首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The dinoflagellate symbionts (zooxanthellae) present in many reef corals aid in the survival of the symbiotic unit in nitrogen deficient tropical waters by providing additional routes of nitrogen uptake and metabolism. The enzymatic pathway of ammonia assimilation from seawater and the re-assimilation of coral ammonium waste by zooxanthellae was studied by examining the affinity of glutamine synthetase for one of its substrates, ammonia. Glutamine synthetase activity was measured in dinoflagellates of the species Symbiodinium microadriaticum found in symbiotic association with various marine coelenterates. Michaelis-Menten kinetics for the substrate ammonia were determined for freshly isolated dinoflagellates from Condylactis gigantea (apparent NH3 Km=33 M) and for cultured dinoflagellates from Zoanthus sociatus (apparent NH3 Km=60 M). On the basis of the low apparent Kms for NH3, it appears that ammonia assimilation by these symbiotic dinoflagellates occurs via the glutamine synthetase/glutamate synthase pathway. Additionally, the uptake of exogenous ammonium by an intact coelenterate-dinoflagellate symbiosis was strongly inhibited by 0.5 mM methionine sulfoximine, and inhibitor of glutamine synthetase.  相似文献   

2.
In fast, glycolytic muscles, oxidative phosphorylation presumably facilitates recuperation from exhaustive exercise and supports growth and maintenance metabolism. Given the shifts in pH with extensive glycolytic activity, the pH optima of mitochondrial processes should indicate whether mitochondria are adapted for recuperation from exercise or for growth and maintenance. We examined this question using mitochondria from the phasic adductor muscle of the scallop, Euvola (Pecten) ziczac, collected from the Golfo de Cariaco, Venezuela in 1992 and 1993. Scallop muscle mitochondria showed well coupled oxidation of glutamate and pyruvate at pH 7.0 and 6.4. The preferred substrates (glutamate, pyruvate and succinate) were oxidized at approximately 40 nmol O2 min-1 mg-1 mitochondrial protein at 25°C, while malate and glutamine were oxidized at 75% and proline at 30% of these rates. Neither palmitoyl carnitine nor aspartate were oxidized. Succinate oxidation was not coupled to ADP utilization at pH 7.0 but was somewhat coupled at pH 6.4. Generally, State 3 rates of oxygen uptake were similar at pH 7.0 and 6.4. Maximal rates of oxidation of glutamate and pyruvate showed broad pH optima. For both glutamate and pyruvate, the highest respiratory control ratio (RCR) values were found at pH 6.5. The saturation curves of scallop muscle mitochondria for pyruvate, glutamate and ADP were well described by the Michaelis-Menten equation. The affinity for pyruvate was greater at pH 6.4 (apparent K m, app=0.013 mM) than at pH 7.0 (K m, app=0.026 mM) while the affinity for ADP (K m, app=0.015 mM) and that for glutamate (K m, app=0.55 mM) changed little with pH. The ADP affinity was the same whether pyruvate or glutamate was the carbon substrate. The combination of maintenance of sensitivity to ADP with an enhanced affinity for pyruvate at acidic pH values should facilitate recuperation from bouts of glycolytic activity. Scallops harvested in September and those harvested in January differed in the maximal rates of glutamate and pyruvate oxidation.  相似文献   

3.
The -N-acetyl-D-glucosaminidase (NAGase, EC 3.2.1.52) from prawn (Penaeus vannamei) was purified by extraction with 30% ethanol solution and ammonium sulfate fractionation, then chromatographed on Sephadex G-100 followed by DEAE-cellulose (DE-32) columns. The purified enzyme determined to be homogeneous by polyacrylamide gel electrophoresis (PAGE) and SDS-PAGE. The specific activity of the purified enzyme was 1,560 U mg–1. Enzyme molecular weight was determined to be 105,000 Da; it contained two subunits of the same mass (45,000 Da). The pI value was calculated to be 4.8 by isoelectric focusing. The optimum pH and optimum temperature of the enzyme for the hydrolysis of pNP--D-GlcNAc (enzyme substrate) were determined to be pH 5.2 and 45°C, respectively. The behavior of the enzyme during hydrolysis of pNP--D-GlcNAc followed Michaelis–Menten kinetics, with Km=0.254 mM and Vm=9.438 M min–1, at pH 5.2 and 37°C. The stability of the enzyme was investigated, and the results showed that the enzyme was stable in a pH range from 4.2 to 10.0 and at temperatures <40°C. The effects of metal ions on the enzyme were also studied. Li+, Na+ and K+ had no influence on enzyme activity. Mg2+, Ca2+ and Mn2+ activated the enzyme, while Ba2+, Zn2+, Co2+, Cd2+, Hg2+, Pb2+ Cu2+, Fe3+ and Al3+ showed various degrees of inhibitory effects on the enzyme.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

4.
McGrath  S. M.  Sullivan  C. W. 《Marine Biology》1981,62(2-3):217-226
The natural concentration (S n) of dissolved total adenylates TA(=AMP+ADP+ATP) in coastal seawater from a depth of 1 m at 5 stations (California, USA) sampled periodically for 1 yr had a mean value ±1 SD of 2.8±1.7 nmol TA1-1. The specific uptake rates of TA by microheterotrophs at a station inside the Los Angeles Harbor and at a station 1.5 km offshore in the San Pedro Channel were studied by simple uptake and saturation-type kinetic analysis using 3H-AMP as a tracer. Within the harbor, the specific uptake rate (nmol TA 109 cell-1 h-1) at S n ranged 10-fold from 0.028 in December to 0.28 in August. K t (half-saturation constant) values always exceeded theS n concentrations in any given month, and were greater in the harbor than in the channel. Generally, over 80% of biological uptake of 3H-AMP was associated with organisms <1.0 m, a size class accounting for about 20% of the total particulate adenylate concentration in the 0.2 to 203 m size fraction. Assuming steady-state conditions for the dissolved adenylate pool, we propose a model in which losses from this pool are balanced by inputs to the pool through inefficient feeding, lysis and decomposition of particulate adenylates.  相似文献   

5.
Octopine dehydrogenase from the nemertean Cerebratulus lacteus was purified over 1000-fold to almost homogeneity. The enzyme does not bind to arginine Sepharose 4B. It has a monomeric structure with a relative molecular mass of 40000. Two isoenzymes were identified with isoelectric points of 5.6 and 5.4, whereas the purified isoenzymes of Pecten jacobaeus adductor mucles (which bind to arginine Sepharose 4B) had lower IEP's of 4.9 and 4.7. Apparent Km's of the nemertean ODH for arginine and pyruvate are dependent on the respective co-substrate concentration. This phenomenon may result in activation of ODH and, thus, production of octopine in locomotory highly active individuals while attacking food, especially when this takes place in a hypoxic habitat, such as decaying mud near the high-water mark. The apparent Km's for octopine (0.22 mM) and NAD+ (14 M) are low. Octopine is a substrate inhibitor for the reverse reaction above 2 mM, and a product inhibitor of the forward reaction by 50% at 1.2 mM. Therefore, only small amounts of octopine are likely to accumulate in vivo. Amino acid substrate specificity is limited to guanidino amino acids. We believe that the amino acid substrate specificity is not an evolutionary modification, but rather that it is narrowed to guanidino amino acids (or even specificity to arginine) in those species where ODH has a physiological function in maintaining redox balance during exercise. The specificity for keto acids is dependent on chain length, (-ketobutyrate>-ketocapronate); a second carboxyl group inactivates the enzyme.  相似文献   

6.
E. Pfeiler 《Marine Biology》1997,127(4):571-578
Bonefish (Albula sp.) larvae (leptocephali) from the Gulf of California complete metamorphosis in ˜10 d in natural seawater (35‰S; Ca2+ conc = 10.5 mM). The increase in ossification that occurs near the end of the non-feeding metamorphic period, in addition to the ability of larvae to complete metamorphosis in dilute seawater (8‰ S) prompted the present study, where the effects of varying the external calcium ion concentration, [Ca2+]e, of artificial seawater (ASW) on the survival, development and internal (whole-body) calcium ion content, (Ca2+)i, of unfed metamorphosing larvae were investigated. Early-metamorphosing larvae placed in␣ASW, where [Ca2+]e = 10.1 mM, survived for up to 10 d and developed normally without exogenous nutrients. In shorter-term experiments (4 to 5 d), no differences in survival were found for larvae in ASW with [Ca2+]e rang-ing from 1.5 to 10.1 mM. However, in Ca2+-free ASW, most larvae died within 27 h and no larvae survived more than 42 h; the median lethal time (LT50), and its 95% confidence limits, were 14.5 (10.0 to 20.9) h. High mortality (81% after 20 h) also occurred in 1.0 mM Ca2+ ASW, but 2 of 16 larvae tested survived for 96 h. The 96 h median tolerance limit (TLM), corrected for control mortality, was 1.2 mM Ca2+. In natural seawater, larval (Ca2+)i remained relatively constant ( = 0.419 mg larva−1)␣in early- and intermediate-metamorphosing larvae, and then increased to a mean value of 0.739 mg larva−1 in advanced larvae, indicating that Ca2+ was␣taken up from the medium at this stage; the increase in (Ca2+)i corresponded to the period of ossification of the vertebral column. Internal (whole-body) magnesium ion content (Mg2+)i showed no significant change during metamorphosis ( = 0.089 mg larva−1). No significant differences in (Ca2+)i were found in advanced larvae in natural seawater and those in ASW, with [Ca2+]e ranging from 2.0 to 10.1 mM. However, clearing and staining revealed that ossification of the vertebral column had not yet occurred in advanced larvae from 2.0 to 10.1 mM Ca2+ ASW. Also, low [Ca2+]e (1.0 to 2.0 mM) usually produced deformed larvae that swam erratically, at times showing “whirling” behavior. Received: 21 August 1996 / Accepted: 26 August 1996  相似文献   

7.
The substrate analogue [14C]-methylammonium was used to study ammonium/methylammonium uptake by Symbiodinium microadriaticum (zooxanthellae). The value of the Michaelis constant (K m) for the uptake system was approximately 35 M with methylammonium as substrate; ammonium was a competitive inhibitor of methylammonium uptake, and the K m for ammonium uptake (determined as the inhibition constant, K i, for methylammonium) was 6.6 M. Methylammonium uptake by zooxanthellae was light-dependent. Methylammonium uptake rates of zooxanthellae which had been freshly isolated from the hermatypic coral Acropora formosa (0.85±0.05x10-10 mol min-1 cell-1) were lower than those of axenic cultures of the zooxanthellae from Montipora verrucosa (Acroporidae) grown under various nitrogen regimes (1.6 to 12x10-10 mol min-1 cell-1). Maximum uptake rates were found for ammonium-starved cultured M. verrucosa zooxanthellae (10.2 to 12x10-10 mol min-1 cell-1); M. verrucosa zooxanthellae growing with ammonium as nitrogen source and zooxanthellae which had been freshly isolated from A. formosa gave similar and considerably lower uptake rates (0.85 to 1.6x10-1 mol min-1 cell-1). These results suggest that either coral tissue contains sufficient ammonium to repress synthesis of the uptake system of the algal symbionts or, alternatively, there are additional barriers to ammonium transport for zooxanthellae in vivo.  相似文献   

8.
Growth characteristics and nutrient uptake kinetics were determined for zooxanthellae (Gymnodinium microadriaticum) in laboratory culture. The maximum specific growth rate (max) was 0.35 d-1 at 27 °C, 12 hL:12 hD cycle, 45 E m-2 s-1. Anmmonium and nitrate uptake by G. microadriaticum in distinct growth phases exhibited Michaelis-Menten kinetics. Ammonium half-saturation constants (Ks) ranged from 0.4 to 2.0 M; those for nitrate ranged from 0.5 to 0.8 M. Ammonium maximum specific uptake rates (Vmax) (0.75 to 1.74 d-1) exceeded those for nitrate (0.14 to 0.39 d-1) and were much greater than the maximum specific growth rate (0.35 d-1), suggesting that ammonium is the more significant N source for cultured zooxanthellae. Ammonium and nitrate Vmax values compare with those reported from freshly isolated zooxanthellae. Light enhanced ammonium and nitrate uptake; ammonium inhibited nitrate uptake which was not reported for freshly isolated zooxanthellae, suggesting that physiological differences exist between the two. Knowledge of growth and nutrient uptake kinetics for cultured zooxanthellae can provide insight into the mechanisms whereby nutrients are taken up in coral-zooxanthelae symbioses.Contribution No. 1515 from the University of Maryland Center for Environmental and Estuarine Studies, Chesapeake Biological Laboratory, Solomons, Maryland 20688-0038, USA  相似文献   

9.
Trials for determination of culture conditions for the marine cyanophytes of Trichodesmium erythraeum and T. thiebautii were made with use of a synthetic medium. The Aquil medium, either with or without combined nitrogen, brought about stable growth of the two strains, T. erythraeum and T. thiebautii. However, they failed to grow in an ASP7 medium. The failure was found to be due to the toxic effect of Tris-aminomethane, the pH-buffer in this medium. Two important chemical conditions for the stable growth of Trichodesmium spp. were revealed. (1) Stable growth was supported by Ca2+ at high concentrations; in a concentration lower than 0.9 mM, cell-lysis promptly occurred, while the cells could grow without cell-lysis at Ca2+ concentrations higher than 7.5 mM even at a salinity as low as 19 S. Ca2+ is probably essential for the osmotic regulation in this organism. (2) Phosphate-toxicity at high concentrations was at least partly due to heavy metal(s) contaminating the reagent of inorganic phosphate. After treatment with a Chelex-100 column, phosphate concentration could be increased up to four times the previous concentrations without toxicity.  相似文献   

10.
The toxicity of copper and zinc to the estuarine copepod Acartia tonsa and to the two diatom food species Thalassiosira pseudonana and T. weissflogii was measured in nitrilotriacetate-trace metal ion buffer systems at 25 S. Overall, A. tonsa appeared to be more sensitive to cupric and zinc ion activity than either of the diatoms; however, its sensitivity varied among the different life stages examined. Adult survival was not affected within the zinc ion activity range 10-11 to 10-8 M and cupric ion activity range 10-13 to 10-11 M over a 96-h period, but a cupric ion activity of 10-10 M caused total mortality of adults within 72 h. Egg-laying rate was most sensitive to zinc, and was reduced at zinc ion activities 10-10 M. Naupliar survival after 96 h was reduced by zinc ion activities 10-8 M and by cupric ion activities 10-11 M, and was reduced to zero at a zinc ion activity of 10-7 M and at a cupric ion activity of 10-10.5 M. In an interspecies comparison of 96-h adult survival, Centropages typicus was more sensitive to copper and zinc than A. tonsa and the survival of Labidocera aestiva was dependent on the ratio of cupric to zinc ion activity. A comparison of our results with estimates of zinc and cupric ion activities in estuaries suggests that ionic activities of these metals are high enough in some polluted estuaries to affect the survival and reproduction of copepods.  相似文献   

11.
Eelgrass (Zostera marina L.) has access to nutrient pools in both the water column and sediments. We investigated the potential for eelgrass to utilize nitrate nitrogen by measuring nitrate reductase (NR) activity with an in vivo tissue assay. Optimal incubation media contained 60 mM nitrate, 100 mM phosphate, and 0.5% 1-propanol at pH 7.0. Leaves had significantly higher NR activity than roots (350 vs 50 nmoles NO 2 produced g FW–1 h–1). The effects of growing depth (0.8 m MLW, 1.2 m, 3.0 m, 5.0 m) and location within the eelgrass meadow (patch edge vs middle) on NR activity were examined using plants collected from three locations in the Woods Hole area, Massachusetts, USA, in July 1987. Neither depth nor position within the meadow appear to affect NR activity. Nitrate enrichment experiments (200 M NO 3 for 6 d) were conducted in the laboratory to determine if NR activity could be induced. Certain plants from shallow depth (1.2 m) showed a significant response to enrichment, with NR activity increasing from >100 up to 950 nmoles NO 2 g FW–1 h–1 over 6 d. It appears that Z. marina growing in very shallow water (0.8 m) near a shoreline may be affected by ground water or surface run-off enrichments, since plants from this area exhibited rates up to 1 600 nmol NO 2 g FW–1 h–1. Water samples from this location consistently had slightly higher NO 3 concentrations (1.4 M) than all other collection sites (0.7 M). Thus, it is possible that chronic run-off or localized groundwater inputs can create sufficient NO 3 enrichment in the water column to induce nitrate reductase activity in Zostera leaves.  相似文献   

12.
Cells ofPhaeodactylum tricornutum Bohlin develop the ability to take up L-lysine when they are deprived of nitrogen (illuminated in nitrogen-free medium), carbon (incubated in darkness) or both. Cells with a developed uptake system take up and accumulate lysine in an unchanged form. Uptake occurs under either aerobic or anaerobic conditions and is dependent on the presence of sodium+ ions (K s Na +=,ca. 10 mM). Some potassium+ ions are necessary for uptake, presumably within the cells, but with potassium+-replete cells, increasing K+ concentration depresses lysine uptake. The lysine-uptake porter also transports L-arginine.K s values are about 1.5 M for lysine and 0.5 M for arginine. It is, however, possible that the uptake system developed by incubating cells in darkness differs from that produced in light; it shows a pronounced pH optimum at pH 8.5, whereas the activity of the light-developed system declines from pH 6.5 to pH 9.0 and correlates well with the concentration of lysine+. The uptake system developed in darkness may also have a higher affinity for lysine. Lysine uptake is not inhibited by 1 mM concentrations of nitrate, nitrate, ammonium, or urea nor by similar concentrations of amphoteric or acidic amino acids.  相似文献   

13.
Samples of the hermatypic coralGalaxea fascicularis were collected between April 1987 and April 1990 from coral reefs off Singapore (103 °45E; 1 °13N). Ca2+-activated adenosine triphosphatase (ATPase) activity was detected in the plasma-membrane-enriched heavy microsomal fraction ofG. fascicularis. The high affinity component hadKm andVmax values of 0.0021 mM and 0.050 µmol Pi mg–1 protein min–1, respectively; corresponding values for the low affinity component were 0.15 mM and 0.85 µmol mg–1 protein min–1. The activity of the high affinity component was inhibited 80 and 50%, respectively, by the anticalmodulin drugs calmidazolium and chlorpromazine. The low affinity component of the Ca2+-ATPase may represent activities of alkaline phosphatase, Ca2+-ATPase from membranes of mitochondria and endoplasmic reticulum, or calmodulin-dissociated plasma membrane Ca2+-ATPase resulting from the removal of Ca2+ by EDTA during the isolation process. The high affinity Ca2+-ATPase is probably the enzyme responsible for Ca2+ extrusion from the cells ofG. fascicularis. The high and low affinity components of this Ca2+-ATPase could use ATP and ADP as substrates. Maximum activities of both components were registered at pH 7 and at 45°C. Ruthenium red, a specific inhibitor of Ca2+-ATPase, inhibited the activities of the high and low affinity Ca2+-ATPase by 100 and 60%, respectively. Inhibition of the activities of both components was also observed with sulphydryl reagents (PCMB and mersalyl). However, DCMU, diamox, dinitrophenol, iodoacetate, fluoride, cyanide, ouabain, oligomycin B and L-phenylalanine had no effect on the enzyme activities.  相似文献   

14.
We studied Na+/K+ ATPase activity and ultrastructure in gills of the hyper-hypo-regulating crab Chasmagnathus granulatus Dana, 1851 acclimated to different salinities: 10, 30 and 45, known to be hypo-, iso-, and hyper-osmotic to the hemolymph, respectively. After centrifugation of homogenates at 11,000 g, Na+/K+–ATPase activity was almost entirely found in the pellets from the posterior (6–8) and anterior (3–5) gills, whereas very little was detected in the supernatant liquid. Specific activity of gill 6 was 41.3, 30.2, and 28.2 µmol Pi h–1 mg prot–1 for crabs acclimated to 10, 30, and 45, respectively, the result for 10 being significantly higher than those at 30 and 45. Although the concentration of sodium at which the reaction rate is half-maximal (K M) was similar in the three acclimation salinities, only the enzyme from crabs acclimated to 10 was inhibited by high sodium concentration. Specific activity of gill 5 increased with the increment in external salinity (10.1, 15, and 18.1 µmol Pi h–1 mg prot–1 for 10, 30, and 45, respectively), the only significant difference being that between the extreme salinities. The epithelium thickness of the dorsal portion of gill 6 showed a variation among salinities: 21.7, 15.8 and 17.2 µm for 10, 30 and 45, respectively. There were significant differences in epithelium thickness between the 10 and the other salinities. In all three salinities, the ultrastructure of gill 6 epithelium showed a high density of mitochondria, estimated by their volume fraction (Vv m=0.307–0.355). These mitochondria were packed between extensive basolateral membrane interdigitations in ionocytes and pillar cells. Gill 5 showed three cell types: pillars which possess mitochondria packed between membrane folds only in their interdigitations with neighbouring cells; type-I cells 8.0 µm thick with low density of mitochondria (Vv m=0.088), and type-II cells, 9.9 µm thick and rich in mitochondria (Vv m=0.423), but lacking basolateral interdigitations. Vv m of type-I cells of gill 5 was significantly lower than those of type-II cells of the same gill and the ionocytes of gill 6. No significant difference in Vv m was detected between the latter cell types.Communicated by P.W. Sammarco, Chauvin  相似文献   

15.
The locus of symbiotic dinoflagellates within host cells provides a habitat which could potentially be exploited by the alga through heterotrophic uptake of host-derived organic substrates. Using zooxanthellae (Symbiodinium sp.) isolated from the tropical sea anemone Aiptasia pulchella collected from Kaneohe Bay, Hawaii, the effect of various potential organic substrates on growth in vitro was assessed in Erdschreiber seawater medium (ES) supplemented with organic compounds. Zooxanthellae maintained at 5 to 7 E m-2 s-1 (below compensation irradiance) grew heterotrophically when supplied with 100 M glycerol, glycolate, acetate, malate, or propionate, and grew in darkness on 100 M propionate. Zooxanthellae exposed to irradiance below compensation were able to utilize carbon sources in the unsupplemented ES medium for slow growth, but generally the growth rate of cultured zooxanthellae was a function of incubation irradiance. Zooxanthellae incubated for 10 wk in unsupplemented ES at 5 to 7 E m-2 s-1 were capable of growth at this low irradiance, but were also capable of net photosynthetic oxygen production at higher irradiances. This suggests that zooxanthellae can be photoautotrophic or facultatively heterotrophic. An estimate for the duration of mitosis (t d ) is made on the basis of growth rate of cultured zooxanthellae in log-phase; this estimate of t d =4.88 h is less than half the estimated t d for zooxanthellae in situ.  相似文献   

16.
The activity of glutamine synthetase (GS) was measured in the marine diatom Phaeodactylum tricornutum Bohlin (Strain SME) by a biosynthetic assay, based on -glutamyl hydroxamate synthesis, and referred to as the forwardreaction assay. The effects of pH, temperature and different homogenizing buffer preparations on enzyme activity, linearity of reactions, and substrate-saturation kinetics were investigated. The resultant data provide the basis for establishing optimum experimental conditions for a standard assay. Affinities of P. tricornutum GS for glutamate, ATP and Mg2+ were similar to those recorded elsewhere for a variety of other phytoplankton species using true biosynthetic assays based on release of inorganic phosphate, whereas the affinity for hydroxylamine was two orders of magnitude lower than that for ammonium, with an apparent K m value in the millimolar range. This, together with negative results obtained during earlier attempts to detect GS activity in P. tricornutum using the true biosynthetic assay, indicates that the GS of this alga has a lower affinity for ammonium than that of other phytoplankton species. Dual substrate kinetics demonstrated that apparent K m and V m values for glutamate were directly proportional to the concentration of ATP, thus giving indirect evidence of a correlation between GS activity and the adenylate energy charge. Comparisons between synthetase activities obtained with the optimized forward-reaction assay and transferase activities reported from other studies on various phytoplankton species revealed discrepancies which, to a great extent, probably arise from differences in the growth conditions of the organisms.  相似文献   

17.
As an initial step in our study of nitrogen metabolism in the coral/algal symbiosis we have purified glutamate dehydrogenase (EC 1.4.1.4) to homogeneity from polyp tissue of the staghorn coral Acropora formosa collected from Magnetic Island (North Queensland) in 1985–1986. The purified enzyme had a specific activity of 78 U mg-1. The native enzyme had a relative molecular weight, M r, of 360 000 (±20 000), and appears to be a hexamer with subunits of M r=56000 (±3 000). Like the enzyme from other coelenterates, the coral glutamate dehydrogenase (GDH) was absolutely specific with respect to the coenzyme substrate (NADP+/NADPH), and was insensitive to allosteric regulation by nucleotides; unlike other coelenterate GDHs, the coral enzyme was absorlutely specific for ammonium as amino group donor in the reductive amination reaction, and major differences in kinetic properties were apparent. Linear Michaelis-Menten kinetics were observed for the substrates a-ketoglutarate, NADPH and NADP+, the K m values being 0.93, 0.11 and 0.03 mM, respectively. However glutamate dehydrogenase displayed biphasic kinetics with respect to l-glutamate and ammonium, indicating two apparent K m values (18 and 81 mM for l-glutamate and 9.2 and 416 mM for ammonium). The enzyme also exhibits Scatchard plots, Hill coefficients and cooperativity indices characteristic of enzymes displaying negative cooperativity.  相似文献   

18.
A. Israel  S. Beer 《Marine Biology》1992,112(4):697-700
In this continuing study on photosynthesis of the marine red alga Gracilaria conferta, it was found that ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in crude extracts had a K m (CO2) of 85 M. Since seawater contains only ca. 10 M CO2, it appears that this alga must possess a CO2 concetrating system in order to supply sufficient CO2 to the vicinity of the enzyme. Because this species is a C3 plant (and thus lacks the C4 system for concentrating CO2), but can utilize HCO3 - as an exogenous carbon source, we examined whether HCO3 - uptake could be the initial step of such a CO2 concetrating system. The surface pH of G. conferta thalli was 9.4 during photosynthesis. At this pH, estimated maximal uncatalyzed HCO3 - dehydration (CO2 formation) within the unstirred layer was too slow to account for measured phostosynthetic rates, even in the presence of an external carbonic anhydrase inhibitor. This observation, and the marked pH increase in the unstirred layer following the onset of light, suggests that a HCO3 - transport system (probably coupled to transmembrane H+/OH- fluxes) operates at the plasmalemma level. The involvement of surface-bound carbonic anhydrase in such a system remains, however, obscure. The apparent need of marine macroalgae such as G. conferta for CO2 concentrating mechanisms is discussed with regard to their low affinity of Rubisco to CO2 and the low rate of CO2 supply in water. The close similarity between rates of Rubisco carboxylation and measured photosynthesis further suggests that the carboxylase activity, rather than inorganic carbon transport and intercoversion events, could be an internal limiting factor for photosynthetic rates of G. conferta.  相似文献   

19.
The effects of temperature, salinity, growth irradiance and diel periodicity of incident irradiance on photosynthesis-irradiance (P-I) relationships were examined in natural populations of sea-ice microalgae from McMurdo Sound in the austral spring of late 1984. Both P m b (photosynthetic rate at optimum irradiance) and b (initial slope or P-I curve) were temperature-dependent reaching optimal rates at approximately +6° and +2°C, respectively. P-I relationships showed little difference at 20 and 33 S; however, no measurable photosynthesis by sea-ice microalgae was detected in a 60 S solution of brine collected from the upper layers of congelation ice. Although diel periodicity characteristic of the under-ice light field appeared to have little effect on P-I relationships, changes in growth irradiance had a profound effect. An increase in growth irradiance from 7 E m-2 s-1 (ambient) to 35 or 160 E m-2 s-1 resulted in a transient three-fold increase in P m b and I k (index of photoadaptation) during the first four days, followed by a sharp decline. The effects of these environmental factors on ice algal photosynthesis may influence the distribution of microalgae in sea-ice environments.  相似文献   

20.
The reef coral Pocillopora damicornis (Linnaeus) was grown for 8 wk in four nutrient treatments: control, consisting of ambient, unfiltered Kaneohe Bay seawater [dissolved inorganic nitrogen (DIN, 1.0 M) and dissolved inorganic phosphate (DIP, 0.3 M)]; nitrogen enrichment (15 M DIN as ammonium); phosphorus enrichment (1.2 M DIP as inorganic phosphate); and 15 M DIN+1.2 M DIP. Analyses of zooxanthellae for C, N, P and chlorophyll a after the 8 wk experiment indicated that DIN enrichment increased the cellular chlorophyll a and excess nitrogen fraction of the algae, but did not affect C cell-1. DIP enrichment decreased both C and P cell-1, but the decrease was proportionally less for C cell-1. the response of cellular P to both DIN and DIP enrichment appeared to be in the same direction and could not be explained as a primary effect of external nutrient enrichment. The observed response of cellular P might be a consequence of in situ CO2 limitation. DIN enrichment could increase the CO2 (aq) demand by increasing the net production per unit area. DIP enrichment could slow down calcification, thus decreasing the availability of CO2 (aq) in the coral tissue.Hawaii Institute of Marine Biology Contribution No. 920  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号