首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Vertical profiles of physical, chemical and phytoplanktonic parameters are described, at the level of the thermocline, in the area of Banyuls-sur-Mer, France. The results show that the thermocline divides two masses of water: (1) Mediterranean surface water with low nutrient concentrations and a salinity below 38.00 ‰; (2) deep, nutrient-rich upwelled water (N?NO3 >3 μat-g·l-1, P?PO4>0.3 μat-g·l-1, >38.30 ‰ S), which comes from the upper limit of the Mediterranean intermediate water, usually located at the 200 m level. Consequently, conditions are suitable for high production rates at the bottom of the thermocline, where Chl a is above 0.5 mg·m-3; dominant species are Nitzschia delicatissima and N. pungens. A diagram is presented explaining the different effects of the pycnoclines on primary production: eutrophication at the pycnocline levels is the result of passive accumulation of phytoplankton and organic matter during sedimentation, and/or of reduced diffusion of nutrients from deep waters towards the surface.  相似文献   

2.
The influence of the sewage from the city of Marseilles, France, upon the marine microplanktonic assemblages was followed over a period of one year (May 1980–April 1981) at five stations and three sampling depths. Measurements of the 14C assimilation rate, adenylate energy charge, and the electron-transport system (ETS) were compared with parallel phytoplankton and bacteria counts. In the coastal waters near the sewage outlet the phytoplanktonic organisms were stressed, as attested by the low values of both assimilation rate and energy-charge ratios; the living microbiomass in these waters was essentially of bacterial origin. In waters situated 4 to 5 km away from the outlet, and therefore not directly under its influence, higher mean P:B and EC ratios indicated the presence of a predominantly living phytoplanktonic assemblage. Nevertheless, the metabolic stress induced by the inflow of polluted water to the waters near the sewage outlet did not prevent the occurrence of a spring bloom. The electron-transport system measurements and their relationship to the effective bacterial counts are in good accordance with the literature data describing laboratory cultures, and indicate intense heterotrophic activity in the waters nearest to the sewage outlet. This activity is most probably of bacterial origin: perhaps some of the terrestrial germs introduced into the marine environment remained viable, perhaps the considerable volume of organic matter introduced into this area induced heterotrophic development, or perhaps both factors combined. Simultaneous consideration of biochemical and physiological data with the structure and composition of the microplanktonic populations could explain the apparent contradiction between the high level of nutrient supply and the lack of photoautotrophic growth noted in previous studies in this area. However, the considerable amounts of fresh organic matter present in the waters near the sewage outlet at Cortiou indicate the necessity for great care in the use of biochemical parameters such as chlorophyll or AMP for the estimation of microplankton biomass; such estimates can be biased by the presence of non-degraded detrital particles of biological origin.  相似文献   

3.
The activity of the heterotrophic microbial population in the saline Lake Grevelingen (The Netherlands) and the Mediterranean Etang Salses Leucate (France) was determined by measuring the oxygen consumption rate, and the uptake of 14C-labelled glycollate, pyruvate and an amino acid mixture. The maximum uptake rate of the applied organic compounds in Lake Grevelingen was generally less than 10% of the carbon mineralization rate calculated from the oxygen consumption experiments. Only for pyruvate and glycollate higher values were found of about 30 to 40% with one exceptionally high value for pyruvate of 149%. However, these higher percentages were found in winter, when the activity of the heterotrophic microbial population was very low. In Etang Salses Leucate higher maximum uptake rates of the 14C-labelled compounds were found, relating this uptake to the oxygen consumption rate. Yet the maximum uptake rate is still always lower than 35% of the carbon mineralization calculated from the oxygen uptake rate. Taking into account that maximum uptake rates were considered, the results demonstrate that the uptake of 14C-labelled organic compounds represents a serious underestimation of the activity of the bacterial population in situ. The extent of the underestimation depends on the water type. It was concluded that the determination of the heterotrophic activity by measuring oxygen consumption rates offers a better insight into the carbon mineralization process in natural waters than the uptake experiments with 14C-labelled substrates.Communication no. 228 of the Delta Institute for Hydrobiological Research, Yerseke, The Netherlands  相似文献   

4.
At two fixed stations in the Equatorial Atlantic Ocean (0°–4° W), the physical, chemical and biological properties of the euphotic layer were determined for 14 d (Station A: 5–18 February, 1979) and 13 d (Station B: 20 October–7 November, 1979), respectively. The stability of the water column allowed comparison of 3 different “systems”: (i) a well-illuminated and nitrate-depleted mixed layer; (ii) a chlorophyll maximum layer (chl a max) in the thermocline which is poorly illuminated (6.3% of surface irradiance); (iii) a well-illuminated but nitrate-rich (>0.9 μg-at l-1) mixed layer. In each layer the particulate organic carbon (COP), nitrogen (NOP) and phosphorus (POP) contents were measured and compared with the phytoplankton biomass. In the chlorophyll maximum layer, the phytoplankton biomass contributed significantly to the total particulate organic matter (between 55 and 75%). In the nitrate-depleted mixed layer, the results varied according to whether the regression technique [COP=f(chl a)] was used, or the chl a synthesis during the incubation of the samples. With the former technique, the phytoplankton carbon (C p) content appeared minimal, because the y intercept, computed using all the data of the water column, was probably overestimated for this layer. POP would be more associated with living protoplasm than with carbon and nitrogen in the three layers. In the chlorophyll a maximum layer it constitutes a valuable detritus-free biomass measurement, since 80% of the POP consist of phytoplankton phosphorus. The assimilation numbers (NA=μg C μg chl a -1 h-1) were high in all three layers, but the highest values were recorded in the nitrate-depleted mixed layer (NA=15 μg C μg chl a -1 h-1). In the chlorophyll maximum layer, light would be a limiting factor during incubation: between 1025 and 8.1024 quanta m-2 d-1 NA and light are positively correlated independant of nitrate concentration. The growth rates of phytoplankton (μ) were estimated and compared to the maximum expected growth rate. Our main conclusion was that despite very low biomass and nutrient content, the mixed layer was in a highly dynamic state, as evidenced by high rates of phytoplankton growth and short nutrient turnover times (1 d or less for PO-P4 in the mixed layer versus 3 d in the thermocline). The presence of nitrate in the water column allows the development of a higher phytoplankton biomass but does not increase growth rate.  相似文献   

5.
Sea surface microlayer (film) and subsurface microbial populations (biomass and activities) were studied in the Damariscotta (Maine) estuary in May and September, 1987. Dissolved free and combined amino acids (DFAA, DCAA), bacterial numbers, microbial ATP, bacterial and microbial DNA synthesis (via3H-thymidine and3H-adenine), and amino acid (3H-glutamic acid) metabolism were measured. DFAA and DCAA were typically enriched in the surface microlayers relative to surface waters, although utilization of glutamic acid was usually more rapid in subsurface waters, as was incorporation of thymidine. Bacteria represented 12 to 40% of the microbial biomass as determined by ATP, except during microalgal blooms in the microlayer. Bacteria were generally not enriched in the surface films, although ATP usually was enriched. Rain input appeared to deplete population densities but stimulated population activities. Two stations which contained similar microbial populations (as estimated by bacterial counts, chlorophylla and ATP) showed very different microbial activities, apparently due to the effects of a substantial rainstorm on one of the stations. The bacterially-dominated processes utilizing thymidine and glutamic acid were enhanced approx five-fold after the rain. Autotrophic carbon production increased approx two-fold, while total microbal community DNA synthesis (as estimated by adenine incorporation into DNA) increased nearly tenfold. The observations of this study indicate that surface microlayers in the temperate waters off the coast of Maine contain highly active heterotrophic and autotrophic populations. The microbial community responds rapidly to changes in nutrient and dissolved organic matter concentrations resulting from both seasonal and temporal effects, including rain and runoff.  相似文献   

6.
We estimated primary productivity and distributions of carbon in the phytoplankton, micro-zooplankton, and suspended and dissolved matter in various areas of the World Ocean to increase our information about the organic carbon cycle in the surface layer of the sea. Primary productivity ranged from about 0.1 gC m–2 day–1 in the Gulf of Mexico to 9 gC m–2 day–1 in nutrient-rich water off Peru. Phytoplankton carbon ranged from less than 10 g/l in the former to 750 g/l in the latter and in nutrient-rich water off southwest Africa. Micro-zooplankton carbon usually was less than 50 g/l in all waters, and was dominated by ciliates, copepodids, and copepod nauplii in all areas. Concentrations of particulate carbon ranged from 12 g/l off the east coast of South America to 850 g/l off southwest Africa. Concentrations of dissolved organic carbon varied between 0.5 and 1.5 mg/l in all areas except off Peru, where maximum values of 4.5 mg/l were observed. Turnover rates of carbon by small standing crops of micro-flagellates (1 to 5 longest dimension) and dinoflagellates in nutrient-poor waters were lower than those by large standing crops of diatoms and micro-flagellates in nutrient-rich waters. Concentrations of phytoplankton usually accounted for 20 to 55% and micro-zooplankton for 2 to 30% of the particulate carbon in the surface layer of the sea. Concentrations of dissolved organic carbon were not related to concentrations of particulate carbon in most waters except off Peru, where they appear to be directly related.  相似文献   

7.
The use of stable isotope of carbon, 13C, for the determination of the photosynthetic rate of a marine phytoplankton population was examined. Particular concern was paid to the effects of non-phytoplanktonic organic carbon and the enrichment of inorganic carbon on the estimation of the photosynthetic rate. Photosynthetic rates determined by the 13C method showed a remarkable agreement with those determined by the 14C method. Insitu determinations of photosynthetic rate were made in three different water types: open ocean, coastal and neritic waters, which included oligo- and mesotrophic waters, by using the 13C method established.  相似文献   

8.
Ki-Tai Kim 《Marine Biology》1983,73(3):325-341
Measurements of primary production and photosynthetic efficiency were carried out in the brackish lake “Etang de Berre” near Marseilles (France), which is diluted by the Durance River, and in the area of Carry-le-Rouet (Mediterranean Sea) about 25 km off the Rhône River outlet. Primary production (14C) estimations were made in Etang de Berre from December 1977 to November 1978. The carbon uptake rates ranged between 38 and 1 091 mg C m-3 d-1, with an average surface value of 256 mg; water-column carbon-uptake rates ranged between 240 and 2 310 mg C m-2 d-1, with an average of 810, representing 290 g C m-2 per year and 45 000 tons per year of photosynthetized carbon for the whole lake. Gross photosynthetic production measured by the method of Ryther was studied over a 2 yr period. The values obtained from marine water (Carry-le-Rouet) ranged from 23 to 2 337 mg C m-2 d-1, with a weighted average of 319, representing about 110 g C m-2 per year. The values in brackish water (Etang de Berre) ranged from 14 to 1 778 mg C m-2 d-1, with a weighted average of 682, representing 250 g C m-2 per year and 38 400 tons per year of photosynthesized carbon for the whole lake. The values derived from both methods of primary production measurements are approximately similar. Net production (computed from biomass estimations by Utermöhl's method) was compared with gross photosynthetic production. The net production in marine water did not display significant variations: most values were usually near zero. On the other hand, net production in brackish water exhibited a number of clear variations compared with concentrations of gross photosynthetic production during the whole 2 yr period. This large difference between estimations of gross and net production may be due to grazing, which is high in Etang de Berre, but slower and more constant in seawater. The ratios of primary production: chlorophyll a and gross photosynthetic production: biomass were also studied. In Etang de Berre, the former ratio ranges between 0.57 and 3.75, with an average of 1.44; this is similar to previously reported values. The ratio gross production: biomass in Etang de Berre varies between 0.3 and 4.2, with an average of 1.27, also confirming previous data. The very high values calculated for marine waters in the present study may result from an under-estimation of biomass.  相似文献   

9.
In the period from 1980 to 1984 organic phosphorus, nutrients, primary production rates (14C), chlorophyll a (chl a) standing crops, and basic oceanographic parameters were measured during 23 cruises at six stations in the open waters of the northern Adriatic Sea. These waters are significantly influenced by polluted Po River discharge. Organic phosphorus was correlated with several parameters which characterize phytoplankton activity and organic matter decomposition processes. In the late winter-spring period, organic phosphorus is produced during phytoplankton blooms. It is hypothesized that microzooplankton grazing is the main factor increasing the organic phosphorus concentrations in summer (up to 1.1 mol 1-1). Fall and winter had much lower values (below 0.3 mol 1-1) due to remineralization processes and an increased water mass exchange between the northern and central Adriatic regions. The direct contribution of organic phosphorus by freshwater discharge was not found to be significant. The higher organic phosphorus concentrations that can occur in low salinity waters are most likely due to their increased capability to support primary production.  相似文献   

10.
The carbon, nitrogen and hydrogen contents of Sphaeroma hookeri Leach were studied during the growth of mature individuals in five populations around the Etang de Berrc (Bouches du Rhône, France). Analysis were performed with a Perkin Elmer elementary analyzer which is very successful with small samples. The carbon, nitrogen and hydrogen contents show an allometric relation with the dry weight of S. hookeri. A comparative study of the increase in C, N and H contents in males and females reveals a sexual biochemical dimorphism at the elementary level in all populations. This sexual biochemical dimorphism proceeds from organic and inorganic differences: ash content is greater in males and shows a greater growth coefficient, while C, N and H contents are greater and show a higher growth coefficient in females. This organic growth in females seems to be related to the vitellogenous function.  相似文献   

11.
This study presents the concentrations of about 50 metals and ions in 33 different brands of bottled waters on the Swedish market. Ten of the brands showed calcium (Ca) concentrations ≤10 mg L−1 and magnesium (Mg) levels <3 mg L−1, implying very soft waters. Three of these waters had in addition low concentrations of sodium (Na; <7 mg L−1), potassium (K; <3 mg L−1) and bicarbonate (HCO3 ≤31 mg L−1). These brands were collected from barren districts. Nine of the brands were collected from limestone regions. They showed increased Ca-levels exceeding 50 mg L−1 with a maximum of 289 mg L−1. Corresponding Mg-levels were also raised in two brands exceeding 90 mg L−1. Two soft and carbonated waters were supplemented with Na2CO3 and NaCl, resulting in high concentrations of Na (644 and 648 mg L−1) and chloride (Cl; 204 and 219 mg L−1). Such waters may make a substantial contribution to the daily intake of NaCl in high water consumers. The storage of carbonated drinking water in aluminum (Al) cans increased the Al-concentration to about 70 μg L−1. Conclusion As there was a large variation in the material as regards concentrations of macro-elements such as Ca, Mg, Na, K and Cl. Supplementation with salts, e.g., Na2CO3, K2 CO3 and NaCl, can lead to increased concentrations of Na, K and Cl, as well as decreased ratios of Ca/Na and larger ratios of Na/K. Water with high concentrations of e.g., Ca and Mg, may make a substantial contribution to the daily intake of these elements in high water consumers. Al cans are less suited for storage of carbonated waters, as the lowered pH-values may dissolve Al. The levels of potentially toxic metals in the studied brands were generally low.  相似文献   

12.
The large quattities of marine phytoplankton passing through the cooling systems of two Southern California coastal power plants were found to be greatly reduced in numbers (41.7%) and in volume (33.7%). The biomass killed from June, 1972 to May, 1973 amounted to approximately 1,700 tons of organic carbon. Phytoplankton mortalities were most pronounced from October to December when intake waters of 17° to 20°C were subjected to temperature elevations of 9 to 11C°, and were lowest from January to March when cooler ambient temperatures prevailed. There was no apparent reduction in phytoplankton stocks when the intake water was cooler than 15°C. Surviving cells in 25° and 26.5°C effluent waters were growing three times faster than influent populations, which suggests that power-plant effects on phytoplankton stocks are often short-lived. However, entrainment effects appear very disruptive, in changing the structure of phytoplankton communities and in constantly reducing species diversity (H′). Passage through the condenser tubes affected algal species differentially, killing diatoms in greater numbers (45.7%) than dinoflagellates (32.8%), and reinforcing the dominance of the two major species, Asterionella japonica and Gonyaulax polyedra, that were the most tolerant. The severity of the impact appears to be controlled by two interacting factors: intake water-temperature and magnitude of temperature increase. On this basis, use by coastal power plants of deep-sea water for cooling is strongly advocated.  相似文献   

13.
M. Minas 《Marine Biology》1976,35(1):13-29
14C primary production measurements were made over a period of 5 years (1965–1969, inclusive) in the brackish lake Etang de Berre, near Marseilles (France). The diversion of the River Durance into the Etang de Berre took place during this period (March 1966) and introduced an important modification into the organic production ecosystem, mainly through increased and variable freshening, accompanied by substantial nutrient input. The seasonal distribution of production rates displayed 3 bloom periods: the first (short and slight) in spring, the second (the most important as regards intensity and duration) in summer, and the third in autumn (October). Before the diversion of the river in 1965, the carbon-uptake rates in the lake ranged between 25 mg/m2/day in winter and 800 mg/m2/day in summer-autumn, the mean value for the year being 150 g C/m2, which represents 2.5×104 tons of photosynthesized carbon for the whole lake. After the diversion, more than 3000 mg C/m2 day were measured; for 1968, the inclusive uptake rate was 384 g C/m2, representing 6×104 tons of synthesized carbon for the whole lake. Nevertheless, noticeable variations occurred from one year to another. From the annual nutrient input of phosphate to the Etang de Berre through the inflow of Durance waters, the quantity of potentially synthesizable elements has been calculated, in terms of carbon, according to the normal P:C ratio of organic substances; this quantity is called R. The difference between measured production, P, and R gives a measure of the regenerated production. This portion of production represented about 80% of the total production before 1968 but only 16% in 1969, a year of maximum fresh-water inflow. This phenomenon could be due to modifications of the ecophysiology of the phytoplankton resulting from the considerable freshening. With increasing nutrient load, eutrophication first occurs, then still greater dilution results in inhibition of production.  相似文献   

14.
Carbon consumption and nitrogen requirements were estimated for populations of the sandy beach bivalve Donax serra on nine beaches of the west coast of South Africa. Subtidal populations composed mainly of adult clams were responsible for the bulk of standing stock (3538 g C m−1), annual carbon consumption (13 444 g C m−1 yr−1), faeces production (6478 g C m−1 yr−1 ) and nitrogen regeneration (2525 g N m−1 yr−1). Kelp detritus, bacteria and kelp consumers' faeces available in the water column surpass several times the carbon and nitrogen requirements of intertidal and subtidal clam populations. Individual Donax serra pop ulations, in turn, may regenerate up to 3.2% of the total nitrogen requirements of all primary producers from kelp beds and 14% of the requirements of phytoplankton. These high standing stocks of clams are presumably supported mainly by organic matter originating from kelp which, in contrast to phytoplankton, is in constant supply and comprises the largest proportion of the annual production of particulate organic matter on this coast. Wide and shallow continental shelves with gentle slopes probably limit the penetration of upwelled waters to the nearshore waters, decreasing the influence of external inputs and increasing the importance of internal flows of nutrients and carbon within the nearshore zone. In this context, sandy beaches, rocky shores and kelp beds may be more closely interlinked compartments of a larger ecosystem encompassing the whole nearshore than traditionally thought. Received: 28 August 1996 / Accepted: 7 October 1996  相似文献   

15.
N-nitrosodimethylamine (NDMA) and several other N-nitrosamines have been detected as disinfection by-products in drinking waters in many countries around the world. An ultra-performance liquid chromatographytandem mass spectrometry method with solid phase extraction sample preparation was developed to study the occurrence of N-nitrosamines in several water treatment plants and distribution systems in China. Isotope labeled N-nitrosodi-n-propylamine-d14 (NDPA-d14) was selected as the internal standard for quantification. The solid phase extraction procedures including pH, enrichment process and MS/MS parameters including capillary voltage, cone gas flow, cone voltage, collision energy were optimized to give average recoveries of 26% to 112% for nine N-nitrosamine species. The instrument detection limits were estimated to range from 0.5 to 5 ??g·L?1 for the nine N-nitrosamine species. NDMA and several other N-nitrosamines were found at fairly high concentrations in several water treatment plants and distribution systems. NDMA was found in all locations, and the highest concentrations in cities B, G, T, and W were 3.0, 35.7, 21.3, and 19.7 ng·L?1, respectively. A wide range of N-nitrosamines concentrations and species were observed in different locations. Higher concentrations of N-nitrosamines were detected in distribution systems that were further away from the treatment plants, suggesting that the contact time between the residual disinfectant and natural organic matter may play an important role in the formation of these compounds.  相似文献   

16.
A promising microalgal strain isolated from fresh water, which can grow both autotrophically on inorganic carbon under lighting and heterotrophically on organic carbon without lighting, was identified as Chlorella sp. USTB-01 with the phylogenetic analysis based on 18S ribosomal ribonucleic acid (rRNA) gene sequences. In the heterotrophic batch culture, more than 20.0 g·L?1 of cell dry weight concentration (DWC) of Chlorella sp. USTB-01 was obtained at day 5, and which was used directly to seed the autotrophic culture. A novel fermentor-helical combined photobioreactor was established and used to cultivate Chlorella sp. USTB-01 for the fixation of carbon dioxide (CO2). It showed that the autotrophic growth of Chlorella sp. USTB-01 in the combined photobioreactor was more effective than that in the fermentor alone and the maximum DWC of 2.5 g·L?1 was obtained at day 6. The highest CO2 fixation of 95% appeared on day 1 in the exponential growth phases of Chlorella sp. USTB-01 and 49.8% protein was found in the harvested microalgal cells.  相似文献   

17.
Copper ions as poison in the sea and in freshwater   总被引:2,自引:0,他引:2  
Copper in ionic form is found to be very poisonous for photosynthesis and growth of unicellular algae at concentrations of Cu usually found in natural waters. This indicates that Cu is ordinarily not present in ionic form but is complexed by organic matter such as polypeptides. The affinity of Cu to diethyl-dithiocarbaminate is very much higher than to the organic matter which complexes Cu in nature. Thus, it is not possible to distinguish the two forms of Cu during analysis. Complexed Cu is not poisonous to algae. It has recently been shown that ocean water in the centres of upwelling becomes suitable for plankton growth only after the addition of a chelator. This suggests that a large part of the Cu found in the subsurface waters of the oceans is present in ionic form. Some manufactures of C14 ampoules have used ordinary distilled water which often has a content of about 250 g Cu/l. Thus, it is very likely that some productivity measurements have been influenced. A likely example is mentioned.  相似文献   

18.
The filtration rates of Mytilus edilis (=galloprovincialis; 40 mm) were determined in relation to food concentration and temperature, using pure suspensions of the unicellular alga Platymonas suecica in concentrations ranging from 3x105 cells/l to 1.5x108 cells/l. The rate of filtration (ml/h/mussel) generally decreased as cell concentrations increased, and dropped to low values when concentrations above 5x107 cells/l were supplied. The amount of water swept clear varied continuously, and noticeable differences in the filtration activity of M. edulis were observed over short time intervals (5 min). Fluctuations of filtered volumes per unit time were greater with lower than with higher concentrations of algae. The influence of temperature on filtration activity was highest between 5°–15°C and 25°–30°C. A temperature increase from 15° to 25°C resulted in only a slight increase in filtration rate. At 5° and 30°C, filtration dropped to very low values, namely 350 and 100 ml/h, respectively. The temperature coefficients for the filtration rates of M. edulis were determined as: Q10 (5° to 15°C)=4.96; Q10 (10° to 20°C)=1.22. The amount of algae cells ingested per mussel per hour is directly related to food concentration. The maximum number of cells filtered/mussel/h in an algal suspension of 70x106 cells/l was 21.5x105 cells/h. Cell concentrations of up to 40x106 cells/l were swept clear without producing pseudofaeces. The critical cell density for M. edulis was reached at algal concentrations of 70 to 80x106 cells/l. Above these concentrations no normal filtration activity was observed.  相似文献   

19.
A synoptic study of the phytoplankton and zooplankton distribution in the eastern Mediterranean Sea was carried out in the summer of 1965 during a cruise of R.V. “Pillsbury”. The phytoplankton maximum was normally found at 100 m, below the 1% level of surface light, with a frequent smaller peak at 40 m. In shallower waters, the main peak was at 80 m. The greatest number of phytophagous crustaceans was recorded at, or close to, the phytoplankton maximum. Depth relationships of phytoplankton and functionally phytoplanktonic species are discussed. Zooplankton was collected from depths down to 4,400 m, the deepest cast being in the Rhodes Deep. The most common species and genera of some selected groups of zooplankton were identified and their distribution considered in the light of some previous cruises in part of the area. The presence of Acantharia containing zooxanthellae with chlorophyll at, and below, 4,000 m was recorded for the first time. Potentially photosynthetic Ceratium vultur and C. carriense (Dinophyceae), both species in active division, were also found at these depths, as well as Halosphaera viridis (Prasinophyceae), which was recorded down to a depth of 1,000 m.  相似文献   

20.
Paracentrotus lividus (Lamarck) larvae were reared to metamorphosis. The larvae were fed on the haptophycean Hymenomonas elongata Droop (Braarud) at three concentrations: 9 to 14×105, 24 to 37×105, 43 to 61×105 μm3 cells ml-1 d-1. Optimum growth took place at a density of 24 to 37×105 μm3 algal cells. Growth of the plutei was estimated in terms of weight increases in protein, carbohydrate and lipid; growth equations are given. The relationship between growth and the food ingested was calculated for the different larval stages. Earlier field data for the bay of Villefranche have shown the mean biovolume of nanoflagellates to be 0.65×105 μm3 ml-1; at such in situ food concentrations, P. lividus larvae would metamorphose only after one month of planktotrophic life. Chemoreception by larvae could lead to prey selection, thereby altering the amounts of protein, carbohydrate and lipid ingested, and hence the duration of larval life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号