首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this communication, a new design of solar-energy-based water distillation cum drying unit with parabolic reflector has been designed, fabricated, and tested. Bitter gourd and potato slices are chosen as a drying commodity. Thermal performance of the developed system has been evaluated based on the experimental results and using linear regression analysis. Heat transfer coefficients (convective, evaporative, and radiative) for solar distillation system have been observed to be 2.48–4.09, 13.25–52.38, and 8.75–9.66 W/m2°C, respectively. Overall thermal efficiency and exergy efficiency for the distillation system has been found to be 18.77% and 1.2%, respectively. The convective heat transfer coefficient for potato slices are observed higher for initial hours and decreases as the day progresses. The average convective heat transfer coefficients for bitter gourd and potato slices have been observed as 2.18 and 5.04 W/m2°C, respectively. Experimental error in terms of percent uncertainty for bitter gourd and potato slices are found to be 42.93% and 37.06%, respectively. The present design of solar distillation and drying in a single unit could be beneficial for the development of remote, arid, and rural areas.  相似文献   

2.
Experiments are described to investigate the thermal performance of a discharging heat exchanger for a small storage tank filled with oil. Experimental results are presented in terms of the discharging energy rates (power) and the discharging exergy rates for low (~4 ml/s) and high discharging flow rates (~8 ml/s). Water heating energy rates, which are respectively maximized at approximately 600 W and 1200 W at low and high flow-rate discharging, are found to be higher than the discharging energy rates, which are respectively maximized at 450 W and 900 W. These results indicate that the energy rates do not accurately evaluate the thermal performance of the discharging heat exchanger since the energy heating rate of the water is greater than that for the oil that heats it, which is thermodynamically inconsistent. The energy rates should thus be used with caution when the thermal performance of the heat exchanger is evaluated. Water heating exergy rates, which are respectively maximized at approximately 45 W and 130 W at low and high flow-rate discharging, are generally smaller than the discharging exergy rates, which are respectively maximized at 65 W and 170 W. Exergy rate results are thus more consistent in the physical process of water heating, and an exergy factor is suggested as a proper measure for evaluating the performance of the discharging heat exchanger. The maximum value of the exergy factor is found to increase from 0.15 at low flow rates to a maximum value of approximately 0.19 at high flow rates. This implies that to extract more energy from a storage tank to a discharging heat exchanger, the flow rate has to be high, which is consistent with the physical process of heating water faster to higher temperatures. The exergy factor can thus be used as a design parameter for discharging heat exchangers.  相似文献   

3.
Abstract

In this article, the convective heat transfer coefficients of various agricultural products were investigated under open sun drying conditions. Data obtained from open sun drying experiments for eight agricultural products, namely, mulberry, strawberry, apple, garlic, potato, pumpkin, eggplant, and onion were used to determine values of convective heat transfer coefficient. The value of convective heat transfer coefficient was determined as 1.861 W/m2°C for mulberry, 6.691 W/m2°C for strawberry, 11.323 W/m2°C for apple, 1.136 W/m2°C for garlic, 8.224 W/m2°C for potato, 8.613 W/m2°C for pumpkin, 6.981 W/m2°C for eggplant, and 6.767 W/m2°C for onion. The experimental error in terms of percent uncertainty was also calculated.  相似文献   

4.
Variation in drying material and their biological differences, coupled with heat supply method in different dryers, makes mathematical modeling of drying complicated. Attempt was made to simulate a drying process and to identify best suitable model out of six selected drying models, for drying of ginger slices in a solar-biomass integrated drying system designed and developed for spice drying. Moisture content data were converted into the moisture ratio (MR) expressions and curve fitting with drying time for the selected drying models was analyzed. Sigma Plot software was used for nonlinear regression to the data obtained during drying and for modeling of drying curves. The suitability of the models was evaluated in terms of statistical parameters such as coefficient of determination (R2), mean percentage error (P), and standard error estimate. Drying air temperature was in the range of 47–55°C and air velocity was between 1.0 and 1.3 m s?1. Ginger slices were dried from 88.13% to 7.65 ± 0.65% (wb) in 16 h. Trays were interchanged in a predetermined matrix sequence from 4 h onwards when moisture content was reduced to 60–70% (wb), for uniformity in drying. Highest value of R2 (0.997), lowest value of SEE (0.020), and P value < 0.0001 established Page model as the best suitable model for the developed drying system. The predicted MRs were in good agreement with the experimental values and the effective moisture diffusivity for ginger was found to be 2.97 × 10–7 m2 s?1.  相似文献   

5.
ABSTRACT

Large-scale greenhouse solar dryers have been used for drying various products and this type of dryer is usually equipped with LPG burner as auxiliary heater, which creates more operating cost. To overcome this problem, phase change material (PCM) thermal storage was proposed to substitute for the LPG burner. In this work, the performance of a large-scale greenhouse solar dryer integrated with a PCM as a latent heat storage for drying of chili was investigated. Experimental studies were conducted to compare the performance of this dryer with that of another large-scale greenhouse solar dryer without the PCM thermal storage and open sun drying. Chili with an initial moisture content of 74.7% (w.b.) was dried to a final moisture content of 10.0% (w.b.) in 2.5 days, 3.5 days, and 11 days using the solar dryer integrated with the PCM thermal storage, the solar dryer without the PCM thermal storage and the open sun drying, respectively. The performance of the solar dryer integrated with the PCM thermal storage was also evaluated using exergy analysis. The exergy efficiency of the drying room of the solar dryer integrated with the PCM thermal storage and the solar dryer without the PCM thermal storage for drying of chili was found to be 13.1% and 11.4%, respectively and the thermal storage helps to dry chili during adverse weather conditions. The results of exergy analysis implied that the exergy losses from the dryer with the PCM should be reduced.  相似文献   

6.
The heat-pipe solar water heating (HP-SWH) system and the heat-pipe photovoltaic/thermal (HP-PV/T) system are two practical solar systems, both of which use heat pipes to transfer heat. By selecting appropriate working fluid of the heat-pipes, these systems can be used in the cold region without being frozen. However, performances of these two solar systems are different because the HP-PV/T system can simultaneously provide electricity and heat, whereas the HP-SWH system provides heat only. In order to understand these two systems, this work presents a mathematical model for each system to study their one-day and annual performances. One-day simulation results showed that the HP-SWH system obtained more thermal energy and total energy than the HP-PV/T system while the HP-PV/T system achieved higher exergy efficiency than the HP-SWH system. Annual simulation results indicated that the HP-SWH system can heat the water to the available temperature (45°C) solely by solar energy for more than 121 days per year in typical climate regions of China, Hong Kong, Lhasa, and Beijing, while the HP-PV/T system can only work for not more than 102 days. The HP-PV/T system, however, can provide an additional electricity output of 73.019 kWh/m2, 129.472 kWh/m2, and 90.309 kWh/m2 per unit collector area in the three regions, respectively.  相似文献   

7.
This study investigated the thin-layer drying kinetics of salted silver jewfish in a hybrid solar drying system and under open sun. Ten drying models were compared with experimental data of salted silver jewfish drying. A new model was introduced, which is an offset linear logarithmic (offset modified Page model). The fit quality of the models was evaluated using the coefficient of determination (R2), root mean square error (RMSE), and sum of squared absolute error (SSAE). The result showed that Midilli et al. model and new model were comparable with two or three-term exponential drying models. This study also analyzed energy and exergy during solar drying of salted silver jewfish. Energy analysis throughout the solar drying process was estimated on the basis of the first law of thermodynamics, whereas exergy analysis during solar drying was determined on the basis of the second law of thermodynamics. At an average solar radiation of 540 W/m2 and a mass flow rate of 0.0778 kg/sec, the collector efficiency and drying system efficiency were about 41% and 23%, respectively. Specific energy consumption was 2.92 kWh/kg. Moreover, the exergy efficiency during solar drying process ranged from 17% to 44%, with an average value of 31%. The values of improvement potential varied between 106 and 436 W, with an average of 236 W.  相似文献   

8.
The storage of fresh agricultural products is not easy because of its high moisture. Dehydration is an efficient preservation method. The investigation of drying modeling and transfer characteristics are important for selecting operating conditions and equipment design. The drying behavior of Lactuca sativa slices, with the thickness of 2 mm, was investigated at 60.0–80.0°C and 0.60–1.04 m sec?1 velocity in a convective hot air drier. The mass transfer during the drying process was described using six thin drying models. The convective heat transfer coefficient α and mass transfer coefficient kH were finally calculated. The results showed that the drying process could be separated into three stages including accelerating rate, constant rate, and falling rate period, which was influenced by hot air temperature and velocity, and the Modi?ed Page model agreed well with the experimental data. When the operating temperature was increased from 60.0°C to 80.0°C, α was found increased from 88.07 to 107.93 W·m?2·K?1, and kH increased from 46.32 × 10–3 to 68.04 × 10–3 kg·m?2·sec?1·ΔH?1. With the increase of air velocity from 0.60 to 1.04 m·sec?1, α was increased from 78.85 to 101.35 W·m?2·K?1, and kH was enhanced from 51.78 × 10–3 to 65.85 × 10–3 kg·m?2·sec?1·ΔH?1.  相似文献   

9.
Solar drying technology is a noteworthy technique as it uses the renewable solar energy. In this study, thin slices of banana were dried by using an indirect forced solar dryer at air mass flow rates of 0.016, 0.041, and 0.082 kg s?1. In order to assess the kinetics of shrinkage and color changes, image processing technique was applied for determining area, volume, density, total color difference and browning index. Shrinkage factor of the samples was less than 1 during drying indicating non-isotropic shrinkage with contraction of inner voids. Furthermore, product shrinkage showed two descending drying steps in which the volume change was more than the evaporated water volume in the first step and equal to that in the second step. The dimensionless evaporated water volume with respect to the dimensionless volume difference of the product also revealed that two steps of volume change existed during drying separated at critical moisture ratio 0.23. The area and volume changes were only related to the product moisture content and were independent of the air mass flow rate, and hence air temperature. In contrary to the browning index, the total color difference was not influenced by air mass flow rate and the least change in browning index occurred at mass flow rate of 0.041 kg s?1.  相似文献   

10.
Experimental study was performed on a single basin active solar distillation system augmented with a solar collector using evacuated solar tubes. Field tests were conducted over several days under the climatic conditions of West Texas to evaluate the effect evacuated solar tubes have on the daily distillate yield rate. To investigate the feasibility of the solar tubes, active and passive solar stills with and without exterior insulation were examined. The maximum daily production rate for the active distillation system using evacuated solar tubes and the passive distillation system was 3.6 and 1.4 kg/m2day, respectively. The results showed the augmentation of the still with evacuated solar tubes increased its production capacity by a factor of 2.63. It also increased the maximum temperature of the water in the still basin by at least 20 °C. Economic analysis shows that it is feasible to use evacuated tubular collector coupled solar still as an alternative means for reclaiming water in farmlands with a payback period of approximately 6 years.  相似文献   

11.
Abstract: Water‐quality standards have been placed on fecal indicator organisms such as Escherichia coli in an attempt to limit the concentrations in water bodies. Cattle can be a significant source of bacteria to water systems, particularly when they are allowed direct access to streams. A flume study was conducted to quantify the effect and understand the transport of E. coli from directly deposited cattle manure. Five steady‐state flows, ranging from 0.00683 to 0.0176 m3/s, were studied and loads from a single cowpie exceeded the U.S. Environmental Protection Agency’s recommended water‐quality standards (235 CFU/100 ml) at each flow over the hour study period. Average E. coli concentrations ranged from 102 to 105 CFU/100 ml over the hour sampling period for all flows. High spatial variations in E. coli concentrations were often seen at each sampling time, with higher concentrations typically at the bottom of the flume. E. coli resuspension was initially greater at 0.5 min after deposition, for the lowest flow (105 CFU/m2/s); however, resuspension rates became similar over time, on the order of 103 CFU/m2/s. This study demonstrates that the concentrations of E. coli can vary over the water column, and therefore grab samples may inaccurately measure bacteria concentrations and loads in streams. In addition, resuspension rates were often high, so the incorporation of this process into water‐quality models is important for bacteria prediction.  相似文献   

12.
This experimental work has been conducted to compare the performance of the modified stills with that of the conventional still. Three modified stills (S1, S2, and S3) and conventional still (S4) were fabricated, each with 0.5 m2 of the basin area. S1 and S3 had transparent double glass walls with air in between acting as insulation, whereas S2 has a single transparent wall. S4 has insulated plywood walls painted black from inside. A mixture of coco peat and charcoal was used in S1, S2, and S3, whereas there was no basin material for S4. Experiments were conducted by changing the water quantity in the solar still ranging from 5 to 10 kg. Maximum distillate output of 5.46 l/m2-d was obtained for S2, whereas it was 3.80 l/m2-d for S4 for an average solar radiation intensity of 675 W/m2 (24.3 MJ/m2-d). Use of transparent walls with troughs to collect condensate increased the condenser area by 78.4%. The distillate water cost per liter was estimated as Rs. 0.86 (0.013 US$) and Rs. 1.61 (0.025 US$) for S2 and S4, respectively. Energy payback time for S2 was estimated as 4 months. Theoretical and experimental values showed that there is a significant loss of incoming solar radiation due to wall shadow.  相似文献   

13.
This paper presents the performance of the solid-oxide fuel cell/gas turbine hybrid power generation system with heat recovery waste unit based on the energy and exergy analyses. The effect of air inlet temperature and air/fuel ratio on exergy destruction and network output is determined. For the numerical calculations, air inlet temperature and air fuel ratio are increased from 273 to 373 K and from 40 to 60, respectively. The results of the numerical calculations bring out that total exergy destruction quantity increases with the increase of air inlet temperature and air/fuel ratio. Furthermore, the maximum system overall first and second law efficiencies are obtained in the cases of air inlet temperature and air/fuel ratio equal to 273 K and 60, respectively, and these values are 62.09% and 54.91%.  相似文献   

14.
A new system composed of a sequential flat plate and parabolic dish solar collector was applied to enhance the solar desalination productivity. Heated saline water was desalinated using the evaporation/condensation principle and an effort was made to achieve higher distillate production compared to previous studies. Desalination efficiency values were calculated between 23% and 57%. Maximum desalinated water productions were obtained as 1,038 mL/m2.h in autumn and 1,402 mL/m2.h in summer. The cost of solar desalination system was found as economically feasible with 3 years’ payback period and the produced water cost of 0.014 $/L. Physicochemical analyses revealed that as a result of the desalination process, salinity level decreased from 35.6‰ to 0.0–0.1‰, chloride concentration decreased from 21,407 mg/L to 10 mg/L, and electrical conductivity decreased from 53.1 mS/cm to 0.11 mS/cm.  相似文献   

15.
Drying characteristics of Zingiber officinale (Ginger) under the open sun and direct type natural convection solar biomass (hybrid) drying were studied. It has been observed that under open sun drying conditions, the drying rate depends on the product thickness and climatic conditions. The results have been drawn for both the summer (April-May, 2004) and winter (November-January, 2003–04) months of Delhi, in India. In the hybrid drier, the ginger, with a thickness of 0.008 m, dried in 33 hours in comparison to 96 hours in open-sun drying. The overall drying efficiency of the hybrid drier was found to be 18% and 13% under summer and winter climatic conditions respectively. The loss of volatile oil content of the ginger is less in hybrid drier in comparison to open sun drying. It was found that the average drying air temperature of 60°C with average air velocity of 0.6m/sec was sufficient for the drying of ginger in the hybrid drier. Ginger quality after drying is better and drying time is less in the hybrid drier in comparison to open-sun drying. The hybrid drier is a simple device, which can be manufactured with locally available materials and can be used for drying of other spices, vegetables and fruits etc.  相似文献   

16.
A numerical model for simultaneous heat and mass transfer was developed for solar drying of spherical objects and the object considered is green peas. Solar collector outlet temperature is assumed as drying chamber temperature and justified through energy balance equations. Assumptions are imposed on heat and mass transfer governing equations without losing the physics of the problem. Discretization is performed by finite difference method with implicit scheme. To generalize, the governing equation and boundary conditions are non-dimensionalized. The set of finite difference equations was solved by Tridiagonal Matrix Algorithm and a computer code in MATLAB was developed to solve them. The drying curves showed two stages of drying, initial, and secondary drying stage. At all drying temperatures and drying time, the center moisture was maximum and it was minimum at the boundary. A percentage of 85.67 surface moisture content and 25.33% center moisture was eliminated in the first 1 hr at 348 K. The product should be dried up to 7.45, 4.74, and 3.74 hr at air drying temperatures of 318, 333, and 348 K respectively, to maintain 10% of the product’s initial moisture content. The result is compared with the experimental result from literature and they are found to be in good agreement.  相似文献   

17.
Commercially available adsorption cooling systems use water/silica gel, water/zeolite and ammonia/ chloride salts working pairs. The water-based pairs are limited to work above 0°C due to the water high freezing temperature, while ammonia has the disadvantage of being toxic. Ethanol is a promising refrigerant due to its low freezing point (161 K), nontoxicity, zero ozone depletion, and low global warming potential. Activated carbon (AC) is a porous material with high degree of porosity (500–3000 m2/g) that has been used in wide range of applications. Using Dynamic Vapour Sorption (DVS) test facility, this work characterizes the ethanol adsorption of eleven commercially available activated carbon materials for cooling at low temperature of ?15°C. DVS adsorption results show that Maxsorb has the best performance in terms of ethanol uptake and adsorption kinetics compared to the other tested materials. The Maxsorb/ethanol adsorption process has been numerically modeled using computational fluid dynamics (CFD) and simulation results are validated using the DVS experimental measurements. The validated CFD simulation of the adsorption process is used to predict the effects of adsorbent layer thickness and packing density on cycle uptake for evaporating temperature of ?15°C. Simulation results show that as the thickness of the Maxsorb adsorbent layer increases, its uptake decreases. As for the packing density, the amount of ethanol adsorbed per plate increases with the packing density reaching maximum at 750 kg/m3. This work shows the potential of using Maxsorb/ethanol in producing low temperature cooling down to ?15°C with specific cooling energy reaching 400 kJ/kg.  相似文献   

18.
In this article, for the treatment of two specific pharmaceutical waste solvents the resource consumption of an on-site distillation process is evaluated and compared with an off-site incineration process. Both techniques are evaluated based on a thermodynamic quantitative method. The exergy approach and the cumulative exergy extracted from the natural environment (CEENE) are envisaged in order to evaluate the overall resource intake at different levels. Scenarios are constructed to make a fair comparison of both techniques. Two waste solvents, toluene (TOL) and dichloromethane (DCM), from the pharmaceutical industry which are frequently sent to distillation were evaluated. The functional unit for the comparison of both treatment alternatives is the treatment of 1 kg waste solvent + the incineration of W kg low calorific hazardous waste + the delivery of X kg “recovered” solvent + the production of Y MJ heat and Z MJ electricity. W, X, Y and Z depend on the waste solvent properties. In terms of resource requirements, distillation requires 17% (TOL) and 66% (DCM) less resources than incineration. It can be concluded that the waste solvent properties, the efficiency of the distillation process and the efficiency of the fresh solvent production process are of major importance on the resource consumption and the final choice between incineration and distillation. For a full environmental impact analysis of both treatment options, also the emissions should be taken into account. It also has to be stressed that in practice, only solvents go to incineration which cannot be distilled due to the type and degree of pollution/composition of the solvent. If distillation is not feasible, then such solvents are sent to incineration with energy recovery, according to the EU directive 2006/12/EG.  相似文献   

19.
Daily global solar radiation on a horizontal surface and duration of sunshine hours have been determined experimentally for five meteorological stations in Saudi Arabia, namely, Abha, Al-Ahsa, Al-Jouf, Al-Qaisumah, and Wadi Al-Dawaser sites. Five-years of data covering 1998–2002 period have been used. Suitable Angstrom models have been developed for the global solar radiation estimation as a function of the sunshine duration for each respective sites. Daily averages of monthly solar PV power outputs have been determined using the Angstrom models developed. The effect of the PV cell temperature on the PV efficiency has been considered in calculating the PV power output. The annual average PV output energy has been discussed in all five sites for small loads. The minimum and maximum monthly average values of the daily global solar radiation are found to be 12.09 MJ/m2/d and 30.42 MJ/m2/d for Al-Qaisumah and Al-Jouf in the months of December June, respectively. Minimum monthly average sunshine hours of 5.89 hr were observed in Al-Qaisumah in December while a maximum of 12.92 hr in Al-Jouf in the month of June. Shortest range of sunshine hours of 7.33–10.12 hr was recorded at Abha station. Minimum monthly average Solar PV power of 1.59 MJ/m2/day was obtained at Al-Qaisumah in the month of December and a maximum of 3.39 MJ/m2/day at Al-Jouf in June. The annual PV energy output was found to be 276.04 kWh/m2, 257.36 kWh/m2, 256.75 kWh/m2, 245.44 kWh/m2, and 270.95 kWh/m2 at Abha, Al-Ahsa, Al-Jouf, Al-Qaisumah, and Wadi Al-Dawaser stations, respectively. It is found that the Abha site yields the highest solar PV energy among the five sites considered.  相似文献   

20.
The Opuha Dam was designed for water storage, hydropower, and to augment summer low flows. Following its commissioning in 1999, algal blooms (dominated first by Phormidium and later Didymosphenia geminata) downstream of the dam were attributed to the reduced frequency and magnitude of high-flow events. In this study, we used a 20-year monitoring dataset to quantify changes associated with the dam. We also studied the effectiveness of flushing flows to remove periphyton from the river bed. Following the completion of the dam, daily maximum flows downstream have exceeded 100 m3 s?1 only three times; two of these floods exceeded the pre-dam mean annual flood of 203 m3 s?1 (compared to 19 times >100 m3 s?1 and 6 times >203 m3 s?1 in the 8 years of record before the dam). Other changes downstream included increases in water temperature, bed armoring, frequency of algal blooms, and changes to the aquatic invertebrate community. Seven experimental flushing flows resulted in limited periphyton reductions. Flood wave attenuation, bed armoring, and a shortage of surface sand and gravel, likely limited the effectiveness of these moderate floods. Floods similar to pre-dam levels may be effective for control of periphyton downstream; however, flushing flows of that magnitude are not possible with the existing dam infrastructure. These results highlight the need for dams to be planned and built with the capacity to provide the natural range of flows for adaptive management, particularly high flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号