首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Many marine species, including mussels in the Mytilus edulis species group (i.e. M. edulis L., M. galloprovincialis Lamarck, and M. trossulus Gould), have an antitropical distribution pattern, with closely related taxa occurring in high latitudes of the northern and southern hemispheres but being absent from the tropics. We tested four hypotheses to explain the timing and route of transequatorial migration by species with antitropical distributions. These hypotheses yield different predictions for the phylogenetic relationship of southern hemisphere taxa relative to their northern counter-parts. The three Mytilus species were used to test these hypotheses since they exhibit a typical antitropical distribution and representative taxa occur in both the Pacific and Atlantic. Two types of mtDNA lineages were found among populations of mussels collected from the southern hemisphere between 1988 and 1996; over 90% of the mtDNA lineages formed a distinct subclade which, on average, had 1.4% divergence from haplotypes found exclusively in northern Atlantic populations of M. galloprovincialis. These data indicate that southern hemisphere mussels arose from a migration event from the northern hemisphere during the Pleistocene via an Atlantic route. The remainder of the southern hemisphere lineages (<10%) were very closely related to mtDNA haplotypes found in both M. edulis and M. galloprovincialis in the northern hemisphere, suggesting a second, more recent migration to the southern hemisphere. There was no evidence that southern hemisphere mussels arose from Pacific populations of mussels. Received: 8 December 1998 / Accepted: 8 November 1999  相似文献   

2.
Dispersal varies among species according to different biological and environmental factors. It is known that there is strong genetic division between the Ocean Surgeonfish (Acanthurus tractus) and the Barber Surgeonfish (Acanthurus bahianus) in the Caribbean and southern Atlantic biogeographic provinces with relation to the Amazon–Orinoco outflows. We analyzed cytb gene sequence diversity from 149 individuals collected at five localities around Cuba between October 2006 and February 2010. As expected, most individuals had haplotypes identical or closely related to those previously reported for the Caribbean. However, south Atlantic lineage haplotypes were also found in all surveyed localities with frequencies around 5 %. This finding suggests that A. bahianus has dispersed in recent times across the Amazon–Orinoco barrier, probably because environmental perturbations have aided dispersal.  相似文献   

3.
The population genetic structure of the neon damselfish (Pomacentrus coelestis) in the northwestern Pacific Ocean was revealed by the hypervariable control region of the mitochondrial gene (343 bp). In total, 170 individuals were sampled from 8 localities distributed between Taiwan and Japan, and 71 haplotypes were obtained through sequence alignment. High haplotype diversity (= 0.956 ± 0.008) with low nucleotide diversity (π = 0.010 ± 0.006) was observed, and the results of the mismatch distribution test suggested that a historical population expansion after a period of population bottleneck might have occurred among P. coelestis populations. Based on the results of the UPGMA tree and AMOVA (Φct = 0.193, < 0.05) analyses, fish populations from eight localities could be divided into two groups: one includes populations from localities around mainland Japan, and the other includes those from Okinawa and southern Taiwan. A genetic break was found between populations from mainland Japan and Okinawa, and this break was congruent with the pattern of phenotypic variations documented in previous studies. This evidence supports the latitudinal variation of reproductive traits among P. coelestis populations likely being genetically based. It is suggested that the changes in sea level and sea surface temperatures during past glaciations might have resulted in population bottlenecks in P. coelestis and the modern populations in the northern West Pacific are likely the results of recolonization after such events. The Kuroshio Current acts not only as a vehicle for larval transport along its pathway (between populations in southern Taiwan and Okinawa) but also as a barrier for larval dispersal across the Kuroshio axis (between populations in mainland Japan and Okinawa). Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Sea spiders are conspicuous, and often abundant, members of the Antarctic benthic community. Nymphonidae (Pycnogonida) in Southern Ocean waters comprise over 240 species which are often difficult to assign due to their intraspecific ‘highly variable’ morphology. In particular, Nymphon australe, the numerically dominant species in Antarctic waters is known to have a high level of phenotypic variation in external morphology and is also reported to have a circumpolar distribution. Circumpolarity seems contradictory to the pycnogonid’s brooding lifestyle and presumably limited dispersal. Here we examine the genetic diversity of several Nymphon species collected in the Antarctic Peninsular region. Concomitantly, we assess the genetic structure of N. australe to gain insight into Nymphon dispersal capacity. Cytochrome c oxidase subunit I (COI) and 16S ribosomal gene data suggest a recent common history and/or recent gene-flow of N. australe populations across nearly 800 km of the Antarctic Peninsula. Furthermore, these data support that the Antarctic Peninsula region may hold two previously unrecognized species of Nymphon. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Current taxonomy indicates a single global species of the Great Barracuda (Sphyraena barracuda) despite differences in color and behavior between Atlantic and Pacific forms. To investigate these differences and qualify the dispersal characteristics of this unique coastal–pelagic teleost (bony fish), we conducted a global phylogeographic survey of 246 specimens from thirteen sampling locations using a 629-base pair fragment of mtDNA cytochrome b. Data indicate high overall gene flow in the Indo-Pacific over large distances (>16,500 km) bridging several biogeographic barriers. The West Atlantic population contains an mtDNA lineage that is divergent from the Indo-Pacific (d = 1.9%), while the East Atlantic (N = 23) has two mutations (d = 0.6%) apart from the Indo-Pacific. While we cannot rule out distinct evolutionary partitions among ocean basins based on behavior, coloration, and near-monophyly between Atlantic and Indo-Pacific subpopulations, more investigation is required before taxonomic status is revised. Overall, the pattern of high global dispersal and connectivity in S. barracuda more closely resembles those reported for large oceanic predators than reef-associated teleosts.  相似文献   

6.
Discrete estuary subpopulations of the mud crab Hemigrapsus oregonensis (Dana, 1851) are connected via larval dispersal. Sequence variation at the mtDNA COI locus was examined in eight populations sampled in 2001–2002 from central California through northern Oregon in the northeast Pacific (36.6–45.8°N) to infer patterns of dispersal and historical connectivity in the region. Strong evidence for persistence since the mid-Pleistocene, with no range truncation resulting from southward shifting temperature isoclines, was provided by a phylogeographic pattern of haplotypes of an older clade distributed throughout the sampled range. A recently derived clade became widespread only north of Cape Blanco after the last glacial maximum. Its clear pattern of restriction to the northern area, in the absence of similarly restricted southern clades, suggests that contemporary dispersal around Cape Blanco is rare (population F ST = 0.192). Low pairwise differentiation within Oregon and within central California, as well as contrasts between northern and southern groups in the shape of the pairwise mismatch distribution, nucleotide diversity, and Tajima’s D suggest that these regions reflect different demographic histories. Potential mechanisms explaining this latitudinal break include contemporary coastal circulation patterns, selection, and ancient patterns of larval dispersal in the California Current.  相似文献   

7.
Blue mussels in the genus Mytilus first arrived in the Atlantic Ocean from the Pacific during the Pliocene, following the opening of the Bering Strait. Repeated periods of glaciation throughout the Pleistocene led to re-isolation of the two ocean basins and the allopatric divergence of Mytilus edulis in the Atlantic and M. trossulus in the Pacific. Mytilus trossulus has subsequently colonized the northwest Atlantic (NW Atlantic) so that the two species are presently sympatric and hybridize throughout much of the Canadian Maritimes and the Gulf of Maine. To estimate when M. trossulus arrived in the NW Atlantic, we have examined sequence variation within a portion of the female mtDNA lineage large untranslated region (F-LUR) for 156 mussels sampled from three Pacific and eleven Atlantic populations of M. trossulus. Although we found no evidence of reciprocal monophyly for Pacific and NW Atlantic M. trossulus, limited gene flow between ocean basins has led to the divergence of unique sequence clades within each ocean basin. In contrast, relative genetic homogeneity indicates high levels of gene flow within each basin. Coalescence-based analysis of the F-LUR sequences suggests that M. trossulus recolonized the NW Atlantic from the northeast Pacific subsequent to a demographic expansion in the Pacific that occurred ~96,000 years before present (ybp). Estimates of timing of divergence for Pacific and NW Atlantic populations and the time since expansion among NW Atlantic sequence clades indicate that M. trossulus arrived in the NW Atlantic more recently, between 20,000 and 46,000 ybp. Given that these estimates overlap with the dates of peak ice in the NW Atlantic during the last glacial maximum (LGM, ~18,000–21,000 ybp), we suggest that colonization of the NW Atlantic by M. trossulus occurred during, but more likely just subsequent to, the LGM and was followed by rapid temporal and spatial expansion in the region.  相似文献   

8.
Fungiacyathus marenzelleri (Vaughan, 1906) is a deep-water solitary coral, cosmopolitan in distribution that is found at depths of 300–6,328 m. This study examined gametogenesis, inter-annual variability and reproductive periodicity of F. marenzelleri collected from Station M (34°50′N, 123°00′W) in the northeast Pacific at a depth of 4,100 m. Samples were collected (May, June, October 1996; August 1998; February, June 2001; and June 2002) and histologically processed with spermatogenic stage, oocyte size and fecundity measured. Four stages of spermatogenesis were identified and all males contained multiple stages of sperm development in each seasonal sample. Three stages of oocyte development were identified; previtellogenic (<28–150 μm), vitellogenic (150–300 μm) and late vitellogenic (300–400 μm). Comparison of mean oocyte diameters among sampling dates showed there were no inter-annual variations or seasonal differences. Overall, fecundity was 1,290 (±407) oocytes polyp−1, and with no significant differences between sample months. Fecundity was not polyp-size dependent. This study shows a similar quasi-continuous mode of reproduction to this species examined from the Northeast Atlantic Ocean, but the fecundity is reduced by 50%. The reproductive output may fluctuate in relation to the input of organic material at this site, as shown by non-significant trends in the oocyte size-frequency and fecundity data. A quasi-continuous output of gametes would promote successful fertilisation and wide dispersal of the lecithotrophic larvae.  相似文献   

9.
Relatively few insects have invaded the marine environment, and only five species of sea skaters, Halobates Eschscholtz (Hemiptera: Gerridae), have successfully colonized the surface of the open ocean. All five species occur in the Pacific Ocean, H. germanus White also occurs in the Indian Ocean, whereas H. micans Esch- scholtz is the only species found in the Atlantic Ocean. We sequenced a 780 bp long region of the mitochondrial cytochrome oxidase subunit I gene (COI) for a total of 66 specimens of the five oceanic Halobates species. Our purpose was to investigate the genetic variation within species and estimate the amount of gene flow between populations. We defined 27 haplotypes for H. micans and found that haplotype lineages from each of the major oceans occupied by this species are significantly different, having sequences containing five to seven unique base substitutions. We conclude that gene flow between populations of H. micans inhabiting the Atlantic, Pacific, and Indian Ocean is limited and hypothesize that these populations have been separated for 1 to 3 million years. Similarly, there may be limited gene flow between H. germanus populations found in the Pacific and Indian Ocean and between H. sericeus populations inhabiting the northern and southern parts of the Pacific Ocean. Finally, we discuss our findings in relation to recent hypotheses about the influence of oceanic diffusion on the distribution and population structure of oceanic Halobates spp. Received: 29 July 1999 / Accepted: 23 November 1999  相似文献   

10.
Commercially harvested marine bivalve populations show a broad range of population-genetic patterns that may be driven by planktonic larval dispersal (gene flow) or by historical (genetic drift) and ecological processes (selection). We characterized microsatellite genetic variation among populations and year classes of the commercially harvested Arctic surfclam, Mactromeris polynyma, in order to test the relative significance of gene flow and drift on three spatial scales: within commercially harvested populations in the northwest Atlantic; among Atlantic populations; and between the Atlantic and Pacific oceans. We found small nonsignificant genetic subdivision among eight populations from the northwest Atlantic (F ST = 0.002). All of these Atlantic populations were highly significantly differentiated from a northeast Pacific population (F ST = 0.087); all populations showed high inbreeding coefficients (F IS = 0.432). We tested one likely source of heterozygote deficits by aging individual clams and exploring genetic variation among age classes within populations (a temporal Wahlund effect). Populations showed strikingly different patterns of age structure, but we found little differentiation among age classes. In one case, we were able to analyze genetic diversity between age classes older or younger than the advent of intensive commercial harvesting. The results generally suggest spatially broad and temporally persistent genetic homogeneity of these bivalves. We discuss the implications of the results for the biology and management of surfclam populations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Stock heterogeneity was investigated in albacore tuna (Thunnus alalunga, Bonnaterre 1788), a commercially important species in the North Atlantic Ocean and Mediterranean Sea. Twelve polymorphic microsatellite loci were examined in 581 albacore tuna from nine locations, four in the north-east Atlantic Ocean (NEA), three in the Mediterranean Sea (MED) and two in the south-western Pacific Ocean (SWP). Maximum numbers of alleles per locus ranged from 9 to 38 (sample mean, 5.2–22.6 per locus; overall mean, 14.2 ± 0.47 SE), and observed heterozygosities per locus ranged from 0.44 to 1.00 (overall mean: 0.79 ± 0.19 SE). Significant deficits of heterozygotes were observed in 20% of tests. Multilocus F ST values were observed ranging from 0.00 to Θ = 0.036 and Θ′ = 0.253, with a mean of Θ = 0.013 and Θ′ = 0.079. Pairwise F ST values showed that the SWP, NEA and MED stocks were significantly distinct from one another, thus corroborating findings in previous studies based on mitochondrial DNA, nuclear DNA (other than microsatellites) and allozyme analyses. Heterogeneity was observed for the first time between samples within the Mediterranean Sea. GENELAND indicated the potential presence of three populations across the NEA and two separate populations in the Mediterranean Sea. Observed genetic structure may be related to migration patterns and timing of movements of subpopulations to the feeding grounds in either summer or autumn. We suggest that a more intensive survey be conducted throughout the entire fishing season to ratify or refute the currently accepted genetic homogeneity within the NEA albacore stock.  相似文献   

12.
This study investigated the utility of microsatellite markers for providing information on levels of population connectivity for a low dispersing reef fish in New South Wales (NSW), Australia, at scales ≤400 km. It was hypothesized that the temperate damselfish Parma microlepis, which produces benthic eggs and has limited post-settlement dispersal, would exhibit spatial genetic structure and a significant pattern of isolation-by-distance (IBD). A fully nested hierarchical sampling design incorporating three spatial scales (sites, location and regions, separated by 1–2, 10–50 and 70–80 km respectively) was used to determine genetic variability at seven microsatellite loci. Broad-scale genetic homogeneity and lack of IBD was well supported by single and multi-locus analyses. The proportion of the total genetic variation attributable to differences among regions, locations or sites was effectively zero (Φ/R-statistics ≤0.007). The geographic distribution of genetic diversity and levels of polymorphism (H E 0.21–0.95) indicate high mutation rates, large effective population sizes, and high rates of gene flow. Significant gene flow may be driven by factors influencing pre-settlement dispersal, including the East Australian Current (EAC) and habitat continuity. Genetic connectivity may not reflect demographically important connectivity, but does imply that P. microlepis populations are well connected from an evolutionary perspective. Total observed genetic diversity was accounted for within 1–2 km of reef and could be represented within small Marine Protected Areas. Reef fishes in NSW which have life histories similar to P. microlepis (e.g. pre-settlement durations ≥2 weeks) are also likely to exhibit genetic homogeneity. Genetic markers are, therefore, most likely to provide information on demographically relevant connectivity for species with lower dispersal capabilities, small population sizes, short life spans, and whose habitats are rare, or patchily distributed along-shore. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Portions of the mitochondrial genome (ca. 4 kb), encoding three protein-coding (COI, ND4L, ND6) and two ribosomal RNA (srRNA, lrRNA) genes, were sequenced for all six currently recognized species, plus one form, of the pelagic calanoid copepod genus Neocalanus. In Neocalanus gracilis, the ND6 gene was not found in the sequenced portion of the mitochondrial genome. Unambiguously aligned sequences were subjected to Bayesian, maximum-likelihood, maximum-parsimony, and neighbor-joining analyses using Eucalanus bungii as an outgroup. The resultant tree topologies from these four methods were congruent, robust, and all nodes were supported by high bootstrap values and posterior probabilities of 92–100%. Two tropical and subtropical species (N. gracilis and N. robustior) occupied the most basal position, and a subantarctic (N. tonsus) and three subarctic Pacific species (N. cristatus, N. plumchrus, and N. flemingeri) diverged subsequently. Transequatorial dispersal of the ancestral population during glaciations is suggested for this pattern of speciation, in which sister clades exhibited antitropical distributions. Although the area of ocean is much broader in the subantarctic than the subarctic Pacific, a higher number of species occur in the subarctic Pacific (three) than the subantarctic (one). The possibility that marginal seas, such as Japan Sea and Okhotsk Sea, function as natal areas for the divergence of species is discussed.  相似文献   

14.
The nurse shark, Ginglymostoma cirratum, inhabits shallow, tropical, and subtropical waters in the Atlantic and the eastern Pacific. Unlike many other species of sharks, nurse sharks are remarkably sedentary. We assayed the mitochondrial control region and eight microsatellite loci from individuals collected primarily in the western Atlantic to estimate the degree of population subdivision. Two individuals from the eastern Atlantic and one from the Pacific coast of Panama also were genotyped. Overall, the mtDNA haplotype (h = 48 ± 5%) and nucleotide (π = 0.08 ± 0.06%) diversities were low. The microsatellite data mirror the mitochondrial results with the average number of alleles ([`(N)]A \bar{N}_{A}  = 9) and observed heterozygosity ([`(H)]O \bar{H}_{O}  = 0.58) both low. The low levels of diversity seen in both the mtDNA and the microsatellite may be due to historical sea level fluctuations and concomitant loss of shallow water habitat. Eight of the 10 pair-wise western Atlantic F ST estimates for mtDNA indicated significant genetic subdivision. Pair-wise F ST values for the microsatellite loci indicated a similar pattern as the mtDNA. The western Atlantic population of nurse sharks is genetically subdivided with the strongest separation seen between the offshore islands and mainland Brazil, likely due to deep water acting as a barrier to dispersal. The eastern and western Atlantic populations were closely related. The eastern Pacific individual is quite different from Atlantic individuals and may be a cryptic, sister species.  相似文献   

15.
Mitochondrial control region (HVR-1) sequences were used to identify patterns of genetic structure and diversity in Naso vlamingii, a widespread coral reef fish with a long evolutionary history. We examined 113 individuals from eight locations across the Indo-Pacific Ocean. Our aims were to determine the spatial scale at which population partitioning occurred and then to evaluate the extent to which either vicariance and/or dispersal events have shaped the population structure of N. vlamingii. The analysis produced several unexpected findings. Firstly, the genetic structure of this species was temporal rather than spatial. Secondly, there was no evidence of a barrier to dispersal throughout the vast distribution range. Apparently larvae of this species traverse vicariance barriers that inhibit inter-oceanic migration of other widespread reef fish taxa. Thirdly, an unusual life history and long evolutionary history was associated with a population structure that was unique amongst coral reef fishes in terms of the magnitude and pattern of genetic diversity (haplotype diversity, h = 1.0 and nucleotide diversity π = 13.6%). In addition to these unique characteristics, there was no evidence of isolation by distance (r = 0.458, R 2 = 0.210, P = 0.078) as has also been shown for some other widespread reef species. However, some reductions in gene flow were observed among and within Ocean basins [Indian–Pacific analysis of molecular variance (AMOVA), Φ st = 0.0766, P < 0.05; West Indian–East Indian–Pacific AMOVA Φ st = 0.079, P < 0.05]. These findings are contrasted with recent studies of coral reef fishes that imply a greater degree of spatial structuring in coral reef fish populations than would be expected from the dispersive nature of their life cycles. We conclude that increased taxon sampling of coral reef fishes for phylogeographic analysis will provide an extended view of the ecological and evolutionary processes shaping coral reef fish diversity at both ends of the life history spectrum.  相似文献   

16.
17.
Seabob shrimps of the genus Xiphopenaeus are important fishery resources along the Atlantic and Pacific coasts of Central and South America. The genus was considered to comprise two species: the Atlantic Xiphopenaeus kroyeri (Heller, Sitzungsber Math Naturwiss cl kaiserliche Akad Wiss Wien 45:389–426, 1862), and the Pacific Xiphopenaeus riveti (Bouvier, Bull Mus Hist Nat Paris 13:113–116, 1907). In a recent review, Xiphopenaeus was regarded as a monotypic genus, on the basis that no clear morphological differences could be found between Pacific and Atlantic specimens (Pérez Farfante and Kensley, Mem Mus Nat Hist Nat Paris 175:1–79, 1997). In the present work, nuclear (allozymes), and mitochondrial (Cytochrome Oxidase I) genes were used to demonstrate the validity of X. riveti and reveal the presence of two cryptic species of Xiphopenaeus within X. kroyeri in the Atlantic Ocean. The high levels of molecular divergence among these species contrast with their high morphological resemblance. Interspecific sequence divergences (Kimura 2-parameter distance) varied from 0.106 to 0.151, whereas intraspecific distances ranged from 0 to 0.008 in Xiphopenaeus sp. 1, from 0 to 0.003 in Xiphopenaeus sp. 2, and from 0.002 to 0.005 in X. riveti. In addition, five diagnostic allozyme loci were found between sympatric samples of Xiphopenaeus sp. 1 and 2 along the Brazilian coast. The results suggest that Xiphopenaeus sp. 2 from the Atlantic is more closely related to the Pacific X. riveti than to the Atlantic Xiphopenaeus sp. 1. Furthermore, a high level of genetic structuring (Xiphopenaeus sp. 1: F ST =0.026; P<0.05; Xiphopenaeus sp. 2: F ST =0.055; P<0.01) was found in the Brazilian Xiphopenaeus populations, indicating the presence of different genetic stocks in both Atlantic species. These findings have important commercial implications as they show that the fisheries of the two Atlantic species must be managed separately, and that each one is comprised of different populations.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

18.
 Phylogenetic analyses of the left domain of the mitochondrial DNA control-region sequence have been used to examine the relationships among species of the genus Merluccius (Rafinesque, 1810), and to compare these with hypotheses based on morphological, meristic and allozyme characters. Analysis of aligned sequences revealed that transition bias was much lower than in mammalian mtDNA, and that nucleotide composition of control-region sequences was biased toward A and T. We have roughly calibrated a molecular clock for the genus, based on the rise of the Isthmus of Panamá, which is believed to have created a barrier to dispersal between marine species of the Atlantic and Pacific Oceans. Our mtDNA-based phylogeny was highly congruent with allozyme-based phylogenies, but poorly so with a previously described phylogeny based on morphology. Specifically, our phylogeny resolved two well-supported principal clades, one of American (west Atlantic and east Pacific) species and the other of Euro–African (east Atlantic) species. This suggests an evolutionary history during which the ancestral lineage of Merluccius was divided between two geographic regions, with subsequent dispersal and vicariant events resulting in the evolution and distribution of extant taxa. However, the relationships between some taxa within the American clade could not be resolved. We suggest that this is consistent with an hypothesis of a rapid origin and radiation of these taxa. Received: 12 December 1998 / Accepted: 15 October 1999  相似文献   

19.
Escolar (Lepidocybium flavobrunneum) is a large, mesopelagic fish that inhabits tropical and temperate seas throughout the world, and is a common bycatch in pelagic longline fisheries that target tuna and swordfish. Few studies have explored the biology and natural history of escolar, and little is known regarding its population structure. To evaluate the genetic basis of population structure of escolar throughout their range, we surveyed genetic variation over an 806 base pair fragment of the mitochondrial control region. In total, 225 individuals from six geographically distant locations throughout the Atlantic (Gulf of Mexico, Brazil, South Africa) and Pacific (Ecuador, Hawaii, Australia) were analyzed. A neighbor-joining tree of haplotypes based on maximum likelihood distances revealed two highly divergent clades (δ = 4.85%) that were predominantly restricted to the Atlantic and Indo-Pacific ocean basins. All Atlantic clade individuals occurred in the Atlantic Ocean and all but four Pacific clade individuals were found in the Pacific Ocean. The four Atlantic escolar with Pacific clade haplotypes were found in the South Africa collection. The nuclear ITS-1 gene region of these four individuals was subsequently analyzed and compared to the ITS-1 gene region of four individuals from the South Africa collection with Atlantic clade haplotypes as well as four representative individuals each from the Atlantic and Pacific collections. The four South Africa escolar with Pacific mitochondrial control region haplotypes all had ITS-1 gene region sequences that clustered with the Pacific escolar, suggesting that they were recent migrants from the Indo-Pacific. Due to the high divergence and geographic separation of the Atlantic and Pacific clades, as well as reported morphological differences between Atlantic and Indo-Pacific specimens, consideration of the Atlantic and Indo-Pacific populations as separate species or subspecies may be warranted, though further study is necessary.  相似文献   

20.
The orange roughy Hoplostethus atlanticus is a well-known commercial species with a global distribution. There is no consensus about levels of connectivity among populations despite a range of techniques having been applied. We used cytochrome c oxidase subunit I (COI) and cytochrome b sequences to study genetic connectivity at a global scale. Pairwise ΦST analyses revealed a lack of significant differentiation among samples from New Zealand, Australia, Namibia, and Chile. However, low but significant differentiation (ΦST = 0.02–0.13, P < 0.05) was found between two Northeast Atlantic sites and all the other sites with COI. AMOVA and the haplotype genealogy confirmed these results. The prevalent lack of genetic differentiation is probably due to active adult dispersal under the stepping-stone model. Demographic analyses suggested the occurrence of two expansion events during the Pleistocene period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号