首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To mitigate global warming caused by burning fossil fuels, a renewable energy source available in large quantity is urgently required. We are proposing large-scale photobiological H2 production by mariculture-raised cyanobacteria where the microbes capture part of the huge amount of solar energy received on earth’s surface and use water as the source of electrons to reduce protons. The H2 production system is based on photosynthetic and nitrogenase activities of cyanobacteria, using uptake hydrogenase mutants that can accumulate H2 for extended periods even in the presence of evolved O2. This review summarizes our efforts to improve the rate of photobiological H2 production through genetic engineering. The challenges yet to be overcome to further increase the conversion efficiency of solar energy to H2 also are discussed.  相似文献   

2.
There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H(2) production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted.  相似文献   

3.
There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H2 production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted.  相似文献   

4.
Monteagudo JM  Durán A 《Chemosphere》2006,65(7):1242-1248
The decoloration and mineralization of the azo dye orange II under conditions of artificial ultraviolet light and solar energy concentrated by a Fresnel lens in the presence of hydrogen peroxide and TiO(2)-P25 was studied. A comparative study to demonstrate the viability of this solar installation was done to establish if the concentration reached in the focus of the Fresnel lens was enough to improve the photocatalytic degradation reaction. The degradation efficiency was higher when the photolysis was carried out under concentrated solar energy irradiation as compared to UV light source in the presence of an electron acceptor such us H(2)O(2) and the catalyst TiO(2). The effect of hydrogen peroxide, pH and catalyst concentration was also determined. The increase of H(2)O(2) concentration until a critical value (14.7 mM) increased both the solar and artificial UV oxidation reaction rate by generating hydroxyl radicals and inhibiting the (e(-)/h(+)) pair recombination, but the excess of hydrogen peroxide decreases the oxidation rate acting as a radical or hole scavenger and reacting with TiO(2) to form peroxo-compounds, contributing to the inhibition of the reaction. The use of the response surface methodology allowed to fit the optimal values of the parameters pH and catalyst concentration leading to the total solar degradation of orange II. The optimal pH range was 4.5-5.5 close to the zero point charge of TiO(2) depending on surface charge of catalyst and dye ionization state. Dosage of catalyst higher than 1.1 gl(-1) decreases the degradation efficiency due to a decrease of light penetration.  相似文献   

5.
TiO2光催化降解低浓度溴氰菊酯   总被引:22,自引:0,他引:22  
用高压汞灯为光源,以二氧化钛光催化降解有机溴杀虫剂-溴氰菊酯,研究了TiO2用量、PH值、等对降解的影响及采用太阳光做光源处理溴氰菊酯的可行性。说明以高压汞灯及太阳光作光源,TiO2催化降解敌杀死是有效的。  相似文献   

6.
Eva-Mari Aro 《Ambio》2016,45(1):24-31
Roadmaps towards sustainable bioeconomy, including the production of biofuels, in many EU countries mostly rely on biomass use. However, although biomass is renewable, the efficiency of biomass production is too low to be able to fully replace the fossil fuels. The use of land for fuel production also introduces ethical problems in increasing the food price. Harvesting solar energy by the photosynthetic machinery of plants and autotrophic microorganisms is the basis for all biomass production. This paper describes current challenges and possibilities to sustainably increase the biomass production and highlights future technologies to further enhance biofuel production directly from sunlight. The biggest scientific breakthroughs are expected to rely on a new technology called “synthetic biology”, which makes engineering of biological systems possible. It will enable direct conversion of solar energy to a fuel from inexhaustible raw materials: sun light, water and CO2. In the future, such solar biofuels are expected to be produced in engineered photosynthetic microorganisms or in completely synthetic living factories.  相似文献   

7.
Styring S 《Ambio》2012,41(Z2):156-162
The world needs new, environmentally friendly and renewable fuels to allow an exchange from fossil fuels. The fuel must be made from cheap and 'endless' resources that are available everywhere. The new research area on solar fuels, which are made from solar energy and water, aims to meet this demand. The paper discusses why we need a solar fuel and why electricity is not enough; it proposes solar energy as the major renewable energy source to feed from. The present research strategies, involving direct, semi-direct and indirect approaches to produce solar fuels, are overviewed.  相似文献   

8.
Stenbjörn Styring 《Ambio》2012,41(2):156-162
The world needs new, environmentally friendly and renewable fuels to allow an exchange from fossil fuels. The fuel must be made from cheap and ‘endless’ resources that are available everywhere. The new research area on solar fuels, which are made from solar energy and water, aims to meet this demand. The paper discusses why we need a solar fuel and why electricity is not enough; it proposes solar energy as the major renewable energy source to feed from. The present research strategies, involving direct, semi-direct and indirect approaches to produce solar fuels, are overviewed.  相似文献   

9.

Agriculture is the main occupation of the majority of people in India. The majority of the population in India is dependent (directly or indirectly) on agriculture as an occupation. The agriculture sector requires more freshwater and power for better yield in the current scenario. Nevertheless, the ever-increasing rate of energy consumption, limited fossil fuels, and rising pollution have made the expansion of renewable resources essential. Due to the suitable solar potential available in India, the deployment of solar energy has been more as compared to other renewable resources. The current study aims to discuss the various technologies, initiatives and policies of solar energy usage in agriculture. This work delivers an assessment of the advancement of solar energy vis-à-vis agricultural applications through the greenhouse concept and photovoltaic approach in India. Various agricultural applications of solar energy, such as solar water desalination system, solar water pumping system, solar crop dryer system for food safety, etc. are discussed as a means to promote solar-based technology. It also highlights the scenario of solar energy in India with important accomplishments, developmental approaches, and future potential. In-depth studies of various policies and government initiatives including those in research and development are also discussed. The current survey on solar technologies will be an aid to agribusiness frameworks to comprehend the statuses, obstructions, and extent of advancement. Finally, some future recommendations for further developments in this approach are discussed. This work sheds light on varied areas of solar energy-assisted agricultural systems as a potentially sustainable and eco-friendly pathway.

Graphical abstract
  相似文献   

10.
Watson SB  Ridal J  Zaitlin B  Lo A 《Chemosphere》2003,51(8):765-773
Pulp and paper mills are well known for their sharp, sulphurous stack emissions, but the secondary treatment units also can be significant contributors to local odour. This study investigated the source(s) of earthy/musty emissions from a mixed hardwood pulp mill in response to a high local odour. Samples from five sites in the mill over five months were analyzed for earthy/musty volatile organic compounds (VOCs), examined microscopically, and plated for bacteria and moulds. In all cases, activated sludge showed substantial geosmin levels and to a lesser extent 2-methylisoborneol (MIB) at 2000-9000 times their odour threshold concentrations (OTCs). These VOCs were lower or absent upstream and downstream, suggesting that they were produced within the bioreactor. Geosmin and MIB were highest in late summer and declined over winter, and correlated with different operating parameters. Geosmin was most closely coupled with temperature and MIB with nitrogen uptake. Cyanobacteria were present in all sludge samples, but actinomycetes were not found. Gram-negative bacteria and one fungal species isolated from the bioreactor and secondary outfall tested negative for geosmin or MIB. We conclude: (i) geosmin and MIB contribute significantly to airborne odours from this mill, but are diluted below OTC levels at the river; (ii) these VOCs are generated by biota in the activated sludge; and (iii) cyanobacteria are likely primary source(s). The growth of cyanobacteria in activated sludge represents a loss of energy to the heterotrophic population; thus earthy/musty odours may represent a diagnostic for less than optimal conditions.  相似文献   

11.
Filamentous, nitrogen-fixing cyanobacteria form extensive summer blooms in the Baltic Sea. Their ability to fix dissolved N2 allows cyanobacteria to circumvent the general summer nitrogen limitation, while also generating a supply of novel bioavailable nitrogen for the food web. However, the fate of the nitrogen fixed by cyanobacteria remains unresolved, as does its importance for secondary production in the Baltic Sea. Here, we synthesize recent experimental and field studies providing strong empirical evidence that cyanobacterial nitrogen is efficiently assimilated and transferred in Baltic food webs via two major pathways: directly by grazing on fresh or decaying cyanobacteria and indirectly through the uptake by other phytoplankton and microbes of bioavailable nitrogen exuded from cyanobacterial cells. This information is an essential step toward guiding nutrient management to minimize noxious blooms without overly reducing secondary production, and ultimately most probably fish production in the Baltic Sea.  相似文献   

12.
Solar ultraviolet radiation (UVR, 280-400 nm) is known to cause a number of detrimental effects in aquatic organisms. The area of Patagonia, which is sometimes under the influence of the Antarctic ozone "hole", occasionally receives enhanced levels of ultraviolet B radiation (UV-B, 280-315 nm). Great efforts have been put into creating a database for UVR climatology by installing a variety of instruments in several localities in the region. However, no comparable effort has been made to determine the impact of normal and enhanced levels of solar UVR upon organisms. Most of the photobiological research in aquatic systems of Patagonia has focused on determining the effects of solar UVR in phytoplankton photosynthesis, DNA damage, and mortality, fecundity and repair mechanisms in zooplanktonic species. Some work has also been done with fish larvae and interactions between species at low trophic levels of the aquatic food web. The results of these studies indicate that in order to assess the overall impact of UVR in a certain waterbody, it is also necessary to consider other variables, such as changes in cloudiness, ozone concentrations, differential sensitivity of organisms, and depth of the upper mixed layer/epilimnion. All factors that can preclude or benefit the acclimation of species to solar radiation.  相似文献   

13.

Due to current water stress, there is a problem with hygiene and sanitation in many parts of the world. According to predictions from the United Nations, more than 2.7 billion people will be challenged by water scarcity by the middle of the century. The water industry is increasingly interested in desalination of the sea, ocean, and brackish water. Desalination processes are widely classified as thermal or membrane technologies. In the Middle East, thermal desalination remains the primary technology of choice, but membrane processes, for example reverse osmosis (RO), have evolved rapidly and in many other parts of the world are currently even surpassing thermal processes. The purpose of this paper is to review the renewable energy source, the technology, desalination systems, and their possible integration with renewable energy resources and their cost. This article suggests that the most practical renewable desalination techniques to be used are the solar photovoltaic integrated RO desalination process, the hybrid solar photovoltaic-wind integrated RO desalination process, the hybrid solar photovoltaic-thermal (PVT) integrated RO desalination process, and the hybrid solar photovoltaic-thermal effect distillation (PVT-MED) desalination process. However, intensive research is still required to minimize the cost, reduce the heat loss, enhance the performance, and increase the productivity.

  相似文献   

14.
As the eutrophication of lakes becomes an increasingly widespread phenomenon, cyanobacterial blooms are occurring in many countries. Although some research has been reported, there is currently no good method for bloom removal. We propose here a new two-step integrated approach to resolve this problem. The first step is the inactivation of the cyanobacteria via the addition of H(2)O(2). We found 60 mg/L was the lowest effective dose for a cyanobacterial concentration corresponding to 100 μg/L chlorophyll-a. The second step is the flocculation and sedimentation of the inactivated cyanobacteria. We found the addition of lake sediment clay (2 g/L) plus polymeric ferric sulfate (20 mg/L) effectively deposited them on the lake bottom. Since algaecides and flocculants had been used separately in previous reports, we innovatively combined these two types of reagents to remove blooms from the lake surface and to improve the dissolved oxygen content of lake sediments.  相似文献   

15.
Ecosystem consequences of cyanobacteria in the northern Baltic Sea   总被引:1,自引:0,他引:1  
Cyanobacteria of the Baltic Sea have multiple effects on organisms that influence the food chain dynamics on several trophic levels. Cyanobacteria contain several bioactive compounds, such as alkaloids, peptides, and lipopolysaccharides. A group of nonribosomally produced oligopeptides, namely microcystins and nodularin, are tumor promoters and cause oxidative stress in the affected cells. Zooplankton graze on cyanobacteria, and when ingested, the hepatotoxins (nodularin) decrease the egg production of, for example, copepods. However, the observed effects are very variable, because many crustaceans are tolerant to nodularin and because cyanobacteria may complement the diet of grazers in small amounts. Cyanobacterial toxins are transferred through the food web from one trophic level to another. The transfer rate is relatively low in the pelagic food web, but reduced feeding and growth rates of fish larvae have been observed. In the benthic food web, especially in blue mussels, nodularin concentrations are high, and benthic feeding juvenile flounders have been observed to disappear from bloom areas. In the littoral ecosystem, gammarids have shown increased mortality and weakening of reproductive success under cyanobacterial exposure. In contrast, mysid shrimps seem to be tolerant to cyanobacterial exposure. In fish larvae, detoxication of nodularin poses a metabolic cost that is reflected as decreased growth and condition, which may increase their susceptibility to predation. Cyanobacterial filaments and aggregates also interfere with both hydromechanical and visual feeding of planktivores. The feeding appendages of mysid shrimps may clog, and the filaments interfere with prey detection of pike larvae. On the other hand, a cyanobacterial bloom may provide a refuge for both zooplankton and small fish. As the decaying bloom also provides an ample source of organic carbon and nutrients for the organisms of the microbial loop, the zooplankton species capable of selective feeding may thrive in bloom conditions. Cyanobacteria also compete for nutrients with other primary producers and change the nitrogen (N): phosphorus (P) balance of their environment by their N-fixation. Further, the bioactive compounds of cyanobacteria directly influence other primary producers, favoring cyanobacteria, chlorophytes, dinoflagellates, and nanoflagellates and inhibiting cryptophytes. As the selective grazers also shift the grazing pressure on other species than cyanobacteria, changes in the structure and functioning of the Baltic Sea communities and ecosystems are likely to occur during the cyanobacterial bloom season.  相似文献   

16.

The present paper proposes a methodology based on the implementation and assessment of autoregressive (AR) solar radiation models for generating synthetic series and providing guidance on bidding strategies for power purchase agreements. The work considered conventional and periodic AR models with different lag orders, assessing the models against real solar radiation measurements. The synthetic series generation process developed 1000 1-year monthly solar radiation scenarios that were later employed for simulating electric energy production and power purchase agreement models. This application allowed one to evaluate the risk associated with the energy supply security, supporting bidding strategies in energy auctions. A real study case is also illustrated in detail, referring to a spot in the Brazilian best irradiance area.

  相似文献   

17.
Tamaura Y 《Ambio》2012,41(Z2):108-111
When a concentrated solar beam is irradiated to the ceramics such as Ni-ferrite, the high-energy flux in the range of 1500-2500 kW/m(2) is absorbed by an excess Frenkel defect formation. This non-equilibrium state defect is generated not by heating at a low heating-rate (30 K/min), but by irradiating high flux energy of concentrated solar beam rapidly at a high heating rate (200 K/min). The defect can be spontaneously converted to chemical energy of a cation-excess spinel structure (reduced-oxide form) at the temperature around 1773 K. Thus, the O(2) releasing reaction (α-O(2) releasing reaction) proceeds in two-steps; (1) high flux energy of concentrated solar beam absorption by formation of the non-equilibrium Frenkel defect and (2) the O(2) gas formation from the O(2-) in the Frenkel defect even in air atmosphere. The 2nd step proceeds without the solar radiation. We may say that the 1st step is light reaction, and 2nd step, dark reaction, just like in photosynthesis process.  相似文献   

18.
BACKGROUND, AIM, AND SCOPE: Chromium(VI) resistance and its association with extracellular polymeric substance (EPS) concentration in cyanobacteria was investigated. Increased EPS concentration was associated with Cr(VI) resistance. The most resistant isolate, Chroococcus sp. H(4), secreted the most EPS (427 mg/L). MATERIALS AND METHODS: EPS concentration of the two most resistant isolates (Chroococcus sp. H(4) and Synechocystis sp. S(63)) was investigated following exposure to 15 and 35 ppm Cr(VI). The composition of EPS produced by Chroococcus sp. H(4) following exposure to 10 ppm Cr(VI) was analyzed using high-performance liquid chromatography. Control EPS was composed of glucose (99%) and galactronic acid (1%); in the presence of 10 ppm Cr(VI), EPS composition changed to glucose (9%), xylose (75%), rhamnose (14%), and galacturonic acid (2%). RESULTS AND DISCUSSION: Results indicated that (1) exposure to elevated concentrations of Cr(VI) affected the composition of EPS produced by Chroococcus sp. H(4), and (2) there was a correlation between Cr(VI) resistance and EPS concentration in some cyanobacteria.  相似文献   

19.
Edoff M 《Ambio》2012,41(Z2):112-118
Electricity generation by photovoltaic conversion of sunlight is a technology in strong growth. The thin film technology is taking market share from the dominant silicon wafer technology. In this article, the market for photovoltaics is reviewed, the concept of photovoltaic solar energy conversion is discussed and more details are given about the present technological limitations of thin film solar cell technology. Special emphasis is given for solar cells which employ Cu(In,Ga)Se(2) and Cu(2)ZnSn(S,Se)(4) as the sunlight-absorbing layer.  相似文献   

20.

Background, aim, and scope  

Hydrogen is a clean and efficient energy source and has been deemed as one of the most promising carriers of new energy for the future. From an engineering point of view, producing hydrogen by mixed cultures is generally preferred because of lower cost, ease of control, and the possible use of organic waste as feedstock. The biological hydrogen production has been intensively studied in recent decades. So far, most investigates of biohydrogen production are still confined to using pure carbohydrates and carbohydrate-rich wastewater. Nowadays, the large amounts of livestock manure, which come from cattle feedlots, poultry, and swine buildings, are causing a major environmental issue because it has become a primary source of odors, gases, dust, and groundwater contamination. The increasingly stringent requirements for pollution control on livestock manures are challenging the scientific community to develop new waste treatment strategies. Thus, there is a pressing need to develop nonpolluting and renewable energy source utilizing the organic waste (e.g., livestock manure). It is well known that anaerobic digestion had successfully been used for the disposal of manures to produce methane in the last two decades. Recently, an alternative strategy has been developed to convert livestock manures (e.g., dairy manures) to biohydrogen as a high value-added clean energy source instead of methane. However, little information is available on hydrogen production from dairy manure via the mixed anaerobic microbe. As far as we know, the hydrogen production is habitually accompanied with production of volatile fatty acids (VFAs), such as acetate, butyrate, and propionate, which are also an optimal feedstock for production of methane by anaerobic digestion. Provided that the biohydrogen production from dairy manure is further combined with the anaerobic digestion of the effluent from the producing hydrogen reactor that would be a one-stone two-bird paradigm, it not only produces a clean and readily usable biologic energy but also cleans up simultaneously the environment in a sustainable fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号