首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon-coated TiO(2) modified by iron, were prepared from TiO(2) of anatase structure and PET modified by FeC(2)O(4). Catalysts were prepared by mixing powders of TiO(2) and modified PET and heating at different temperatures, from 400 to 800 degrees C under flow of Ar gas. High adsorption of phenol was observed on the catalyst heated at 400 degrees C, confirmed by FT-IR analysis. On this catalyst, fast rate of phenol decomposition was achieved by addition of small amount of H(2)O(2) to the reaction mixture. Phenol decomposition proceeded mainly through the direct oxidation of phenol species adsorbed on the catalyst surface due to the photo-Fenton reaction. Iron-modified carbon-coated TiO(2) catalysts heated at 500-800 degrees C showed almost no phenol adsorption or oxidation.  相似文献   

2.
Huang Q  Hong CS 《Chemosphere》2000,41(6):871-879
Titanium dioxide-mediated photodegradation of Polychlorinated biphenyls (PCBs) in soil/aqueous systems with added fluorinated surfactant was investigated. PCBs can bind tightly to organic matter in the soil, especially in aged, contaminated soil. Experiments showed an effective PCB photocatalytic degradation in mixed systems of soil/clay with anionic fluorinated surfactant FC-143 and TiO2. The FC-143 surfactant is stable in this photochemical process. PCB degradation rates in samples followed the order: spiked clay > spiked soil > Hudson River bank soil. The results suggest that anionic fluorinated surfactant may form semimicelles and/or admicelles on the surface of positively charged TiO2. The hydrophobic surface of TiO2 can provide a nonpolar phase that acts as a partioning medium for hydrophobic PCBs. Therefore, PCBs in soil can be released to the semimicelle and/or admicelle on the TiO2 surface and are effectively photodegraded in a dispersion containing anionic fluorinated surfactant. The combination of surfactant extraction and photooxidation forms the basis for a novel two-stage process for the removal and destruction of PCBs from soil.  相似文献   

3.
Yang CC  Chang SH  Hong BZ  Chi KH  Chang MB 《Chemosphere》2008,73(6):890-895
Development of effective PCDD/F (polychlorinated dibenzo-p-dioxin and dibenzofuran) control technologies is essential for environmental engineers and researchers. In this study, a PCDD/F-containing gas stream generating system was developed to investigate the efficiency and effectiveness of innovative PCDD/F control technologies. The system designed and constructed can stably generate the gas stream with the PCDD/F concentration ranging from 1.0 to 100ng TEQ Nm(-3) while reproducibility test indicates that the PCDD/F recovery efficiencies are between 93% and 112%. This new PCDD/F-containing gas stream generating device is first applied in the investigation of the catalytic PCDD/F control technology. The catalytic decomposition of PCDD/Fs was evaluated with two types of commercial V(2)O(5)-WO(3)/TiO(2)-based catalysts (catalyst A and catalyst B) at controlled temperature, water vapor content, and space velocity. 84% and 91% PCDD/F destruction efficiencies are achieved with catalysts A and B, respectively, at 280 degrees C with the space velocity of 5000h(-1). The results also indicate that the presence of water vapor inhibits PCDD/F decomposition due to its competition with PCDD/F molecules for adsorption on the active vanadia sites for both catalysts. In addition, this study combined integral reaction and Mars-Van Krevelen model to calculate the activation energies of OCDD and OCDF decomposition. The activation energies of OCDD and OCDF decomposition via catalysis are calculated as 24.8kJmol(-1) and 25.2kJmol(-1), respectively.  相似文献   

4.
Janbey A  Clark W  Noordally E  Grimes S  Tahir S 《Chemosphere》2003,52(6):1041-1046
Using a bench-scale rig, the activities of Pt, Pd and Pt+Pd catalysts supported on gamma-Al(2)O(3) and on TiO(2) (anatase) for the complete oxidation of methane (300 ppmv) in air have been measured as a function of temperature; values of T(10), T(50) and T(90) together with the Arrhenius parameters (activation energy and pre-exponential factor) are reported. Pt is less active than Pd when deposited on the surface of the TiO(2), but more active when deposited on gamma-Al(2)O(3), however when combined, the Pt+Pd mixture is more active than either metal individually. The T(10) for Pt+Pd/gamma-Al(2)O(3) was being as low as 228 degrees C. The significance of the Arrhenius parameters, for metal containing catalysts is that they exhibit compensation with increasing activation energy, while securing a more rapid increase in conversion from 0% to 100% when the temperature is increased.  相似文献   

5.
Manganese acetate (MnAc) and manganese nitrate (MnN) were employed as precursors for the preparation of MnAc)/TiO2, Mn (N)/TiO2, Mn(Ac)-Ce/TiO2, and Mn(N)-Ce/TiO2 by impregnation. These complexes were used as catalysts in the low-temperature selective catalytic reduction of NO with NH3. The influence of manganese precursors on catalyst characteristics, the reduction activity, and the stability of the catalysts to poisoning by H2O and SO2 were studied. Experiments showed that Mn(N) produced MnO2 with large grain sizes in Mn(N)/TiO2 catalyst. On the contrary, Mn(Ac) led to highly dispersed and amorphous Mn2O3 in Mn (Ac)/TiO2 catalyst, which had better catalytic activity and stability to SO2 at low temperatures. The doping of cerium reduced the differences in catalytic performance between the catalysts derived from different Mn precursors.  相似文献   

6.
Two surface soils contaminated with polychlorinated biphenyls (PCBs) collected from Superfund sites in the New England region of the United States, Fletcher Paints and Merrimack Industrial Metals, were evaluated for field treatment at the bench level using catalyzed H2O2 propagations (CHP—modified Fenton’s reagent). The two soils were first evaluated for the potential for in situ treatment based on two criteria: (1) temperature (<40 °C after CHP reagent addition), and (2) hydrogen peroxide longevity (>24 h). In situ CHP remediation was more applicable to the Fletcher soil, while the Merrimack soil was better suited to ex situ treatment based on temperature increases and hydrogen peroxide lifetimes. Using the highest hydrogen peroxide concentrations appropriate for in situ treatment in each soil, PCB destruction was 94% in the Fletcher soil but only 48% in the Merrimack soil. However, 98% PCB destruction was achieved in the Merrimack soil using conditions more applicable to ex situ treatment (higher hydrogen peroxide concentrations with temperatures >40 °C). Analysis of degradation products by gas chromatography/mass spectroscopy showed no detectable chlorinated degradation products, suggesting that the products of PCB oxidation were rapidly dechlorinated and degraded. The results of this research document that the two PCB-contaminated soils studied can be effectively treated using aggressive CHP conditions, and that such a detailed bench study provides important information before implementing field treatment.  相似文献   

7.
Thermal desorption is widely used for remediation of soil contaminated with volatiles, such as solvents and distillates. In this study, a soil contaminated with semivolatile polychlorinated biphenyls (PCBs) was sampled at an interim storage point for waste PCB transformers and heated to temperatures from 300 to 600 °C in a flow of nitrogen to investigate the effect of temperature and particle size on thermal desorption. Two size fractions were tested: coarse soil of 420–841 μm and fine soil with particles <250 μm. A PCB removal efficiency of 98.0 % was attained after 1 h of thermal treatment at 600 °C. The residual amount of PCBs in this soil decreased with rising thermal treatment temperature while the amount transferred to the gas phase increased up to 550 °C; at 600 °C, destruction of PCBs became more obvious. At low temperature, the thermally treated soil still had a similar PCB homologue distribution as raw soil, indicating thermal desorption as a main mechanism in removal. Dechlorination and decomposition increasingly occurred at high temperature, since shifts in average chlorination level were observed, from 3.34 in the raw soil to 2.75 in soil treated at 600 °C. Fine soil particles showed higher removal efficiency and destruction efficiency than coarse particles, suggesting that desorption from coarse particles is influenced by mass transfer.  相似文献   

8.
Goo JH  Irfan MF  Kim SD  Hong SC 《Chemosphere》2007,67(4):718-723
The selective catalytic reduction (SCR) characteristics of NO and NO(2) over V(2)O(5)-WO(3)-MnO(2)/TiO(2) catalyst using ammonia as a reducing agent have been determined in a fixed-bed reactor at 200-400 degrees C. The presence of NO(2) enhances the SCR activity at lower temperatures and the optimum ratio of NO(2)/NO(x) is found to be 0.5. During the SCR reactions, there are some side reactions occurred such as ammonia oxidation and N(2)O formation. At higher temperatures, the selective catalytic oxidation of ammonia and the nitrous oxide formation compete with the SCR reactions. The denitrification (DeNO(x)) conversion decreases at lower temperatures but it increases at higher temperatures with increasing SO(2) concentration. The presence of SO(2) in the feeds inhibits N(2)O formation.  相似文献   

9.
Catalytic oxidation of gaseous PCDD/Fs with ozone over iron oxide catalysts   总被引:2,自引:0,他引:2  
Wang HC  Chang SH  Hung PC  Hwang JF  Chang MB 《Chemosphere》2008,71(2):388-397
Catalytic oxidation of PCDD/Fs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans) with ozone (catalytic ozonation) over nano-sized iron oxides (denoted as FexOy) was carried out at temperature of 120-180 degrees C. The effects of operating temperature, ozone concentration, space velocity (SV) and water vapor contents on PCDD/F removal and destruction efficiencies via catalytic ozonation were investigated. High activity of the iron oxide catalyst towards PCDD/F decomposition was observed even at low temperatures with the aid of ozone. The PCDD/F removal and destruction efficiencies achieved with FexOy/O3 at 180 degrees C reach 94% and 91%, respectively. In the absence of ozone, the destruction efficiencies of all PCDD/F congeners are below 20% and decrease with increasing chlorination level of PCDD/F congener at lower temperature (120 degrees C). However, in the presence of ozone, the destruction efficiencies of all PCDD/F congeners are over 80% on FexOy/O3 at 180 degrees C. Higher temperature and ozone addition increase the activity of iron oxide for the decomposition of PCDD/Fs. Additionally, in the presence of 5% water vapor, the destruction efficiency of the PCDD/Fs is above 90% even at lower operating temperature (150 degrees C). It indicates that the presence of appropriate amount of water vapor enhances the catalytic activity for the decomposition of gas-phase PCDD/Fs.  相似文献   

10.
Studies on the catalytic destruction of 1,2-dichlorobenzene were carried out on a specially constructed semi-technical equipment whose most important element was a catalytic reactor with a monolithic catalyst in the form of 150 x 150 x 100 mm cubes. A catalyst made from cordierite with an active layer composed of Al2O3 - 64 wt%, TiO2 - 26 wt%, V2O5 - 6.6 wt% and WO3 - 3.4 wt% was used. The reactor made it possible to carry out the process in the temperature range 150-350 degrees C, at variable catalyst loading and different velocities of gas flow through the reactor. The content of 1,2-dichlorobenzene in the air was analysed by a chromatographic method. A significant effect of catalyst loading and temperature on 1,2-dichlorobenzene destruction efficiency was observed and no effect of the linear flow velocity through the catalyst on o-dichlorobenzene destruction efficiency was reported. The applied vanadium-tungsten catalyst on a monolithic carrier made from TiO2/gamma-Al2O3 revealed very good activity that resulted in an over 80% efficiency of 1,2-dichlorobenzene destruction at the temperature around 250 degrees C at a very high catalyst loading reaching ca. 8200 h(-1). Additionally, in this study the kinetics of 1,2-dichlorobenzene decomposition was determined, specifying the order of reaction and dependence of the decomposition rate constant on temperature, using a simple power-rate law model.  相似文献   

11.
Fe(3+)-, Cr(3+)-, Cu(2+)-, Mn(2+)-, Co(2+)-, and Ni(2+)-exchanged Al2O3-pillared interlayer clay (PILC) or TiO2-PILC catalysts are investigated for the selective catalytic reduction (SCR) of nitric oxide by ammonia in the presence of excess oxygen. Fe(3+)-exchanged pillared clay is found to be the most active. The catalytic activity of Fe-TiO2-PILC could be further improved by the addition of a small amount of cerium ions or cerium oxide. H2O and SO2 increase both the activity and the product selectivity to N2. The maximum activity on the Ce-Fe-TiO2-PILC is more than 3 times as active as that on a vanadium catalyst. Moreover, compared to the V2O5-WO3/TiO2 catalyst, the Fe-TiO2-PILC catalysts show higher N2/N2O product selectivities and substantially lower activities (by approximately 85%) for SO2 oxidation to SO3 under the same reaction conditions. A 100-hr run in the presence of H2O and SO2 for the CeO2/Fe-TiO2-PILC catalyst showed no decrease in activity.  相似文献   

12.
Concentration of 2,4-dichlorophenoxyacetic acid (2,4-D) may affect its degradation kinetics in advanced oxidation systems, and combinations of two or more systems can be more effective for its mineralization at low concentration levels. Degradations and mineralizations of 0.045mM 2,4-D using O(3), O(3)/UV, UV/TiO(2) and O(3)/UV/TiO(2) systems were compared, and influence of reaction temperature on the mineralization in O(3)/UV/TiO(2) system was investigated. 2,4-D degradations by O(3), O(3)/UV and UV/TiO(2) systems were similar to the results of earlier investigations with higher 2,4-D concentrations. The degradations and total organic carbon (TOC) removals in the four systems were well described by the first-order reaction kinetics. The degradation and removal were greatly enhanced in O(3)/UV/TiO(2) system, and further enhancements were observed with larger O(3) supplies. The enhancements were attributed to hydroxyl radical (()OH) generation from more than one reaction pathway. The degradation and removal in O(3)/UV/TiO(2) system were very efficient with reaction temperature fixed at 20 degrees C. It was suspected that reaction temperature might have influenced ()OH generation in the system, which needs further attention.  相似文献   

13.
A study was conducted to explore some of the basic processes of polychlorinated biphenyl (PCB) destruction by a new technology termed electrochemical peroxidation process (ECP). ECP represents an enhancement of the classic Fenton reaction (H2O2 + Fe2+) in which iron is electrochemically generated by steel electrodes. Focus was on the extent of adsorption of a mixture of Aroclor 1248 on steel electrodes in comparison to iron filings. Commercially available zero-valent iron filings rapidly adsorbed PCBs from an aqueous solution of Aroclor 1248. Within 4 h, all the PCBs were adsorbed at 1%, 5%, and 10% Fe0 (w/v) concentrations. Little difference in adsorption was found between acidic (2.3) and unamended solutions (pH 5.5), even though significant differences in iron oxidation state and Fe2+ concentrations were measured in solution. PCB adsorption also occurs on steel electrodes regardless of the pH or electric current applied (AC or DC), suggesting the combination of oxidizing (free radical-mediated reactions) and reducing (dechlorination reactions) iron-mediated degradation pathways may be possible. Extraction of the iron powder after 48 h of contact time yielded the progressive recovery of biphenyl with increasing Fe mass(from 0.4% to 3.5%) and changes of the PCB congener-specific pattern as a consequence of dechlorination. A variety of daughter congeners similar to those accumulated during anaerobic microbial dechlorination of Aroclor 1248 in contaminated sediments indicate preferential removal of meta- and para-chlorines.  相似文献   

14.
Wang CH  Lin SS  Chen CL  Weng HS 《Chemosphere》2006,64(3):503-509
A fixed bed reactor was used to assess the catalytic incineration of toluene by various transition-metal oxide species supported on gamma-Al(2)O(3). CuO/gamma-Al(2)O(3) was found to be the most active of seven catalysts investigated. The CuO species, with a Cu content of 5% (wt), was hence used with four different supports (CeO(2), gamma-Al(2)O(3), TiO(2) and V(2)O(5)) in order to define the optimal combination. Results of the catalytic incineration of toluene, X-ray diffraction (XRD) analysis, oxygen-temperature programmed desorption (O(2)-TPD), toluene-temperature programmed desorption (toluene-TPD) and hydrogen-temperature programmed reduction (H(2)-TPR) showed that CuO/CeO(2) was the most active catalyst, followed by CuO/gamma-Al(2)O(3). The activity of CuO/CeO(2) with respect to the VOC molecule was observed to follow this sequence: toluen>p-xylene>benzene. The addition of water vapor or CO(2) significantly inhibited the activity of the CuO/CeO(2) and CuO/gamma-Al(2)O(3) catalysts. The inhibiting effect of both was reversible for CuO/gamma-Al(2)O(3). For CuO/CeO(2), the inhibiting effect of CO(2) was reversible and even insignificant at a higher temperature (220 degrees C), but the effect of H(2)O vapor was somewhat irreversible at lower incineration temperatures (220 degrees C). For complete oxidation of toluene, the required reaction temperature increased with gas hourly space velocity (GHSV) and toluene inlet concentration.  相似文献   

15.
Enhanced chemical oxidation of aromatic hydrocarbons in soil systems   总被引:5,自引:0,他引:5  
Kang N  Hua I 《Chemosphere》2005,61(7):909-922
Fenton's destruction of benzene, toluene, ethylbenzene, and xylene (BTEX) was investigated in soil slurry batch reactors. The purpose of the investigation was to quantify the enhancement of oxidation rates and efficiency by varying process conditions such as iron catalyst (Fe(II) or Fe(III); 2, 5, and 10mM), hydrogen peroxide (H2O2; 30, 150, 300 mM), and metal chelating agents (l-ascorbic acid, gallic acid, or N-(2-hydroxyethyl)iminodiacetic acid). Rapid contaminant mass destruction (97% after 3h) occurred in the presence of 300 mM H2O2 and 10 mM Fe(III). An enhanced removal rate (>90% removal after 15 min and 95% removal after 3h) was also observed by combining Fe(III), N-(2-hydroxyethyl)iminodiacetic acid and 300 mM H2O2. The observed BTEX mass removal rate constants (3.6-7.8 x 10(-4)s(-1)) were compared to the estimated rate constants (4.1-10.1 x 10(-3)s(-1)). The influence of non-specific oxidants loss (by reaction with iron hydroxides and soil organic matter) was also explored.  相似文献   

16.
Irfan MF  Goo JH  Kim SD  Hong SC 《Chemosphere》2007,66(1):54-59
The oxidation characteristics of NO over Pt/TiO2 (anatase, rutile) catalysts have been determined in a fixed bed reactor as a function of O2, CO and SO2 concentrations in the presence of 8% water. The conversion of NO to NO2 increases with increasing O2 concentration up to 12% and it levels off. This saturation effect is more pronounced over rutile-Pt/TiO2 (r-Pt/TiO2) than that of anatase-Pt/TiO2 (a-Pt/TiO2). The presence of CO increases NO oxidation significantly and this enhanced effect is more pronounced on a-Pt/TiO2 than that on r-Pt/TiO2 with increasing CO concentration at lower temperatures. The same effect is also observed on the catalysts with different Pt and tungsten oxide (WO3) loadings. With increasing Pt and WO3 loadings on TiO2 support (Pt-WO3/TiO2), formation of NO2 is high even at lower temperatures. The presence of SO2 significantly suppresses the oxidation of NO over both r-Pt/TiO2 and a-Pt/TiO2 catalysts but it is less pronounced due to low stability of sulfate on a-Pt/TiO2.  相似文献   

17.
Hung WT  Lin CF 《Chemosphere》2003,53(7):727-735
Catalytic destruction of chlorinated compounds is one of the key methods in reducing pollutant emissions. For the purpose of utilizing waste materials, a catalyst was regenerated from ferric ion sludge, obtained from the addition of iron salts to precipitate heavy metals. The sludge was dewatered, heated (800 degrees C for 4 h), and ground into smaller particles. The regenerated ferric oxide particles were then used as the oxidation catalyst to destroy CO formation during the combustion of three chlorinated solvents and to suppress dioxin formation in flue gas in a real waste solvent. In the presence of catalyst, the combustion efficiency (ratio of CO(2) to the sum of CO(2) and CO) for chlorobenzene was more than 98% at 850 degrees C in a pilot-scale incinerator. The destruction and removal efficiencies of chlorobenzene, 2,4-dichlorophenol and trichlorofluoroethane were more than three nines. In the absence of catalysts, the flue gas emission from a real waste could not meet the regulatory dioxin standard of 0.1 ng-TEQ/Nm(3) even with the powdered activated carbon injection. The use of catalyst at either 100 or 300 g/h, however, was able to meet the emission standard.  相似文献   

18.
Eighteen teachers from a highly contaminated school and 11 teachers from a control school participated in this study. Total polychlorinated biphenyl (PCB) indoor air concentration (six indicator congeners x 5) was beyond 12000 ng/m3 in some rooms of the contaminated school. PCB 28 and PCB 52 were the prevailing congeners. Whole blood was taken from each participant by the local health authority, pooled in two groups and analysed for the six PCB indicator congeners, non-ortho PCBs and polychlorinated dibenzodioxins (PCDD)/polychlorinated dibenzofurans (PCDF). Blood analysis showed elevated mean PCB 28 and PCB 52 levels for the exposed group, however the two groups were almost identical with regard to PCB 101, 138, 153 and 180. Moreover no difference can be observed for the concentration of non-ortho PCBs and PCDD/PCDF. The data support the finding, that heavy indoor air contamination with low chlorinated PCBs causes an increase of PCB 28 and PCB 52 blood levels. However, this increment was small compared to their total PCB load.  相似文献   

19.
Park EH  Jung J  Chung HH 《Chemosphere》2006,64(3):432-436
Both the photooxidation of EDTA and the photoreduction of metal ions in metal-EDTA systems were investigated. EDTA oxidation by TiO(2) photocatalysis occurred sequentially as Cu(II)-EDTA>Cu(II)/Fe(III)-EDTA>Fe(III)-EDTA. For Cu(II)-EDTA, EDTA was completely decomposed after only 60min of irradiation. The rate of EDTA decomposition was directly correlated with the initial Cu(II) concentration in the case of a mixed Cu(II)/Fe(III)-EDTA system. The metal ions in a single metal-EDTA complex were removed following significant decomposition of EDTA. For a mixed Cu(II)/Fe(III)-EDTA system, however, no copper was removed whereas almost all of the iron was removed. The iron and copper species deposited on the TiO(2) surface were identified via EPR and XPS as mixed FeO/Fe(3)O(4) and Cu(0)/Cu(2)O, respectively.  相似文献   

20.
研究以纳米TiO2为载体,浸渍负载过渡金属氧化物,以CO为还原剂的脱硝催化剂的脱硝性能。实验中以计算量的Ni(NO3)2和Fe(NO3)3混合溶液浸渍纳米TiO2粉末,室温下搅拌30 min至混合均匀,放入旋转蒸发器中,70℃下至水分蒸干为止;所得粉末在550℃下、空气气氛中焙烧4 h即得所需催化剂。用以上方法分别制备2%Fe2O3-10%Cr2O3/TiO2、4%Fe2O3-8%Cr2O3/TiO2、6%Fe2O3-6%Cr2O3/TiO2、8%Fe2O3-4%Cr2O3/TiO2与10%Fe2O3-2%Cr2O3/TiO2等5种催化剂样品。实验结果表明,制备的催化剂具有较好的结构,分散较为均匀。对于CO+NO反应,Fe2O3-Cr2O3/TiO2系列催化剂具有较好的催化活性,NO的转化率都达到了100%。其中,10%Fe2O3-2%Cr2O3/TiO2样品具有最好的低温活性,H2-TPR结果表明,这是由于10%Fe2O3-2%Cr2O3/TiO2催化剂更易于被CO预还原。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号