首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As(V) retention capacity is determined by means of adsorption/desorption trials performed for coarse and fine ground mussel shell, forest and vineyard soils with or without fine shell, pine wood ash, oak wood ash, pine sawdust and slate-processing fines. Pine ash shows the highest arsenic retention potential (with >97 % adsorption and ≤1 % desorption), followed by shell-amended forest soil (adsorption between 96 and 92 %), by un-amended forest soil (adsorption between 98 and 86 %) and by the amended vineyard soil (adsorption between 92 and 75 %). Sawdust is the material with the lowest arsenic retention capacity in most cases, with un-amended vineyard soil also showing poor results. In the case of oak ash, As(V) percentage adsorption becomes higher with increasing added arsenic concentrations, while this increase in added arsenic causes lower percentage adsorption in the case of slate fines. Regarding adsorption ability, As(V) adsorption data were fitted to Freundlich and Langmuir models, showing good fitting, with pine ash and shell-amended forest soil having the highest K F values. In view of that, mussel shell amendment would be useful to increase arsenic retention on forest and vineyard soils, while pine ash could be used to retain arsenic even from wastewaters.  相似文献   

2.
Crop rotation long-term field experiments were established in 1955 and 1956 at three locations in the Czech Republic (?áslav, Ivanovice, and Lukavec) differing in their climatic and soil physicochemical properties. The effect of long-term application of farmyard manure and farmyard manure + NPK treatments on plant-available, easily mobilizable, potentially mobilizable, and pseudo-total contents of arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) contents in soils (in 2013) as well as the uptake of these elements by winter wheat (Triticum aestivum L.) grain and straw were analyzed in the two following seasons: 2012 and 2013. The treatments resulted in increasing the soil pH level when compared to the control, but the cation exchange capacity remained unchanged. Although all fertilizers were applied for six decades, the pseudo-total concentration elements in both the soil and wheat plants stayed far below those of the Czech and European threshold limits for agricultural soils and cereals for human nutrition and feedstuff. Although the mobile pools of As, Cu, and Zn were slightly changed at the treated soils, these changes were not related to the element uptake by the wheat plants. Moreover, the effect of the location and growing season was more decisive for the differences in soil and plant element contents than for the individual treatments. Thus, the long-term application of farmyard manure did not result in any substantial change in risk element contents in both soils and winter wheat plants.  相似文献   

3.
Chronic exposure to arsenic (As) in rice has raised many health and environmental problems. As reported, great variation exists among different rice genotypes in As uptake, translocation, and accumulation. Under hydroponic culture, we find that the Chinese wild rice (Oryza rufipogon; acc. 104624) takes up the most arsenic among tested genotypes. Of the cultivated rice, the indica cv. 93-11 has the lowest arsenic translocation factor value but accumulates the maximum concentration of arsenic followed by Nipponbare, Minghui 86, and Zhonghua 11. Higher level of arsenite concentration (50 μM) can induce extensive photosynthesis and root growth inhibition, and cause severe oxidative stress. Interestingly, external silicate (Si) supplementation has significantly increased the net photosynthetic rate, and promoted root elongation, as well as strongly ameliorated the oxidative stress by increasing the activities of antioxidant enzymes superoxide dismutase, ascorbate peroxidase, and peroxidase in roots and/or leaves of 93-11 seedlings. Notably, 1.873 mM concentration of Si considerably decreases the total As uptake and As content in roots, but significantly increases the As translocation from roots to shoots. In contrast, Si supplementation with 1.0 mM concentration significantly increases the total As uptake and As concentrations in roots and shoots of 93-11 seedlings after 50 μM arsenite treatment for 6 days.  相似文献   

4.
Field samples and a 9-week glasshouse growth trial were used to investigate the accumulation of mining derived arsenic (As) and antimony (Sb) in vegetable crops growing on the Macleay River Floodplain in Northern New South Wales, Australia. The soils were also extracted using EDTA to assess the potential for this extractant to be used as a predictor of As and Sb uptake in vegetables, and a simplified bioaccessibility extraction test (SBET) to understand potential for uptake in the human gut with soil ingestion. Metalloids were not detected in any field vegetables sampled. Antimony was not detected in the growth trial vegetable crops over the 9-week greenhouse trial. Arsenic accumulation in edible vegetable parts was <10 % total soil-borne As with concentrations less than the current Australian maximum residue concentration for cereals. The results indicate that risk of exposure through short-term vegetable crops is low. The data also demonstrate that uptake pathways for Sb and As in the vegetables were different with uptake strongly impacted by soil properties. A fraction of soil-borne metalloid was soluble in the different soils resulting in Sb soil solution concentration (10.75?±?0.52 μg L–1) that could present concern for contamination of water resources. EDTA proved a poor predictor of As and Sb phytoavailability. Oral bioaccessibility, as measured by SBET, was <7 % for total As and <3 % total Sb which is important to consider when estimating the real risk from soil borne As and Sb in the floodplain environment.  相似文献   

5.
Pot-culture experiments were conducted to evaluate the phytoremediation potential of a wetland plant species, Phragmites australis in cadmium (Cd) and pentachlorophenol (PCP) co-contaminated soil under glasshouse conditions for 70 days. The treatments included Cd (0, 5 and 50 mg kg?1) without or with PCP (50 and 250 mg kg?1). The results showed that growth of P. australis was significantly influenced by interaction of Cd and PCP, decreasing with either Cd or PCP additions. Plant biomass was inhibited and reduced by the rate of 89 and 92 % in the low and high Cd treatments and by 20 and 40 % in the low and high PCP treatments compared to the control. The mixture of low Cd and low PCP lessened Cd toxicity to plants, resulting in improved plant growth (by 144 %). Under the joint stress of the two contaminants, the ability of Cd uptake and translocation by P. australis was weak, and the BF and TF values were inferior to 1.0. A low proportion of the metal is found aboveground in comparison to roots, indicating a restriction on transport upwards and an excluding effect on Cd uptake. Thus, P. australis cannot be useful for phytoextraction. The removal rate of PCP increased significantly (70 %) in planted soil. Significant positive correlations were found between the DHA and the removal of PCP in planted soils which implied that plant root exudates promote the rhizosphere microorganisms and enzyme activity, thereby improving biodegradation of PCP. Based on results, P. australis cannot be effective for phytoremediation of soil co-contaminated with Cd and PCP. Further, high levels of pollutant hamper and eventually inhibit plant growth. Therefore, developing supplementary methods (e.g. exploring the partnership of plant–microbe) for either enhancing (phytoextraction) or reducing the bioavailability of contaminants in the rhizosphere (phytostabilization) as well as plant growth promoting could significantly improve the process of phytoremediation in co-contaminated soil.  相似文献   

6.
A greenhouse experiment was carried out in order to investigate the effects of arbuscular mycorrhizal (AM) fungi inoculation and the use of composted olive waste (COW) in the establishment of Tetraclinis articulata and soil properties in a heavy metal-polluted soil. The treatments assayed were as follows: AM?+?0 % COW, AM?+?1 % COW, and AM?+?3 % COW. The higher doses of COW in combination with AM fungi increased shoot and root biomass production of T. articulata by 96 and 60 %, respectively. These treatments trended to improve the soil properties evaluated, highlighting the C compounds and N as well as the microbiological activities. In relation to the metal translocation in T. articulata, doses of COW applied decreased the Cr, Ni, and Pb contents in shoot, as well as Cr and As in root, although the most of them reached low levels and far from phytotoxic. The COW amendment aided Glomus mosseae-inoculated T. articulata plants to thrive in contaminated soil, mainly through an improvement in both nutrients uptake, mainly P and soil microbial function. In addition, the combined use of AM fungi plus COW could be a feasible strategy to be incorporated in phytoremediation programs because it promotes soil properties, a better performance of plants for supporting the stress in heavy metal-contaminated soils derived from the mining process, and also can be a good way for olive-mill waste disposal.  相似文献   

7.
Arsenic (As) as a major hazardous metalloid was affected by phytoplankton in many aquatic environments. The toxic dominant algae Microcystis aeruginosa was exposed to different concentrations of inorganic arsenic (arsenate or arsenite) for 15 days in BG11 culture media. Arsenic accumulation, toxicity, and speciation in M. aeruginos as well as the changes of As species in media were examined. M. aeruginosa has a general well tolerance to arsenate and a definite sensitivity to arsenite. Additionally, arsenate actively elevated As methylation by the algae but arsenite definitely inhibited it. Interestingly, the uptake of arsenite was more pronounced than that of arsenate, and it was correlated to the toxicity. Arsenate was the predominant species in both cells and their growth media after 15 days of exposure to arsenate or arsenite. However, the amount of the methylated As species in cells was limited and insignificantly affected by the external As concentrations. Upon uptake of the inorganic arsenic, significant quantities of arsenate as well as small amounts of arsenite, DMA, and MMA were produced by the algae and, in turn, released back into the growth media. Bio-oxidation was the first and primary process and methylation was the minor process for arsenite exposures, while bioreduction and the subsequent methylation were the primary metabolisms for arsenate exposures. Arsenic bioaccumulation and transformation by M. aeruginosa in aquatic environment should be paid more attention during a period of eutrophication.  相似文献   

8.
The distribution pattern and fractionation of arsenic (As) in three soil profiles from tea (Camellia sinensis L.) gardens located in Karbi-Anglong (KA), Cachar (CA) and Karimganj (KG) districts in the state of Assam, India, were investigated depth-wise (0-10, 10-30, 30-60 and 60-100 cm). DTPA-extractable As was primarily restricted to surface horizons. Arsenic speciation study showed the presence of higher As(V) concentrations in the upper horizon and its gradual decrease with the increase in soil depths, following a decrease of Eh. As fractionation by sequential extraction in all the soil profiles showed that arsenic concentrations in the three most labile fractions (i.e., water-soluble, exchangeable and carbonate-bound fractions) were generally low. Most arsenic in soils was nominally associated with the organic and Fe-Mn oxide fractions, being extractable in oxidizing or reducing conditions. DTPA-extractable As (assumed to represent plant-available As) was found to be strongly correlated to the labile pool of As (i.e. the sum of the first three fractions). The statistical comparison of means (two-sample t-test) showed the presence of significant differences between the concentrations of As(III) and As(V) for different soil locations, depths and fractions. The risk assessment code (RAC) was found to be below the pollution level for all soils. The measurement of arsenic uptake by different parts of tea plants corroborated the hypothesis that roots act as a buffer and hold back contamination from the aerial parts.  相似文献   

9.
This study was conducted to investigate the effect of external iron status and arsenic species on chelant-enhanced iron bioavailability and arsenic uptake. Rice seedlings (Oryza sativa L.) were used as model plant, and were grown in artificially contaminated sandy soils irrigated with Murashige and Skoog (MS) culture solution. Arsenate uptake in roots and shoots of rice seedlings were affected significantly (> 0.05) while dimethylarsinic acid (DMAA) was not by the additional iron and chelating ligand treatments. Regardless of iron concentrations in the soil solution, HIDS increased arsenic uptake for roots more than EDTA and EDDS. Chelating ligands and arsenic species also influenced iron uptake in rice roots. Irrespective of arsenic species, HIDS was found to be more effective in the increase of iron bioavailability and uptake in rice roots compared to other chelants. There was a significant positive correlation (= 0.78, < 0.05) between arsenate and iron concentrations in the roots of rice seedlings grown with or without additional iron indicating that arsenate inhibit iron uptake. In contrast, there was no correlation between iron and DMAA uptake in roots. Poor correlation between iron and arsenic in shoots indicated that iron uptake in shoots was neither affected by additional iron nor by arsenic species. Compared to the control, chelating ligands increased iron uptake in shoots of rice seedlings significantly (< 0.05). Regardless of additional iron and arsenic species, iron uptake in rice shoots did not differed among EDTA, EDDS, and HIDS treatments.  相似文献   

10.
Pteris vittata plants were grown on twenty-one UK soils contaminated with arsenic (As) from a wide range of natural and anthropogenic sources. Arsenic concentration was measured in fern fronds, soil and soil pore water collected with Rhizon samplers. Isotopically exchangeable soil arsenate was determined by equilibration with 73AsV. Removal of As from the 21 soils by three sequential crops of P. vittata ranged between 0.1 and 13% of total soil As. Ferns grown on a soil subjected to long-term sewage sludge application showed reduced uptake of As because of high available phosphate concentrations. A combined solubility-uptake model was parameterised to enable prediction of phytoremediation success from estimates of soil As, ‘As-lability’ and soil pH. The model was used to demonstrate the remediation potential of P. vittata under different soil conditions and with contrasting assumptions regarding re-supply of the labile As pool from unavailable forms.  相似文献   

11.
The effect of soil properties on trace element (TE) extraction by the Fish Creek willow cultivar was assessed in a 4-month greenhouse experiment with two contrasted soils and two mycorrhizal treatments (Rhizophagus irregularis and natives). Aboveground tissues represented more than 82 % of the willow biomass and were the major sink for TE. Cadmium and Zn were concentrated in leaves, while As, Cu, Ni, and Pb were mostly found in roots. Willow bioconcentration ratios were below 0.20 for As, Cu, Ni, and Pb and reached 10.0 for Cd and 1.97 for Zn. More significant differences in willow biomass, TE concentrations, and contents were recorded between soil types than between mycorrhizal treatments. A slight significant increase in Cu extraction by willow in symbiosis with Rhizophagus irregularis was observed and was linked to increased shoot biomass. Significant regression models between TE in willow and soil properties were found in leaves (As, Ni), shoots (As, Cd, Cu, Ni), and roots (As, Cu, Pb). Most of the explanation was shared between soil water-soluble TE and fertility variables, indicating that TE phytoextraction is related to soil properties. Managing interactions between TE and major nutrients in soil appeared as a key to improve TE phytoextraction by willows.  相似文献   

12.
Abstract

Copper (Cu) input to agricultural soils results from Cu containing pesticides and/or that in soil amendments, such as manure or sewage sludge. Soil and soil solution properties influence the adsorption and desorption of Cu by the soil, which in turn determines its plant availability and/or phytotoxicities. Effects of different anion enrichment in the equilibrium solution on Cu adsorption by different soils (pH range of 6.2–9.9) were investigated in this study over a range of Cu concentrations. With Cu concentrations in the range of 0–100 mg L?1 in the equilibration solution, 95–99% of applied Cu was adsorbed by all three soils. The adsorption of Cu was similar regardless of using either 0.01 M CaCl2 or Ca(NO3)2 as the equilibration solution. When the Cu concentration in the equilibration solution was further increased in the range of 500–2000 mg L?1, the adsorption of Cu decreased from 60 to 24% of applied Cu in two soils with pH 6.2–7.9. In a high pH soil (pH = 9.9), the Cu adsorption decreased from 77 to 34%. Addition of incinerated sewage sludge (ISS) to a Palouse silt loam soil (pH = 6.2) increased the Cu adsorption as compared to that by unamended soil. This was, in part, due to an increase in the soil suspension pH with ISS amendment.  相似文献   

13.
A column leaching study was designed to investigate the leaching potential of phosphorus (P) and heavy metals from acidic sandy soils applied with dolomite phosphate rock (DPR) fertilizers containing varying amounts of DPR material and N-Viro soils. DPR fertilizers were made from DPR materials mixing with N-Viro soils at the ratios of 30, 40, 50, 60, and 70 %, and applied in acidic sandy soils at the level of 100 mg available P per kilogram soil. A control and a soluble P chemical fertilizer were also included. The amended soils were incubated at room temperature with 70 % field water holding capacity for 21 days before packed into a soil column and subjected to leaching. Seven leaching events were conducted at days 1, 3, 7, 14, 28, 56, and 70, respectively, and 258.9 mL of deionized water was applied at each leaching events. The leachate was collected for the analyses of pH, electrical conductivity (EC), dissolved organic carbon (DOC), major elements, and heavy metals. DPR fertilizer application resulted in elevations up to 1 unit in pH, 7–10 times in EC, and 20–40 times in K and Ca concentrations, but 3–10 times reduction in P concentration in the leachate as compared with the chemical fertilizer or the control. After seven leaching events, DPR fertilizers with adequate DPR materials significantly reduced cumulative leaching losses of Fe, P, Mn, Cu, and Zn by 20, 55, 3.7, 2.7, and 2.5 times than chemical fertilizer or control. Even though higher cumulative losses of Pb, Co, and Ni were observed after DPR fertilizer application, the loss of Pb, Co, and Ni in leachate was <0.10 mg (in total 1,812 mL leachate). Significant correlations of pH (negative) and DOC (positive) with Cu, Pb, and Zn (P?<?0.01) in leachate were observed. The results indicated that DPR fertilizers had a great advantage over the soluble chemical fertilizer in reducing P loss from the acidic sandy soil with minimal likelihood of heavy metal risk to the water environment. pH elevation and high dissolved organic carbon concentration in soils after DPR fertilizer application are two influential factors.  相似文献   

14.
Chinese brake fern (Pteris vittata L.), an arsenic (As) hyperaccumulator, has shown the potential to remediate As-contaminated soils. This study investigated the effects of soil amendments on the leachability of As from soils and As uptake by Chinese brake fern. The ferns were grown for 12 weeks in a chromated-copper-arsenate (CCA) contaminated soil or in As spiked contaminated (ASC) soil. Soils were treated with phosphate rock, municipal solid waste, or biosolid compost. Phosphate amendments significantly enhanced plant As uptake from the two tested soils with frond As concentrations increasing up to 265% relative to the control. After 12 weeks, plants grown in phosphate-amended soil removed >8% of soil As. Replacement of As by P from the soil binding sites was responsible for the enhanced mobility of As and subsequent increased plant uptake. Compost additions facilitated As uptake from the CCA soil, but decreased As uptake from the ASC soil. Elevated As uptake in the compost-treated CCA soil was related to the increase of soil water-soluble As and As(V) transformation into As(III). Reduced As uptake in the ASC soil may be attributed to As adsorption to the compost. Chinese brake fern took up As mainly from the iron-bound fraction in the CCA soil and from the water-soluble/exchangeable As in the ASC soil. Without ferns for As adsorption, compost and phosphate amendments increased As leaching from the CCA soil, but had decreased leaching with ferns when compared to the control. For the ASC soil, treatments reduced As leaching regardless of fern presence. This study suggest that growing Chinese brake fern in conjunction with phosphate amendments increases the effectiveness of remediating As-contaminated soils, by increasing As uptake and decreasing As leaching.  相似文献   

15.
To evaluate the biosorption efficacy of submerged aquatic plant Hydrilla verticilata for arsenic uptake from drinking water. H. verticillata, a submerged aquatic plant was utilized successfully for arsenic uptake from aqueous solution. Batch studies with various parameters viz. pH, sorbent dose, contact time, initial metal ion concentration, and temperature were carried out. Data were utilized to plot Lagergren graph along with pseudo-second-order graphs for kinetic studies to estimate the removal efficacy and to determine the nature of reaction. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) have been performed for characterization of metals on biomass. The study showed 96.35 % maximum absorption of arsenic by H. verticilata at initial concentration of 100 ppb with 0.5 g of biomass/100 ml for 5 h contact time at pH?6.0 with 150 rpm agitation rate. Data followed Langmuir isotherm showing sorption to be monolayer on homogeneous surface of biosorbent. The negative values of ΔG° indicated spontaneous nature; whereas ΔH° indicates exothermic nature of system and negative value of ?S° entropy change correspond to a decrease in the degree of freedom to the adsorbed species followed by pseudo-second-order adsorption kinetics. FTIR and SEM results showed apparent changes in functional group regions after metal chelation and the changes in surface morphology of biosorbent. This is a comparatively more effective, economic, easily available, and environmentally safe source for arsenic uptake from solution due to its high biosorption efficacy than other biosorbents already used.  相似文献   

16.

Background

This work focuses on the accumulation and mobility properties of arsenic (As) and the effects of phosphate (P) on its movement in Pennisetum clandestinum Hochst (kikuyu grass), grown hydroponically under increasing arsenate (As(V)) concentrations. The uptake of both ions and the relative kinetics show that phosphate is an efficient competitive inhibitor of As(V) uptake. The P/As uptake rate ratios in roots indicate that P is taken up preferentially by P/As transporters. An arsenite (As(III)) efflux from roots was also found, but this decreased when the arsenate concentration in the solution exceeded 5???M.

Methods

Increases in both arsenite and arsenate concentrations in roots were observed when the arsenate concentration in the solution was increased, and the highest accumulation of As(III) in roots was found when plants were grown at 5???M As(V). The low ratios of As accumulated in shoots compared to roots suggest limited mobility of the metalloid within Kikuyu plants.

Results

The results indicate that arsenic resistance in kikuyu grass in conditions of moderate exposure is mainly dependent on the following factors: 1) phosphate nutrition: P is an efficient competitive inhibitor of As(V) uptake because of the higher selectivity of membrane transporters with respect to phosphate rather than arsenate; and 2) a detoxification mechanism including a reduction in both arsenate and arsenite root efflux.

Conclusions

The As tolerance strategy of Kikuyu limits arsenate uptake and As translocation from roots to shoots; therefore, this plant cannot be considered a viable candidate for use in the phytoextraction of arsenic from contaminated soils or water.  相似文献   

17.
We assessed the association between arsenic intake through water and diet, and arsenic levels in first morning-void urine under variable conditions of water contamination. This was done in a 2-year consecutive study in an endemic population. Exposure of arsenic through water and diet was assessed for participants using arsenic-contaminated water (≥50 μg L?1) in a first year (group I) and for participants using water lower in arsenic (<50 μg L?1) in the next year (group II). Participants with and without arsenical skin lesions were considered in the statistical analysis. Median dose of arsenic intake through drinking water in groups I and II males was 7.44 and 0.85 μg kg body wt.?1 day?1 (p <0.0001). In females, it was 5.3 and 0.63 μg kg body wt.?1 day?1 (p <0.0001) for groups I and II, respectively. Arsenic dose through diet was 3.3 and 2.6 μg kg body wt.?1 day?1 (p?=?0.088) in males and 2.6 and 1.9 μg kg body wt.?1 day?1 (p?=?0.0081) in females. Median arsenic levels in urine of groups I and II males were 124 and 61 μg L?1 (p?=?0.052) and in females 130 and 52 μg L?1 (p?=?0.0001), respectively. When arsenic levels in the water were reduced to below 50 μg L?1 (Indian permissible limit), total arsenic intake and arsenic intake through the water significantly decreased, but arsenic uptake through the diet was found to be not significantly affected. Moreover, it was found that drinking water mainly contributed to variations in urine arsenic concentrations. However, differences between male and female participants also indicate that not only arsenic uptake, but also many physiological factors affect arsenic behavior in the body and its excretion. As total median arsenic exposure still often exceeded 3.0 μg kg body wt.?1 day?1 (the permissible lower limit established by the Joint Expert Committee on Food Additives) after installation of the drinking water filters, it can be concluded that supplying the filtered water only may not be sufficient to minimize arsenic availability for an already endemic population.  相似文献   

18.

Roxarsone (ROX), a widely used feed organoarsenic additive, occurs as itself and its metabolites in animal manure that is commonly land used as fertilizer. Soil property impacts arsenic (As) speciation and bioavailability. Fourteen soils across China were used to conduct culture experiments to investigate As uptake by garland chrysanthemum (ChrysanthemumL coronarium), with the soils fertilized with chicken manure bearing ROX and its metabolites. The results show As(III) was the sole As form in garland chrysanthemum shoots, and As(III) and As(V) occurred in roots. Only inorganic As was detected in all soils when the plants were harvested. Stepwise regression analysis shows soil-exchangeable Ca predominated shoot As(III) concentration (shoot As(III) = 1.60030 soil Ca, R 2 = 0.8832***). Therefore, ROX is transferred into the human food chain finally as inorganic As in plants. Application of animal manure bearing ROX and its metabolites is not recommended in Ca-rich soils to avoid excess inorganic As dietary exposure.

  相似文献   

19.

The aim of this study was to determine the bioavailability of metals in field soils contaminated with chromated copper arsenate (CCA) mixtures. The uptake and elimination kinetics of chromium, copper, and arsenic were assessed in the earthworm Eisenia andrei exposed to soils from a gradient of CCA wood preservative contamination near Hartola, Finland. In soils contaminated with 1480–1590 mg Cr/kg dry soil, 642–791 mg Cu/kg dry soil, and 850–2810 mg Ag/kg dry soil, uptake and elimination kinetics patterns were similar for Cr and Cu. Both metals were rapidly taken up and rapidly excreted by Eisenia andrei with equilibrium reached within 1 day. The metalloid As, however, showed very slow uptake and elimination in the earthworms and body concentrations did not reach equilibrium within 21 days. Bioaccumulation factors (BAF) were low for Cu and Cr (< 0.1), but high for As at 0.54–1.8. The potential risk of CCA exposure for the terrestrial ecosystem therefore is mainly due to As.

  相似文献   

20.
Polychlorinated biphenyls (PCBs) are a class of man-made organic compounds ubiquitously present in the biosphere. In this study, we evaluated the toxic effects of different concentrations of PCBs in two natural soils (i.e. red soil and fluvo-aquic soil) on the earthworm Eisenia fetida. The parameters investigated included anti-oxidative response, genotoxic potential, weight variation and biochemical responses of the earthworm exposed to two different types of soils spiked with PCBs after 7 or 14 days of exposure. Earthworms had significantly lower weights in both soils after PCB exposure. PCBs significantly increased catalase (CAT), superoxide dismutase (SOD), and guaiacol peroxidase (POD) activity in earthworms exposed to either soil type for 7 or 14 days and decreased the malondialdehyde (MDA) content in earthworms exposed to red soil for 14 days. Of the enzymes examined, SOD activity was the most sensitive to PCB stress. In addition, PCB exposure triggered dose-dependent coelomocyte DNA damage, even at the lowest concentration tested. This response was relatively stable between different soils. Three-way analysis of variance (ANOVA) showed that the weight variation, anti-oxidant enzyme activities, and MDA contents were significantly correlated with exposure concentration or exposure duration (P < 0.01). Furthermore, weight variation, CAT activity, and SOD activity were significantly affected by soil type (P < 0.01). Therefore, the soil type and exposure time influence the toxic effects of PCBs, and these factors should be considered when selecting responsive biomarkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号