首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study presents simultaneous hexavalent chromium (Cr(VI)) reduction and phenol degradation using Stenotrophomonas sp., isolated from tannery effluent contaminated soil. Phenol was used as the sole carbon and energy source for Cr(VI) reduction. The optimization of different operating parameters was done using Placket–Burman design (PBD) and Box–Behnken design (BBD). The significant operating variables identified by PBD were initial Cr(VI) and phenol concentration, pH, temperature, and reaction time. These variables were optimized by a three-level BBD and the optimum initial Cr(VI) concentration, initial phenol concentration, pH, temperature, and reaction time obtained were 16.59 mg/l, 200.05 mg/l, 7.38, 31.96 °C and 4.07 days, respectively. Under the optimum conditions, 81.27 % Cr(VI) reduction and 100 % phenol degradation were observed experimentally. The results concluded that the Stenotrophomonas sp. could be used to decontaminate the effluents containing Cr(VI) and phenol effectively.  相似文献   

2.
Based upon 16S rDNA sequence homology, 15 phorate-degrading bacteria isolated from sugarcane field soils by selective enrichment were identified to be different species of Bacillus, Pseudomonas, Brevibacterium, and Staphylococcus. Relative phorate degradation in a mineral salt medium containing phorate (50 μg ml?1) as sole carbon source established that all the bacterial species could actively degrade more than 97 % phorate during 21 days. Three of these species viz. Bacillus aerophilus strain IMBL 4.1, Brevibacterium frigoritolerans strain IMBL 2.1, and Pseudomonas fulva strain IMBL 5.1 were found to be most active phorate metabolizers, degrading more than 96 % phorate during 2 days and 100 % phorate during 13 days. Qualitative analysis of phorate residues by gas liquid chromatography revealed complete metabolization of phorate without detectable accumulation of any known phorate metabolites. Phorate degradation by these bacterial species did not follow the first-order kinetics except the P. fulva strain IMBL 5.1 with half-life period (t½) ranging between 0.40 and 5.47 days.  相似文献   

3.
By enrichment culturing of soil contaminated with metribuzin, a highly efficient metribuzin degrading bacterium, Bacillus sp. N1, was isolated. This strain grows using metribuzin at 5.0% (v/v) as the sole nitrogen source in a liquid medium. Optimal metribuzin degradation occurred at a temperature of 30ºC and at pH 7.0. With an initial concentration of 20 mg L?1, the degradation rate was 73.5% in 120 h. If the initial concentrations were higher than 50 mg L?1, the biodegradation rates decreased as the metribuzin concentrations increased. When the concentration was 100 mg L?1, the degradation rate was only 45%. Degradation followed the pesticide degradation kinetic equation at initial concentrations between 5 mg L?1 and 50 mg L?1. When the metribuzin contaminated soil was mixed with strain N1 (with the concentration of metribuzin being 20 mg L?1 and the inoculation rate of 1011 g?1 dry soil), the degradation rate of the metribuzin was 66.4% in 30 days, while the degradation rate of metribuzin was only 19.4% in the control soil without the strain N1. These results indicate that the strain N1 can significantly increase the degradation rate of metribuzin in contaminated soil.  相似文献   

4.
Azo dyes are recalcitrant and refractory pollutants that constitute a significant menace to the environment. The present study is focused on exploring the capability of Bacillus sp. strain UN2 for application in methyl red (MR) degradation. Effects of physicochemical parameters (pH of medium, temperature, initial concentration of dye, and composition of the medium) were studied in detail. The suitable pH and temperature range for MR degradation by strain UN2 were respectively 7.0–9.0 and 30–40 °C, and the optimal pH value and temperature were respectively 8.0 and 35 °C. Mg2+ and Mn2+ (1 mM) were found to significantly accelerate the MR removal rate, while the enhancement by either Fe3+ or Fe2+ was slight. Under the optimal degradation conditions, strain UN2 exhibited greater than 98 % degradation of the toxic azo dye MR (100 ppm) within 30 min. Analysis of samples from decolorized culture flasks confirmed biodegradation of MR into two prime metabolites: N,N′dimethyl-p-phenyle-nediamine and 2-aminobenzoic acid. A study of the enzymes responsible for the biodegradation of MR, in the control and cells obtained during (10 min) and after (30 min) degradation, showed a significant increase in the activities of azoreductase, laccase, and NADH-DCIP reductase. Furthermore, a phytotoxicity analysis demonstrated that the germination inhibition was almost eliminated for both the plants Triticum aestivum and Sorghum bicolor by MR metabolites at 100 mg/L concentration, yet the germination inhibition of parent dye was significant. Consequently, the high efficiency of MR degradation enables this strain to be a potential candidate for bioremediation of wastewater containing MR.  相似文献   

5.
The wastewater discharged from leather industries lack biodegradability due to the presence of xenobiotic compounds. The primary clarification and aerobic treatment in Bacillus sp. immobilized Chemo Autotrophic Activated Carbon Oxidation (CAACO) reactor removed considerable amount of pollution parameters. The residual untreated organics in the wastewater was further treated in algal batch reactor inoculated with Synechocystis sp. Sodium nitrate, K2HPO4, MgSO4.7H2O, NH4Cl, CaCl2·2H2O, FeCl3 (anhydrous), and thiamine hydrochloride, rice husk based activated carbon (RHAC), immobilization of Bacillus sp. in mesoporous activated carbon, sand filter of dimensions diameter, 6 cm and height, 30 cm; and the CAACO reactor of dimensions diameter, 5.5 cm and height, 30 cm with total volume 720 ml, and working volume of 356 ml. In the present investigation, the CAACO treated tannery wastewater was applied to Synechocystis sp. inoculated algal batch reactor of hydraulic residence time 24 h. The BOD5, COD, and TOC of treated wastewater from algal batch reactor were 20?±?7, 167?±?29, and 78?±?16 mg/l respectively. The integrated CAACO system and Algal batch reactor was operated for 30 days and they accomplished a cumulative removal of BOD5,COD, TOC, VFA and sulphide as 98 %, 95 %, 93 %, 86 %, and 100 %, respectively. The biokinetic constants for the growth of algae in the batch reactor were specific growth rate, 0.095(day?1) and yield coefficient, 3.15 mg of algal biomass/mg of COD destructed. The degradation of xenobiotic compounds in the algal batch reactor was confirmed through HPLC and FT-IR techniques. The integrated CAACO–Algal reactor system established a credible reduction in pollution parameters in the tannery wastewater. The removal mechanism is mainly due to co-metabolism between algae and bacterial species and the organics were completely metabolized rather than by adsorption.  相似文献   

6.
Atrazine is a persistent organic pollutant in the environment which affects not only terrestrial and aquatic biota but also human health. Since its removal from the environment is needed, atrazine biodegradation is achieved in the present study using the bacterium Rhodococcus sp. BCH2 isolated from soil, long-term treated with atrazine. The bacterium was capable of degrading about 75 % atrazine in liquid medium having pH 7 under aerobic and dark condition within 7 days. The degradation ability of the bacterium at various temperatures (20–60 °C), pH (range 3–11), carbon (glucose, fructose, sucrose, starch, lactose, and maltose), and nitrogen (ammonium molybdate, sodium nitrate, potassium nitrate, and urea) sources were studied for triumph optimum atrazine degradation. The results indicate that atrazine degradation at higher concentrations (100 ppm) was pH and temperature dependent. However, glucose and potassium nitrate were optimum carbon and nitrogen source, respectively. Atrazine biodegradation analysis was carried out by using high-performance thin-layer chromatography (HPTLC), Fourier transform infrared spectroscopy (FTIR), and liquid chromatography quadrupole time-of-flight (LC/Q-TOF-MS) techniques. LC/Q-TOF-MS analysis revealed formation of various intermediate metabolites including hydroxyatrazine, N-isopropylammelide, deisopropylhydroxyatrazine, deethylatrazine, deisopropylatrazine, and deisopropyldeethylatrazine which was helpful to propose biochemical degradation pathway of atrazine. Furthermore, the toxicological studies of atrazine and its biodegraded metabolites were executed on earthworm Eisenia foetida as a model organism with respect to enzymatic (SOD and Catalase) antioxidant defense mechanism and lipid peroxidation studies. These results suggest innocuous degradation of atrazine by Rhodococcus sp. BCH2 in nontoxic form. Therefore the Rhodococcus sp.BCH2 could prove a valuable source for the eco-friendly biodegradation of atrazine pesticide.  相似文献   

7.
8.
To develop a bacterial bioaugmentation system for fluorine-containing industrial wastewater treatment, optimal conditions for 4-fluoroaniline (4-FA) degradation and autoinducer release in Acinetobacter sp. TW were determined. Quorum sensing in biofilms of strain TW was also investigated. Different optimal conditions exist for 4-FA degradation and autoinducer release, particularly with regard to pH. Quorum sensing modulates extracellular polymeric substance (EPS) secretion and biofilm formation in the strain but plays no role in 4-FA degradation. Under optimal conditions for 4-FA degradation, the release of N-3-oxo-hexanoyl-homoserine lactone (3-oxo-C6-HSL) and N-hexanoyl-homoserine lactone (C6-HSL) in strain TW was significantly lower than required for quorum sensing. Under optimal conditions for autoinducer release, on the other hand, 3-oxo-C6-HSL and C6-HSL levels exceeded the quorum sensing thresholds, thereby inducing EPS secretion and biofilm formation. We conclude that the optimal conditions for autoinducer release (25 °C, pH 5, 800 mg L?1 4-FA, and 0 % NaCl) are suitable for bacterial colonization in bioaugmentation, while those for 4-FA degradation (25–30 °C, pH 8 and 800 mg L?1 4-FA) maximize the system performance after colonization.  相似文献   

9.
A significant proportion of xenobiotic recalcitrant azo dyes are being released in environment during carpet dyeing. The bacterial strain Stenotrophomonas sp. BHUSSp X2 was isolated from dye contaminated soil of carpet industry, Bhadohi, India. The isolated bacterial strain was identified morphologically, biochemically, and on the basis of 16S rRNA gene sequence. The isolate decolorized 97 % of C.I. Acid Red 1 (Acid RED G) at the concentration of 200 mg/l within 6 h under optimum static conditions (temperature ?35 °C, pH 8, and initial cell concentration 7?×?107 cell/ml). Drastic reduction in dye degradation rate was observed beyond initial dye concentration from 500 mg/l (90 %), and it reaches to 25 % at 1000 mg/l under same set of conditions. The analysis related to decolorization and degradation was done using UV-Vis spectrophotometer, HPLC, and FTIR, whereas the GC-MS technique was utilized for the identification of degradation products. Phytotoxicity analysis revealed that degradation products are less toxic as compared to the original dye.  相似文献   

10.
An enrichment culture was used to study atrazine degradation in mineral salt medium (MSM) (T1), MSM+soil extract (1:1, v/v) (T2) and soil extract (T3). Results suggested that enrichment culture required soil extract to degrade atrazine, as after second sequential transfer only partial atrazine degradation was observed in T1 treatment while atrazine was completely degraded in T2 and T3 treatments even after fourth transfer. Culture independent polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique confirmed selective enrichment of genus Bacillus along with Pseudomonas and Burkholderia. Degradation of atrazine/metabolites in the industrial wastewater was studied at different initial concentrations of the contaminants [wastewater-water (v/v) ratio: T1, 1:9; T2, 2:8; T3, 3:7; T4, 5:5 and T5, undiluted effluent]. The initial concentrations of atrazine, cyanuric acid and biuret ranged between 5.32 and 53.92 µg mL?1, 265.6 and 1805.2 µg mL?1 and 1.85 and 16.12 µg mL?1, respectively. The enrichment culture was able to completely degrade atrazine, cyanuric acid and biuret up to T4 treatment, while no appreciable degradation of contaminants was observed in the undiluted effluent (T5). Inability of enrichment culture to degrade atrazine/metabolites might be due to high concentrations of cyanuric acid. Therefore, a separate study on cyanuric acid degradation suggested: (i) no appreciable cyanuric acid degradation with accumulation of an unidentified metabolite in the medium where cyanuric acid was supplemented as the sole source of carbon and nitrogen; (ii) partial cyanuric acid degradation with accumulation of unidentified metabolite in the medium containing additional nitrogen source; and (iii) complete cyanuric acid degradation in the medium supplemented with an additional carbon source. This unidentified metabolite observed during cyanuric acid degradation and also detected in the enrichment culture inoculated wastewater samples, however, was degraded up to T4 treatments and was persistent in the T5 treatment. Probably, accumulation of this metabolite inhibited atrazine/cyanuric acid degradation by the enrichment culture in undiluted wastewater.  相似文献   

11.
Four efficient Cr(VI)-reducing bacterial strains were isolated from rhizospheric soil of plants irrigated with tannery effluent and investigated for in vitro Cr(VI) reduction. Based on 16S rRNA gene sequencing, the isolated strains SUCR44, SUCR140, SUCR186, and SUCR188 were identified as Bacillus sp. (JN674188), Microbacterium sp. (JN674183), Bacillus thuringiensis (JN674184), and Bacillus subtilis (JN674195), respectively. All four isolates could completely reduce Cr(VI) in culture media at 0.2 mM concentration within a period of 24–120 h; SUCR140 completely reduced Cr(VI) within 24 h. Assay with the permeabilized cells (treated with Triton X-100 and Tween 80) and cell-free assay demonstrated that the Cr(VI) reduction activity was mainly associated with the soluble fraction of cells. Considering the major amount of chromium being reduced within 24–48 h, these fractions could have been released extracellularly also during their growth. At the temperature optima of 28 °C and pH?7.0, the specific activity of Cr(VI) reduction was determined to be 0.32, 0.42, 0.34, and 0.28 μmol Cr(VI)?min?1?mg?1 protein for isolates SUCR44, SUCR140, SUCR186, and SUCR188, respectively. Addition of 0.1 mM NADH enhanced the Cr(VI) reduction in the cell-free extracts of all four strains. The Cr(VI) reduction activity in cell-free extracts of all the isolates was stable in presence of different metal ions tested except Hg2+. Beside this, urea and thiourea also reduced the activity of chromate reduction to significant levels.  相似文献   

12.
This research investigated the 1,4-dioxane (1,4-D) degradation efficiency and rate during persulfate oxidation at different temperatures, with and without Fe2+ addition, also considering the effect of pH and persulfate concentration on the oxidation of 1,4-D. Degradation pathways for 1,4-D have also been proposed based on the decomposition intermediates and by-products. The results indicate that 1,4-D was completely degraded with heat-activated persulfate oxidation within 3–80 h. The kinetics of the 1,4-D degradation process fitted well to a pseudo-first-order reaction model. Temperature was identified as the most important factor influencing the 1,4-D degradation rate during the oxidation process. As the temperature increased from 40 to 60 °C, the degradation rate improved significantly. At 40 °C, the addition of Fe2+ also increased the 1,4-D degradation rate. Interestingly, at 50 and 60 °C, the 1,4-D degradation rate decreased slightly with the addition of Fe2+. This reduced degradation rate may be attributed to the rapid conversion of Fe2+ to Fe3+ and the production of an Fe(OH)3 precipitate which limited the ultimate oxidizing capability of persulfate with Fe2+ under higher temperatures. Higher persulfate concentrations led to higher 1,4-D degradation rates, but pH adjustment had no significant effect on the 1,4-D degradation rate. The identification of intermediates and by-products in the aqueous and gas phases showed that acetaldehyde, acetic acid, glycolaldehyde, glycolic acid, carbon dioxide, and hydrogen ion were generated during the persulfate oxidation process. A carbon balance analysis showed that 96 and 93 % of the carbon from the 1,4-D degradation were recovered as by-products with and without Fe2+ addition, respectively. Overall, persulfate oxidation of 1,4-D is promising as an economical and highly efficient technology for treatment of 1,4-D-contaminated water.  相似文献   

13.
A highly tolerant phenol-degrading yeast strain PHB5 was isolated from wastewater effluent of a coke oven plant and identified as Candida tropicalis based on phylogenetic analysis. Biodegradation experiments with C. tropicalis PHB5 showed that the strain was able to utilize 99.4 % of 2,400 mg l?1 phenol as sole source of carbon and energy within 48 h. Strain PHB5 was also observed to grow on 18 various aromatic hydrocarbons. Haldane model was used to fit the exponential growth data and the following kinetic parameters were obtained: μ max?=?0.3407 h?1, K S?=?15.81 mg l?1, K i?=?169.0 mg l?1 (R 2?=?0.9886). The true specific growth rate, calculated from μ max, was 0.2113. A volumetric phenol degradation rate (V max) was calculated by fitting the phenol consumption data with Gompertz model and specific degradation rate (q) was calculated from V max. The q values were fitted with Haldane model, yielding following parameters: q max?=?0.2766 g g?1 h?1, K S ?=?2.819 mg l?1, K i ?=?2,093 (R 2?=?0.8176). The yield factor (Y X/S ) varied between 0.185 to 0.96 g g?1 for different initial phenol concentrations. Phenol degradation by the strain proceeded through a pathway involving production of intermediates such as catechol and cis,cis-muconic acid which were identified by enzymatic assays and HPLC analysis.  相似文献   

14.
Dissipation kinetics of mesotrione, a new triketone herbicide, sprayed on soil from Limagne (Puy-de-Dôme, France) showed that the soil microflora were able to biotransform it.Bacteria from this soil were cultured in mineral salt solution supplemented with mesotrione as sole source of carbon for the isolation of mesotrione-degrading bacteria. The bacterial community structure of the enrichment cultures was analyzed by temporal temperature gradient gel electrophoresis (TTGE). The TTGE fingerprints revealed that mesotrione had an impact on bacterial community structure only at its highest concentrations and showed mesotrione-sensitive and mesotrione-adapted strains. Two adapted strains, identified as Bacillus sp. and Arthrobacter sp., were isolated by colony hybridization methods.Biodegradation assays showed that only the Bacillus sp. strain was able to completely and rapidly biotransform mesotrione. Among several metabolites formed, 2-amino-4-methylsulfonylbenzoic acid (AMBA) accumulated in the medium. Although sulcotrione has a chemical structure closely resembling that of mesotrione, the isolates were unable to degrade it.  相似文献   

15.
The feasibility of using dried attached-growth biomass from the polyurethane (PU) foam cubes as a solid carbon source to enhance the denitrification process in the intermittently aerated moving bed sequencing batch reactor (IA-MBSBR) during the treatment of low COD/N containing wastewater was investigated. By packing the IA-MBSBR with 8 % (v/v) of 8-mL PU foam cubes saturated with dried attached-growth biomass, total nitrogen removal efficiency of 80 % could be achieved for 10 consecutive cycles of operation when the intermittent aeration strategy of consecutive 1 h of aeration followed by 2 h of non-aeration period during the REACT period of the IA-MBSBR was adopted. Negligible release of ammonium nitrogen (NH4 +–N) and slow-release of COD from the dried biomass would ensure that the use of this solid carbon source would not further burden the treatment system. The slow-releasing COD was found to have no effect in promoting the assimilation process and would also allow the carbon source to be used for many cycles of operation. The ‘carbon-spent’ PU foam cubes could be reused by merely drying at 60 °C at the end of the operational mode. Thus, the dried attached-growth biomass formed on the PU foam cubes could be exploited as an alternative solid carbon source for the enhancement of denitrification process in the IA-MBSBR.  相似文献   

16.
Nanoporous activated carbon prepared from rice husk through precarbonisation at 400 °C and phosphoric acid activation at 800 °C was used as fluidized bed in Fenton oxidation of the o, p and m-cresols in aqueous solution. The efficiencies of homogeneous Fenton oxidation, fluidized Fenton oxidation and aerobic biological oxidation systems for the removal of o, p and m-cresols in aqueous solution have been compared. The kinetic constants and the thermodynamic parameters for the homogeneous Fenton, heterogeneous Fenton and aerobic biological oxidations of o, p and m-cresols in synthetic wastewater were determined. The degradation of cresols in synthetic wastewater was confirmed using FT-IR, 1H-NMR and UV–visible spectroscopy.  相似文献   

17.
The objective of this study was to develop a bioremediation strategy for cadmium (Cd) and carbendazim co-contaminated soil using a hyperaccumulator plant (Sedum alfredii) combined with carbendazim-degrading bacterial strains (Bacillus subtilis, Paracoccus sp., Flavobacterium and Pseudomonas sp.). A pot experiment was conducted under greenhouse conditions for 180 days with S. alfredii and/or carbendazim-degrading strains grown in soil artificially polluted with two levels of contaminants (low level, 1 mg kg?1 Cd and 21 mg kg?1 carbendazim; high level, 6 mg kg?1 Cd and 117 mg kg?1 carbendazim). Cd removal efficiencies were 32.3–35.1 % and 7.8–8.2 % for the low and high contaminant level, respectively. Inoculation with carbendazim-degrading bacterial strains significantly (P?<?0.05) increased Cd removal efficiencies at the low level. The carbendazim removal efficiencies increased by 32.1–42.5 % by the association of S. alfredii with carbendazim-degrading bacterial strains, as compared to control, regardless of contaminant level. Cultivation with S. alfredii and inoculation of carbendazim-degrading bacterial strains increased soil microbial biomass, dehydrogenase activities and microbial diversities by 46.2–121.3 %, 64.2–143.4 %, and 2.4–24.7 %, respectively. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis revealed that S. alfredii stimulated the activities of Flavobacteria and Bradyrhizobiaceae. The association of S. alfredii with carbendazim-degrading bacterial strains enhanced the degradation of carbendazim by changing microbial activity and community structure in the soil. The results demonstrated that association of S. alfredii with carbendazim-degrading bacterial strains is promising for remediation of Cd and carbendazim co-contaminated soil.  相似文献   

18.
Strain DNS10 was isolated from the black soil collected from the northeast of China which had been cultivated with atrazine as the sole nitrogen source. Pennisetum is a common plant in Heilongjiang Province of China. The main objective of this paper was to evaluate the efficiency of plant–microbe joint interactions (Arthrobacter sp. DNS10 + Pennisetum) in atrazine degradation compared with single-strain and single-plant effects. Plant–microbe joint interactions degraded 98.10 % of the atrazine, while single strain and single plant only degraded 87.38 and 66.71 % after a 30-day experimental period, respectively. The results indicated that plant–microbe joint interactions had a better degradation effect. Meanwhile, we found that plant–microbe joint interactions showed a higher microbial diversity. The results of microbial diversity illustrated that the positive effects of cropping could improve soil microbial growth and activity. In addition, we planted atrazine-sensitive plants (soybean) in the soil after repair. The results showed that soybean growth in soil previously treated with the plant–microbe joint interactions treatment was better compared with other treatments after 20 days of growth. This was further proved that the soil is more conducive for crop cultivation. Hence, plant–microbe joint interactions are considered to be a potential tool in the remediation of atrazine-contaminated soil.  相似文献   

19.
Photocatalytic degradation of bisphenol A (BPA) in waters and wastewaters in the presence of titanium dioxide (TiO2) was performed under different conditions. Suspensions of the TiO2 were used to compare the degradation efficiency of BPA (20 mg L?1) in batch and compound parabolic collector (CPC) reactors. A TiO2 catalyst supported on glass spheres was prepared (sol–gel method) and used in a CPC solar pilot plant for the photodegradation of BPA (100 μg L?1). The influence of OH·, O2 ·?, and h + on the BPA degradation were evaluated. The radicals OH· and O2 ·? were proved to be the main species involved on BPA photodegradation. Total organic carbon (TOC) and carboxylic acids were determined to evaluate the BPA mineralization during the photodegradation process. Some toxicological effects of BPA and its photoproducts on Eisenia andrei earthworms were evaluated. The results show that the optimal concentration of suspended TiO2 to degrade BPA in batch or CPC reactors was 0.1 g L?1. According to biological tests, the BPA LC50 in 24 h for E. andrei was of 1.7?×?10?2 mg cm?2. The photocatalytic degradation of BPA mediated by TiO2 supported on glass spheres suffered strong influence of the water matrix. On real municipal wastewater treatment plant (MWWTP) secondary effluent, 30 % of BPA remains in solution; nevertheless, the method has the enormous advantage since it eliminates the need of catalyst removal step, reducing the cost of treatment.  相似文献   

20.
In the last few years, several works dealing with Fenton oxidation of ionic liquids (ILs) have proved the capability of this technology for their degradation, achieving complete ILs removal and non-toxic effluents. Nevertheless, very little is known about the kinetics of this process, crucial for its potential application. In this work, the effect of several operating conditions, including reaction temperature (50–90 °C), catalyst load (10–50 mg L?1 Fe3+), initial IL concentration (100–2000 mg L?1), and hydrogen peroxide dose (10–200% of the stoichiometric amount for the complete IL mineralization) on 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) oxidation has been investigated. Under the optimum operating conditions (T = 90 °C; [Fe3+]0 = 50 mg L?1; [H2O2]0 = 100% of the stoichiometric amount), the complete removal of [C4mim]Cl (1000 mg L?1) was achieved at 1.5-min reaction time. From the experimental results, a potential kinetic model capable to describe the removal of imidazolium-based ILs by Fenton oxidation has been developed. By fitting the proposed model to the experimental data, the orders of the reaction with respect to IL initial concentration, Fe3+ amount and H2O2 dose were found to be close to 1, with an apparent activation energy of 43.3 kJ mol?1. The model resulted in a reasonable fit within the wide range of operating conditions tested in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号