力集中区存在点蚀坑。点蚀坑主要是由于在疲劳载荷和CL-的共同作用下,销钉孔周围的应力集中区表面氧化膜破裂和重新生成的不断交替发生而形成的。在疲劳载荷作用下点蚀坑萌生疲劳裂纹源,并逐渐扩展,最终导致结构破坏。  相似文献   

13.
目的 验证和揭示高速动能弹对装甲结构的损伤机理。方法 聚焦高速动能弹打击装甲目标时,弹道冲击造成的靶标结构连接失效及部件过载损伤这2种损伤效应,以典型螺栓连接为研究对象,采用高速球形弹丸撞击螺栓连接结构的小尺寸试验对数值模拟方法和材料模型参数进行校验。在此基础上,采用数值模拟和冲击响应谱分析方法对高速动能弹打击全尺寸坦克进行模拟分析,获得撞击过程螺栓连接失效特征、主要影响因素及坦克典型位置部件的冲击加速度曲线和冲击响应谱曲线。结果 在小尺寸试验中,动能输入为0.042MJ时,螺栓连接未发生失效;但25.6MJ动能输入全尺寸坦克时,螺栓发生断裂而使连接失效。数值模拟结果揭示了螺栓发生断裂的主要原因。结论 输入动能大小、连接螺栓直径、模拟设备部件质量和撞击位置为螺栓是否断裂的主要影响因素。坦克某些位置的冲击响应谱曲线高于军用标准给出的临界曲线的下限甚至上限,表明这些位置的部件因高过载损伤导致失效的概率较高。  相似文献   

14.
目的分析某型飞机机翼后梁接头裂纹形成的原因,避免类似问题的重复发生。方法通过对机翼后梁接头进行受力分析,在对机翼后梁接头结构装配关系进行分析的基础上,采用有限元方法对接头进行应力计算,并对裂纹断口进行宏观和微观分析,确定产生裂纹的原因。结果机翼后梁接头裂纹为应力腐蚀裂纹。结论机翼后梁接头材料为LD5,对应力腐蚀敏感,接头在装配过程中存在较大的装配拉应力,而接头表面的腐蚀防护又存在缺陷,在较严酷的服役环境作用下发生了应力腐蚀开裂。  相似文献   

15.
目的研究某型飞机机翼下壁板整体油箱端5肋结构的选型疲劳寿命。方法在结构选型设计时初步确定长桁连续和长桁断开两种结构形式的基础上,采用静力试验与疲劳试验方法对这两种结构模拟件进行对比试验验证。结果两种结构模拟件的静破坏载荷分别为588.20 k N和587.97 k N,与设计预计破坏载荷(590k N)高度一致。在相同的等幅载荷谱下,长桁连续结构的中值疲劳寿命和95%置信度与95%可靠度下的疲劳寿命分别约为长桁断开结构的1.7倍和4倍。长桁连续结构的疲劳分散性明显小于长桁断开结构。长桁连续结构的疲劳断口主要呈现脆性穿晶疲劳断裂特征;而长桁断开疲劳断口则呈现出韧窝型断裂和解理断裂的混合型穿晶疲劳断裂特征。疲劳断口微观形貌表明,长桁断开结构在疲劳过程中产生了塑性变形,这就从微观机理上解释了长桁连续结构的疲劳性能优于长桁断开结构的原因。结论在结构质量相近的情况下,长桁连续结构明显优于长桁断开结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号