首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A natural gradient emplaced-source (ES) controlled field experiment was conducted at the Borden aquifer research site, Ontario, to study the transport of dissolved plumes emanating from residual dense nonaqueous-phase liquid (DNAPL) source zones. The specific objective of the work presented here is to determine the effects of solute and co-solute concentrations on sorption and retardation of dissolved chlorinated solvent-contaminant plumes. The ES field experiment comprised a controlled emplacement of a residual multicomponent DNAPL below the groundwater table and intensive monitoring of dissolved-phase plumes of trichloromethane (TCM), trichloroethylene (TCE), and perchloroethylene (PCE) plumes continuously generated in the aquifer down gradient from gradual source dissolution. Estimates of plume retardation (and dispersion) were obtained from 3-D numerical simulations that incorporated transient source input and flow regimes monitored during the test. PCE, the most retarded solute, surprisingly exhibited a retardation factor approximately 3 times lower than observed in a previous Borden tracer test by Mackay et al. [Water Resour. Res. 22 (1986) 2017] conducted approximately 150 m away. Also, an absence of temporal trend in PCE retardation contrasted with the previous Borden test. Supporting laboratory studies on ES site core indicated that sorption was nonlinear and competitive, i.e. reduced sorption of PCE was observed in the presence of TCE. Consideration of the effects of relatively high co-solute (TCE) concentration (competitive sorption) in addition to PCE concentration effects (nonlinear sorption) was necessary to yield laboratory-based PCE retardation estimates consistent with the field plume values. Concentration- and co-solute-based sorption and retardation analysis was also applied to the previous low-concentration pulse injection test of Mackay et al. [Water Resour. Res. 22 (1986) 2017] and was able to successfully predict the temporal field retardation trends observed in that test. While it is acknowledged that other "nonideal transport" effects may contribute, our analysis predicts differences in the PCE retardation magnitude and trend between the two experiments that are consistent with field observations based on the marked solute concentration differences that resulted from contrasting source conditions. Solute and co-solute concentration effects have heretofore received little attention, but may have wide significance in aquifers contaminated by point-source pollutants because many plumes contain mixed solutes over wide concentration ranges in strata that are likely subject to nonlinear sorption.  相似文献   

2.
Chlorinated ethenes often migrate over extended distances in aquifers and may originate from different sources. The aim of this study was to determine whether stable carbon isotope ratios remain constant during dissolution and transport of chlorinated ethenes and whether the ratios can be used to link plumes to their sources. Detailed depth-discrete delineation of the carbon isotope ratio in a tetrachloroethene (PCE) plume and in a trichloroethene (TCE) plume was done along cross-sections orthogonal to groundwater flow in two sandy aquifers in the Province of Ontario, Canada. At the TCE site, TCE concentrations up to solubility were measured in one high concentration zone close to the bottom of the aquifer from where dense non-aqueous phase liquid (DNAPL) was collected. A laboratory experiment using the DNAPL indicated that only very small carbon isotope fractionation occurs during dissolution of TCE (0.26 per thousand), which is consistent with field observations. At most sampling points, the delta(13)C of dissolved TCE was similar to that of the DNAPL except for a few sampling points at the bottom of the aquifer close to the underlying aquitard. At these points, a (13)C enrichment of up to 2.4 per thousand was observed, which was likely due to biodegradation and possibly preferential diffusion of TCE with (12)C into the aquitard. In contrast to the TCE site, several distinct zones of high concentration were observed at the PCE site and from zones to zone, the delta(13)C values varied substantially from -24.3 per thousand to -33.6 per thousand. Comparison of the delta(13)C values in the high concentration zones made it possible to divide the plume in the three different domains, each probably representing a different episode and location of DNAPL release. The three different zones could still be distinguished 220 m from the DNAPL sources. This demonstrates that carbon isotope ratios can be used to differentiate between different zones in chlorinated ethene plumes and to link plume zones to their sources. In addition, subtle variations in delta(13)C at plume fringes provided insight into mechanisms of plume spreading in transverse vertical direction. These variations were identified because of the high-resolution provided by the monitoring network.  相似文献   

3.
A multi-dimensional and multi-species reactive transport model was developed to aid in the analysis of natural attenuation design at chlorinated solvent sites. The model can simulate several simultaneously occurring attenuation processes including aerobic and anaerobic biological degradation processes. The developed model was applied to analyze field-scale transport and biodegradation processes occurring at the Area-6 site in Dover Air Force Base, Delaware. The model was calibrated to field data collected at this site. The calibrated model reproduced the general groundwater flow patterns, and also, it successfully recreated the observed distribution of tetrachloroethene (PCE), trichloroethene (TCE), dichloroethylene (DCE), vinyl chloride (VC) and chloride plumes. Field-scale decay rates of these contaminant plumes were also estimated. The decay rates are within the range of values that were previously estimated based on lab-scale microcosm and field-scale transect analyses. Model simulation results indicated that the anaerobic degradation rate of TCE, source loading rate, and groundwater transport rate are the important model parameters. Sensitivity analysis of the model indicated that the shape and extent of the predicted TCE plume is most sensitive to transmissivity values. The total mass of the predicted TCE plume is most sensitive to TCE anaerobic degradation rates. The numerical model developed in this study is a useful engineering tool for integrating field-scale natural attenuation data within a rational modeling framework. The model results can be used for quantifying the relative importance of various simultaneously occurring natural attenuation processes.  相似文献   

4.
The stable carbon isotope values of tetrachloroethene (PCE) and its degradation products were monitored during studies of biologically enhanced dissolution of PCE dense nonaqueous phase liquid (DNAPL) to determine the effect of PCE dissolution on observed isotope values. The degradation of PCE was monitored in a 2-dimensional model aquifer and in a pilot test cell (PTC) at Dover Air Force Base, both with emplaced PCE DNAPL sources. Within the plume down gradient from the source, the isotopic fractionation of dissolved PCE and its degradation products were consistent with those observed in biodegradation laboratory studies. However, close to the source zone significant shifts in the isotope values of dissolved PCE were not observed in either the model aquifer or PTC due to the constant input of newly dissolved, non fractionated PCE, and the small isotopic fractionation associated with PCE reductive dechlorination by the mixed microbial culture used. Therefore the identification of reductive dechlorination in the presence of PCE DNAPL was based upon the appearance of daughter products and the isotope values of those daughter products. An isotope model was developed to simulate isotope values of PCE during the dissolution and degradation of PCE adjacent to a DNAPL source zone. With the exception of very high degradation rate constants (>1/day) stable carbon isotope values of PCE estimated by the model remained within error of the isotope value of the PCE DNAPL, consistent with measured isotope values in the model aquifer and in the PTC.  相似文献   

5.
Monitored natural attenuation (MNA) has recently emerged as a viable groundwater remediation technology in the United States. Area 6 at Dover Air Force Base (Dover, DE) was chosen as a test site to examine the potential for MNA of tetrachloroethene (PCE) and trichloroethene (TCE) in groundwater and aquifer sediments. A "lines of evidence" approach was used to document the occurrence of natural attenuation. Chlorinated hydrocarbon and biogeochemical data were used to develop a site-specific conceptual model where both anaerobic and aerobic biological processes are responsible for the destruction of PCE, TCE, and daughter metabolites. An examination of groundwater biogeochemical data showed a region of depleted dissolved oxygen with elevated dissolved methane and hydrogen concentrations. Reductive dechlorination likely dominated in the anaerobic portion of the aquifer where PCE and TCE levels were observed to decrease with a simultaneous increase in cis-1,2-dichloroethene (cis-DCE), vinyl chloride (VC), ethene, and dissolved chloride. Near the anaerobic/ aerobic interface, concentrations of cis-DCE and VC decreased to below detection limits, presumably due to aerobic biotransformation processes. Therefore, the contaminant and daughter product plumes present at the site appear to have been naturally atteuated by a combination of active anaerobic and aerobic biotransformation processes.  相似文献   

6.
Understanding the process of mass transfer from source zones of aquifers contaminated with organic chemicals in the form of dense non-aqueous phase liquids (DNAPL) is of importance in site management and remediation. A series of intermediate-scale tank experiments was conducted to examine the influence of aquifer heterogeneity on DNAPL mass transfer contributing to dissolved mass emission from source zone into groundwater under natural flow before and after remediation. A Tetrachloroethylene (PCE) spill was performed into six source zone models of increasing heterogeneity, and both the spatial distribution of the dissolution behavior and the net effluent mass flux were examined. Experimentally created initial PCE entrapment architecture resulting from the PCE migration was largely influenced by the coarser sand lenses and the PCE occupied between 30 and 60% of the model aquifer depth. The presence of DNAPL had no apparent effect on the bulk hydraulic conductivity of the porous media. Up to 71% of PCE mass in each of the tested source zone was removed during a series of surfactant flushes, with associated induced PCE mobilization responsible for increasing vertical DNAPL distributions. Effluent mass flux due to water dissolution was also found to increase progressively due to the increase in NAPL-water contact area even though the PCE mass was reduced. Doubling of local groundwater flow velocities showed negligible rate-limited effects at the scale of these experiments. Thus, mass transfer behavior was directly controlled by the morphology of DNAPL within each source zone. Effluent mass flux values were normalized by the up-gradient DNAPL distributions. For the suite of aquifer heterogeneities and all remedial stages, normalized flux values fell within a narrow band with mean of 0.39 and showed insensitivity to average source zone saturations.  相似文献   

7.
The fate of chlorinated ethenes in a large contaminant plume originating from a tetrachloroethene (PCE) source in a sandy aquifer in Denmark was investigated using novel methods including compound-specific carbon and chlorine isotope analysis and quantitative real-time polymerase chain reaction (qPCR) methods targeting Dehaloccocoides sp. and vcrA genes. Redox conditions were characterized as well based on concentrations of dissolved redox sensitive compounds and sulfur isotopes in SO(4)(2-). In the first 400 m downgradient of the source, the plume was confined to the upper 20 m of the aquifer. Further downgradient it widened in vertical direction due to diverging groundwater flow reaching a depth of up to 50 m. As the plume dipped downward and moved away from the source, O(2) and NO(3)(-) decreased to below detection levels, while dissolved Fe(2+) and SO(4)(2-) increased above detectable concentrations, likely due to pyrite oxidation as confirmed by the depleted sulfur isotope signature of SO(4)(2-). In the same zone, PCE and trichloroethene (TCE) disappeared and cis-1,2-dichloroethene (cDCE) became the dominant chlorinated ethene. PCE and TCE were likely transformed by reductive dechlorination rather than abiotic reduction by pyrite as indicated by the formation of cDCE and stable carbon isotope data. TCE and cDCE showed carbon isotope trends typical for reductive dechlorination with an initial depletion of (13)C in the daughter products followed by an enrichment of (13)C as degradation proceeded. At 1000 m downgradient of the source, cDCE was the dominant chlorinated ethene and had reached the source δ(13)C value confirming that cDCE was not affected by abiotic or biotic degradation. Further downgradient (up to 1900 m), cDCE became enriched in (13)C by up to 8 ‰ demonstrating its further transformation while vinylchloride (VC) concentrations remained low (<1 μg/L) and ethene was not observed. The correlated shift of carbon and chlorine isotope ratios of cDCE by 8 and 3.9 ‰, respectively, the detection of Dehaloccocides sp genes, and strongly reducing conditions in this zone provide strong evidence for reductive dechlorination of cDCE. The significant enrichment of (13)C in VC indicates that VC was transformed further, although the mechanism could not be determined. The transformation of cDCE was the rate limiting step as no accumulation of VC occurred. In summary, the study demonstrates that carbon-chlorine isotope analysis and qPCR combined with traditional approaches can be used to gain detailed insight into the processes that control the fate of chlorinated ethenes in large scale plumes.  相似文献   

8.
An earlier field experiment at Canadian Forces Base Borden by Brewster and Annan [Geophysics 59 (1994) 1211] clearly demonstrated the capability of ground penetrating radar (GPR) reflection profiling to detect and monitor the formation of DNAPL layers in the subsurface. Their experiment involved a large volume release (770 L) of tetrachloroethylene into a portion of the sand aquifer that was hydraulically isolated from groundwater flow by sheet pile walls. In this study, we evaluated the ability of GPR profiling to detect and monitor much smaller volume releases (50 L). No subsurface confining structure was used in this experiment; hence, the DNAPL impacted zone was subjected to the natural groundwater flow regime. This condition allowed us to geophysically monitor the DNAPL mass loss over a 66 month period. Reflectivity variations on the GPR profiles were used to infer the presence and evolution of the solvent layers. GPR imaging found significant reflectivity increases due to solvent layer formation during the two week period immediately after the release. These results demonstrated the capacity of GPR profiling for the detection and monitoring of lesser volume DNAPL releases that are more representative of small-scale industrial spills. The GPR imaged solvent layers subsequently reduced in both areal extent and reflectivity after 29 months and almost completely disappeared by the end of the 66 month monitoring period. Total DNAPL mass estimates based on GPR profiling data indicated that the solvent mass was reduced to 34%-36% of its maximum value after 29 months; only 4%-9% of the solvent mass remained in the study area after 66 months. These results are consistent with independent hydrogeological estimates of remaining DNAPL mass based on the downgradient monitoring of the dissolved solvent phase. Hence, we have concluded that the long-term GPR reflectivity changes of the DNAPL layers are likely the result from the dissolution of chlorinated solvents residing in those layers. The long-term monitoring results demonstrated that GPR profiling is a promising non-invasive method for use at DNAPL contaminated sites in sandy aquifers where temporal information about immiscible contaminant mass depletion due to either natural flow or remediation is needed. However, our results also indicated that the GPR signature of older DNAPL impacted zones may not differ greatly from the uncontaminated background if significant mass reduction due to dissolution has occurred.  相似文献   

9.
Simulating the fate and transport of TCE from groundwater to indoor air   总被引:1,自引:0,他引:1  
This work provides an exploratory analysis on the relative importance of various factors controlling the fate and transport of volatile organic contaminants (in this case, TCE) from a DNAPL source zone located below the water table and into the indoor air. The analysis is conducted using the multi-phase compositional model CompFlow Bio, with the base scenario problem geometry reminiscent of a field experiment conducted by Rivett [Rivett, M.O., (1995), Soil–gas signatures from volatile chlorinated solvents: Borden field experiments. Groundwater, 33(1), 84–98.] at the Borden aquifer where groundwater was observed to transport a contaminant plume a substantial distance without vertical mass transport of the contaminant across the capillary fringe and into the vadose zone. Results for the base scenario model indicate that the structure of the permeability field was largely responsible for deflecting the groundwater plume upward towards the capillary fringe, permitting aqueous phase diffusion to transport the TCE into the vadose zone. Alternative permeability realizations, generated as part of a Monte Carlo simulation process, at times deflected the groundwater plume downwards causing the extended thickness of the saturated zone to insulate the vadose zone from exposure to the TCE by upward diffusive transport. Comparison of attenuation coefficients calculated using the CompFlow Bio and Johnson and Ettinger [Johnson, P.C. and Ettinger, R.A., (1991), Heuristic model for predicting the intrusion rate of contaminant vapors into buildings. Environmental Science and Technology, 25, 1445–1452.] heuristic model exhibited fortuitous agreement for the base scenario problem geometry, with this agreement diverging for the alternative permeability realizations as well as when parameters such as the foundation slab fracture aperture, the indoor air pressure drop, the capillary fringe thickness, and the infiltration rate were varied over typical ranges.  相似文献   

10.
《Chemosphere》2013,90(11):1369-1375
Biodegradation of trichloroethene (TCE) near a Dense Non Aqueous Phase Liquid (DNAPL) can enhance the dissolution rate of the DNAPL by increasing the concentration gradient at the DNAPL-water interface. Two-dimensional flow-through sand boxes containing a TCE DNAPL and inoculated with a TCE dechlorinating consortium were set up to measure this bio-enhanced dissolution under anaerobic conditions. The total mass of TCE and daughter products in the effluent of the biotic boxes was 3–6 fold larger than in the effluent of the abiotic box. However, the mass of daughter products only accounted for 19–55% of the total mass of chlorinated compounds in the effluent, suggesting that bio-enhanced dissolution factors were maximally 1.3–2.2. The enhanced dissolution most likely primarily resulted from variable DNAPL distribution rather than biodegradation. Specific dechlorination rates previously determined in a stirred liquid medium were used in a reactive transport model to identify the rate limiting factors. The model adequately simulated the overall TCE degradation when predicted resident microbial numbers approached observed values and indicated an enhancement factor for TCE dissolution of 1.01. The model shows that dechlorination of TCE in the 2D box was limited due to the short residence time and the self-inhibition of the TCE degradation. A parameter sensitivity analysis predicts that the bio-enhanced dissolution factor for this TCE source zone can only exceed a value of 2 if the TCE self-inhibition is drastically reduced (when a TCE tolerant dehalogenating community is present) or if the DNAPL is located in a low-permeable layer with a small Darcy velocity.  相似文献   

11.
Biodegradation of trichloroethene (TCE) near a Dense Non Aqueous Phase Liquid (DNAPL) can enhance the dissolution rate of the DNAPL by increasing the concentration gradient at the DNAPL-water interface. Two-dimensional flow-through sand boxes containing a TCE DNAPL and inoculated with a TCE dechlorinating consortium were set up to measure this bio-enhanced dissolution under anaerobic conditions. The total mass of TCE and daughter products in the effluent of the biotic boxes was 3-6 fold larger than in the effluent of the abiotic box. However, the mass of daughter products only accounted for 19-55% of the total mass of chlorinated compounds in the effluent, suggesting that bio-enhanced dissolution factors were maximally 1.3-2.2. The enhanced dissolution most likely primarily resulted from variable DNAPL distribution rather than biodegradation. Specific dechlorination rates previously determined in a stirred liquid medium were used in a reactive transport model to identify the rate limiting factors. The model adequately simulated the overall TCE degradation when predicted resident microbial numbers approached observed values and indicated an enhancement factor for TCE dissolution of 1.01. The model shows that dechlorination of TCE in the 2D box was limited due to the short residence time and the self-inhibition of the TCE degradation. A parameter sensitivity analysis predicts that the bio-enhanced dissolution factor for this TCE source zone can only exceed a value of 2 if the TCE self-inhibition is drastically reduced (when a TCE tolerant dehalogenating community is present) or if the DNAPL is located in a low-permeable layer with a small Darcy velocity.  相似文献   

12.
The composition of chlorinated hydrocarbon DNAPLs (dense non-aqueous phase liquids) from field sites can be substantially different than the material originally purchased for use as a solvent. Waste management practices at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) included co-disposal of a wide range of organic and inorganic wastes. In 1991, a clear, orange-colored DNAPL was found in two wells near the SRS M-area settling basin. Waste effluent from the fuel and target fabrication facilities that were discharged to this settling basin included acids, caustics, metals and chlorinated solvents. The characterization of the SRS DNAPL suggests that numerous constituents partitioned into the DNAPL during its use as a solvent, co-disposal and ultimate migration through the subsurface. Trace constituents in the DNAPL include metals, from processing operations or co-disposal practices and subsurface minerals, high molecular weight hydrocarbons and alkyl esters, and acids. This complex mixture results in DNAPL-water interfacial properties that are substantially different than would be expected from a simple mixture of PCE and TCE. Under conditions when there is a high DNAPL to water volume ratio, a semi-rigid film accumulates on water droplets suspended in the DNAPL. It is concluded that the array of precipitated metal species comprising this film contributes to the interfacial tension that is over an order of magnitude lower than expected for a "clean" PCE/TCE mixture.  相似文献   

13.
An emplaced source of coal tar creosote within the sandy Borden research aquifer has documented the long-term (5140 days) natural attenuation for this complex mixture. Plumes of dissolved chemicals were produced by the essentially horizontal groundwater flowing at about 9 cm/day. Eleven chemicals have been extensively sampled seven times using a monitoring network of approximately 280, 14-point multilevel samplers. A model of source dissolution using Raoult's Law adequately predicted the dissolution of 9 of 11 compounds. Mass transformation has limited the extent of the plumes as groundwater has flowed more than 500 m, yet the plumes are no longer than 50 m. Phenol and xylenes have been removed and naphthalene has attenuated from its maximum extent on day 1357. Some compound plumes have reached an apparent steady state and the plumes of other compounds (dibenzofuran and phenanthrene) are expected to continue to expand due to an increasing mass flux and limited degradation potential. Biotransformation is the major process controlling natural attenuation at the site. The greatest organic mass lost is associated with the high solubility compounds. However, the majority of the mass loss for most compounds has occurred in the source zone. Oxygen is the main electron acceptor, yet the amount of organics lost cannot be accounted for by aerobic mineralization or partial mineralization alone. The complex evolution of these plumes has been well documented but understanding the controlling biotransformation processes is still elusive. This study has shown that anticipating bioattenuation patterns should only be considered at the broadest scale. Generally, the greatest mass loss is associated with those compounds that have a high solubility and low partitioning coefficients.  相似文献   

14.
Vertical transverse mixing is known to be a controlling factor in natural attenuation of extended biodegradable plumes originating from continuously emitting sources. We perform conservative and reactive tracer tests in a quasi two-dimensional 14 m long sand box in order to quantify vertical mixing in heterogeneous media. The filling mimics natural sediments including a distribution of different hydro-facies, made of different sand mixtures, and micro-structures within the sand lenses. We quantify the concentration distribution of the conservative tracer by the analysis of digital images taken at steady state during the tracer-dye experiment. Heterogeneity causes plume meandering, leading to distorted concentration profiles. Without knowledge about the velocity distribution, it is not possible to determine meaningful vertical dispersion coefficients from the concentration profiles. Using the stream-line pattern resulting from an inverse model of previous experiments in the sand box, we can correct for the plume meandering. The resulting vertical dispersion coefficient is approximately approximately 4 x 10(-)(9) m(2)/s. We observe no distinct increase in the vertical dispersion coefficient with increasing travel distance, indicating that heterogeneity has hardly any impact on vertical transverse mixing. In the reactive tracer test, we continuously inject an alkaline solution over a certain height into the domain that is occupied otherwise by an acidic solution. The outline of the alkaline plume is visualized by adding a pH indicator into both solutions. From the height and length of the reactive plume, we estimate a transverse dispersion coefficient of approximately 3 x 10(-)(9) m(2)/s. Overall, the vertical transverse dispersion coefficients are less than an order of magnitude larger than pore diffusion coefficients and hardly increase due to heterogeneity. Thus, we conclude for the assessment of natural attenuation that reactive plumes might become very large if they are controlled by vertical dispersive mixing.  相似文献   

15.
Microbial reductive dechlorination of trichloroethene (TCE) and perchloroethene (PCE) in the vicinity of their dense non-aqueous phase liquid (DNAPL) has been shown to accelerate DNAPL dissolution. A three-layer diffusion-cell was developed to quantify this bio-enhanced dissolution and to measure the conditions near the DNAPL interface. The 12 cm long diffusion-cell setup consists of a 5.5 cm central porous layer (sand), a lower 3.5 cm DNAPL layer and a top 3 cm water layer. The water layer is frequently refreshed to remove chloroethenes at the upper boundary of the porous layer, while the DNAPL layer maintains the saturated chloroethene concentration at the lower boundary. Two abiotic and two biotic diffusion-cells with TCE DNAPL were tested. In the abiotic diffusion-cells, a linear steady state TCE concentration profile between the DNAPL and the water layer developed beyond 21 d. In the biotic diffusion-cells, TCE was completely converted into cis-dichloroethene (cis-DCE) at 2.5 cm distance of the DNAPL. Dechlorination was likely inhibited up to a distance of 1.5 cm from the DNAPL, as in this part the TCE concentration exceeded the culture’s maximum tolerable concentration (2.5 mM). The DNAPL dissolution fluxes were calculated from the TCE concentration gradient, measured at the interface of the DNAPL layer and the porous layer. Biotic fluxes were a factor 2.4 (standard deviation 0.2) larger than abiotic dissolution fluxes. This diffusion-cell setup can be used to study the factors affecting the bio-enhanced dissolution of DNAPL and to assess bioaugmentation, pH buffer addition and donor delivery strategies for source zones.  相似文献   

16.
While the capability of nanoscale zero-valent iron (NZVI) to dechlorinate organic compounds in aqueous solutions has been demonstrated, the ability of NZVI to remove dense non-aqueous phase liquid (DNAPL) from source zones under flow-through conditions similar to a field scale application has not yet been thoroughly investigated. To gain insight on simultaneous DNAPL dissolution and NZVI-mediated dechlorination reactions after direct placement of NZVI into a DNAPL source zone, a combined experimental and modeling study was performed. First, a DNAPL tetrachloroethene (PCE) source zone with emplaced NZVI was built inside a small custom-made flow cell and the effluent PCE and dechlorination byproducts were monitored over time. Second, a model for rate-limited DNAPL dissolution and NZVI-mediated dechlorination of PCE to its three main reaction byproducts with a possibility for partitioning of these byproducts back into the DNAPL was formulated. The coupled processes occurring in the flow cell were simulated and analyzed using a detailed three-dimensional numerical model. It was found that subsurface emplacement of NZVI did not markedly accelerate DNAPL dissolution or the DNAPL mass-depletion rate, when NZVI at a particle concentration of 10g/L was directly emplaced in the DNAPL source zone. To react with NZVI the DNAPL PCE must first dissolve into the groundwater and the rate of dissolution controls the longevity of the DNAPL source. The modeling study further indicated that faster reacting particles would decrease aqueous contaminant concentrations but there is a limit to how much the mass removal rate can be increased by increasing the dechlorination reaction rate. To ensure reduction of aqueous contaminant concentrations, remediation of DNAPL contaminants with NZVI should include emplacement in a capture zone down-gradient of the DNAPL source.  相似文献   

17.
In situ, sequential, anaerobic to aerobic treatment of groundwater removed perchloroethene (PCE, 1.1 microM) and benzene (0.8 microM) from a contaminated aquifer. Neither aerobic nor anaerobic treatment alone successfully degraded both the chlorinated and non-chlorinated organic contaminants in the aquifer. After the sequential treatment, PCE, trichloroethene (TCE), vinyl chloride (VC), chloroethane (CA), and benzene were not detectable in groundwater. Desorption of residual aquifer contaminants was tested by halting the groundwater recirculation and analyzing the groundwater after 3 and 7 weeks. No desorption of the chlorinated contaminants or daughter products was observed in the treated portion of the aquifer. Sequential anaerobic to aerobic treatment was successful in remediating the groundwater at this test site and may have broad applications at other contaminated sites. Over the 4-year course of the project, the predominant microbial environment of the test site varied from aerobic to sulfate-reducing, to methanogenic, and back to aerobic conditions. Metabolically active microbial populations developed under all conditions, demonstrating the diversity and robustness of natural microbial flora in the aquifer.  相似文献   

18.
A novel method to remediate dense nonaqueous phase liquid (DNAPL) source zones that incorporates in situ density conversion of DNAPL via alcohol partitioning followed by displacement with a low interfacial tension (IFT) surfactant flood has been developed. Previous studies demonstrated the ability of the density-modified displacement (DMD) method to recover chlorobenzene (CB) and trichloroethene (TCE) from heterogeneous porous media without downward migration of the dissolved plume or free product. However, the extent of alcohol (n-butanol) partitioning required for in situ density conversion of high-density NAPLs, such as tetrachloroethene (PCE), could limit the utility of the DMD method. Hence, the objective of this study was to compare the efficacy of two n-butanol delivery approaches: an aqueous solution of 6% (wt) n-butanol and a surfactant-stabilized macroemulsion containing 15% (vol) n-butanol in water, to achieve density reduction of PCE-NAPL in two-dimensional (2-D) aquifer cells. Results of liquid-liquid equilibrium studies indicated that density conversion of PCE relative to water occurred at an n-butanol mole fraction of 0.56, equivalent to approximately 5 ml n-butanol per 1 ml of PCE when in equilibrium with an aqueous solution. In 2-D aquifer cell studies, density conversion of PCE was realized using both n-butanol preflood solutions, with effluent NAPL samples exhibiting density reductions ranging from 0.51 to 0.70 g/ml. Although the overall PCE mass recoveries were similar (91% and 93%) regardless of the n-butanol delivery method, the surfactant-stabilized macroemulsion preflood removed approximately 50% of the PCE mass. In addition, only 1.2 pore volumes of the macroemulsion solution were required to achieve in situ density conversion of PCE, compared to 6.4 pore volumes of the 6% (wt) n-butanol solution. These findings demonstrate that use of the DMD method with a surfactant-stabilized macroemulsion containing n-butanol holds promise as an effective source zone remediation technology, allowing for efficient recovery of PCE-DNAPL while mitigating downward migration of the dissolved plume and free product.  相似文献   

19.
This paper concludes that back diffusion from one or a few thin clayey beds in a sand aquifer can cause contaminant persistence above MCLs in a sand aquifer long after the source zone initially causing the plume is isolated or removed. This conclusion is based on an intensive case study of a TCE contaminated site in Florida, with the processes evaluated using numerical modeling. At this site, the TCE DNAPL zone formed decades ago, and was hydraulically isolated by means of an innovative system performing groundwater extraction, treatment and re-injection. Treated water is re-injected in a row of injection wells situated a short distance downgradient of the extraction wells, creating a clean-water displacement front to efficiently flush the downgradient plume. This scheme avoids the creation of stagnation zones typical of most groundwater pump-and-treat systems, thereby minimizing the time for aquifer flushing and therefore downgradient cleanup. The system began operation in August 2002 and although the performance monitoring shows substantial declines in concentrations, detectable levels of TCE and degradation products persist downgradient of the re-injection wells, long after the TCE should have disappeared based on calculations assuming a nearly homogenous sand aquifer. Three hypotheses were assessed for this plume persistence: 1) incomplete source-zone capture, 2) DNAPL occurrence downgradient of the re-injection wells, and 3) back diffusion from one or more thin clay beds in the aquifer. After careful consideration, the first two hypotheses were eliminated, leaving back diffusion as the only plausible hypothesis, supported by detailed measurements of VOC concentrations within and near the clay beds and also by numerical model simulations that closely represent the field site hydrogeologic conditions. The model was also used to simulate a more generalized, hypothetical situation where more thin clayey beds occur in a sand aquifer with an underlying aquitard. While there is no doubt that DNAPL source mass reduction can eventually improve downgradient groundwater quality, the magnitude and time scale over which the improvement occurs is the major uncertainty given current characterization approaches. This study shows that even one thin clay bed, less than 0.2 m thick, can cause plume persistence due to back diffusion for several years or even decades after the flux from the source is completely isolated. Thin clay beds, which have a large storage capacity for dissolved and sorbed contaminant mass, are common in many types of sandy aquifers. However, without careful inspection of continuous cores and sampling, such thin clay beds, and their potential for causing long-term back-diffusion effects, can easily go unnoticed during site characterization.  相似文献   

20.
A field investigation of a TCE plume in a surficial sand aquifer shows that groundwater-surface water interactions strongly influence apparent plume attenuation. At the site, a former industrial facility in Connecticut, depth-discrete monitoring along three cross-sections (transects) perpendicular to groundwater flow shows a persistent VOC plume extending 700 m from the DNAPL source zone to a mid-size river. Maximum TCE concentrations along a transect 280 m from the source were in the 1000s of microg/L with minimal degradation products. Beyond this, the land surface drops abruptly to a lower terrace where a shallow pond and small streams occur. Two transects along the lower terrace, one midway between the facility and river just downgradient of the pond and one along the edge of the river, give the appearance that the plume has strongly attenuated. At the river, maximum TCE concentrations in the 10s of microg/L and similar levels of its degradation product cis-DCE show direct plume discharge from groundwater to the river is negligible. Although degradation plays a role in the strong plume attenuation, the major attenuation factor is partial groundwater plume discharge to surface water (i.e. the pond and small streams), where some mass loss occurs via water-air exchange. Groundwater and stream mass discharge estimates show that more than half of the plume mass discharge crossing the first transect, before surface water interactions occur, reaches the river directly via streamflow, although river concentrations were below detection due to dilution. This study shows that groundwater and surface water concentration measurements together provide greater confidence in identifying and quantifying natural attenuation processes at this site, rather than groundwater measurements alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号