首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Particulate matter suspended in the air has adverse effects onhuman health. Its level of concentration is an important parameter in evaluating the degree of hazard it poses to the atmosphere. Conventional methods used in measuring particulatematter are often filter-based, which indicates some disadvantagesbecause such a base requires labor and time. In this study, to achieve real-time measurements, a new electrical method was developed for measuring PM10 and PM2.5 concentrations. The basicprinciple is to electrically charge particles passing through thePM inlet using a corona charger and measure the currents createdby charged particles to obtain the number concentration of particulate matter. A new type inlet based on the particle cupimpactor configuration was designed and its performance was evaluated. A unipolar diffusion charger was developed and thecharger's efficiency was determined experimentally in terms ofPn, which represents the penetration through the charger,P, times the average charge number acquired by a particle,n, for different particle sizes. The correlation was constructed between the PM10 (or the PM2.5) mass concentrationsand the electrical currents due to particles, which were chargedby the diffusion charger.  相似文献   

2.
A method has been described previously for determining particle size distributions in the inhalable size range collected by personal samplers for wood dust. In this method, the particles collected by a sampler are removed, suspended, and re-deposited on a mixed cellulose-ester filter, and examined by optical microscopy to determine particle aerodynamic diameters. This method is particularly appropriate to wood-dust particles which are generally large and close to rectangular prisms in shape. The method was used to investigate the differences in total mass found previously in studies of side-by-side sample collection with different sampler types. Over 200 wood-dust samples were collected in three different wood-products industries, using the traditional 37 mm closed-face polystyrene/acrylonitrile cassette (CFC), the Institute of Occupational Medicine (IOM) inhalable sampler, and the Button sampler developed by the University of Cincinnati. Total mass concentration results from the samplers were found to be in approximately the same ratio as those from traditional long-term gravimetric samples, but about an order of magnitude higher. Investigation of the size distributions revealed several differences between the samplers. The wood dust particulate mass appears to be concentrated in the range 10-70 aerodynamic equivalent diameter (AED), but with a substantial mass contribution from particles larger than 100 microm AED in a significant number of samples. These ultra-large particles were found in 65% of the IOM samples, 42% of the CFC samples and 32% of the Button samples. Where present, particles of this size range dominated the total mass collected, contributing an average 53% (range 10-95%). However, significant differences were still found after removal of the ultra-large particles. In general, the IOM and CFC samplers appeared to operate in accordance with previous laboratory studies, such that they both collected similar quantities of particles at the smaller diameters, up to about 30-40 [micro sign]m AED, after which the CFC collection efficiency was reduced dramatically compared to the IOM. The Button sampler collected significantly less than the IOM at particle sizes between 10.1 and 50 microm AED. The collection efficiency of the Button sampler was significantly different from that of the CFC for particle sizes between 10.1 and 40 microm AED, and the total mass concentration given by the Button sampler was significantly less than that given by the CFC, even in the absence of ultra-large particles. The results are consistent with some relevant laboratory studies.  相似文献   

3.
An understanding of the scaling laws governing aerosol sampler performance leads to new options for testing aerosol samplers at small scale in a small laboratory wind tunnel. Two methods are described in this paper. The first involves an extension of what is referred to as the "conventional" approach, in which scaled aerosol sampler systems are tested in a small wind tunnel while exposed to relatively monodisperse aerosols. Such aerosols are collected by test and reference samplers respectively and assessed gravimetrically. The new studies were carried out for a modified, low flowrate version of the IOM personal inhalable aerosol sampler. It was shown that such experiments can be carried out with a very high level of repeatability, and this supported the general validity of the aerosol sampler scaling laws. The second method involves a novel testing system and protocol for evaluating the performances of aerosol samplers. Here, scaled aerosol samplers of interest are exposed to polydisperse aerosols, again in a small wind tunnel. In this instance, the sampled particles are counted and sized using a direct-reading aerodynamic particle sizer (the APS). A prototype automated aerosol sampler testing system based on this approach was built and evaluated in preliminary experiments to determine the performance of another modified version of the IOM personal inhalable aerosol sampler. The design of the new test system accounts for the complex fluid mechanical coupling that occurs near the sampler inlet involving the transition between the external flow outside the sampler and the internal airflow inside the sampler, leading in turn to uncontrolled particle losses. The problem was overcome by the insertion of porous plastic foam plugs. where the penetration characteristics are well understood, into the entries of both the test and the reference samplers. Preliminary experiments with this new system also supported the general validity of the aerosol sampler scaling laws. In addition, they demonstrated high potential that this approach may be applied in a standardised aerosol testing method and protocol.  相似文献   

4.
While several methods are available for bioaerosol monitoring, impaction remains the most common one, particularly for collecting fungal spores. Earlier studies have shown that the collection efficiency of many conventional single-stage bioaerosol impactors falls below 50% for spores with an aerodynamic diameter between 1.7 and 2.5 microm because their cut-off size is 2.5 microm or greater. The cut-off size reduction is primarily done by substantially increasing the sampling flow rate or decreasing the impaction jet size, W, to a fraction of a millimetre, with both measures often impractical to implement. Some success has recently been reported on the utilization of an ultra-low jet-to-plate distance, S (S/W < 0.1), in circular impactors. This paper describes a laboratory evaluation and some field testing of two single-stage, single-nozzle, slit bioaerosol impactors, Allergenco-D and Air-O-Cell, which feature the same jet dimensions and flow rate but have some design configuration differences that were initially thought to be of low significance. The collection efficiency and the spore deposit characteristics were determined in the laboratory using real-time aerosol spectrometry and different microscopic enumeration methods as the test impactors were challenged with the non-biological polydisperse NaCl aerosol and the aerosolized fungal spores of Cladosporium cladosporioides, Aspergillus versicolor, and Penicillium melinii. The tests showed that a relatively small reduction in the jet-to-plate distance of a single-stage, single-nozzle impactor with a tapered inlet nozzle, combined with adding a straight section of sufficient length, can significantly decrease the cut-off size to the level that is sufficient to efficiently collect spores of all fungal species. Furthermore, it appears that the slit jet design may improve the application of partial spore counting methodologies with respect to those applied to circular deposits. Data from a demonstration field study, conducted with the two samplers in environments containing a variety of fungal species, supported the laboratory findings.  相似文献   

5.
Measurements of aerosol particles in the air of an urban area in the UK have been made. Ambient air was sampled and the particulates measured after passing through a size selective PM10 inlet. Particle mass was measured using a Tapered Element Oscillating Microbalance (TEOM). Particle number and size distributions were obtained using an Electrical Aerosol Analyser (EAA) and an Aerodynamic Particle Sizer (APS). Measurements were also made of local meteorological parameters. Fine particle number concentrations were found to show better temporal agreement, including diurnal variation, with particle mass concentrations than the coarser particle number concentrations.  相似文献   

6.
Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM? 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO?) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions calculated from the OPC data are closely correlated with the results of the particle size-selective sampling using the CIP 10. Furthermore, the OPC data allow calculation of the thoracic fraction of workplace aerosol (not measured by sampling), which is interesting in the presence of allergenic particles like fungi spores. The results also show that the modified COP inlet adequately samples inhalable aerosol in the range of workplace particle-size distribution.  相似文献   

7.
Personal aerosol samplers are widely used to monitor human exposure to airborne materials. For bioaerosols, interest is growing in analyzing samples using molecular and immunological techniques. This paper presents a personal sampler that uses a two-stage cyclone to collect bioaerosols into disposable 1.5 ml Eppendorf-type microcentrifuge tubes. Samples can be processed in the tubes for polymerase chain reaction (PCR) or immunoassays, and the use of multiple stages fractionates aerosol particles by aerodynamic diameter. The sampler was tested using fluorescent microspheres and aerosolized fungal spores. The sampler had first and second stage cut-off diameters of 2.6 microm and 1.6 microm at 2 l min(-1)(geometric standard deviation, GSD = 1.45 and 1.75), and 1.8 microm and 1 microm at 3.5 l min(-1)(GSD = 1.42 and 1.55). The sampler aspiration efficiency was >or=98% at both flow rates for particles with aerodynamic diameters of 3.1 microm or less. For 6.2 microm particles, the aspiration efficiency was 89% at 2 l min(-1) and 96% at 3.5 l min(-1). At 3.5 l min(-1), the sampler collected 92% of aerosolized Aspergillus versicolor and Penicillium chrysogenum spores inside the two microcentrifuge tubes, with less than 0.4% of the spores collecting on the back-up filter. The design and techniques given here are suitable for personal bioaerosol sampling, and could also be adapted to design larger aerosol samplers for longer-term atmospheric and indoor air quality sampling.  相似文献   

8.
The size, morphology and chemical composition of 8405 particles on moss surfaces (Hylocomium splendens) was investigated by scanning electron microscopy and energy-dispersive X-ray microanalysis. Two moss samples from three locations in Southern Norway (Alg?rd, Birkeland, Neslandsvatn) and two sampling years (1977 and 2005) each were selected leading to a total of 12 samples investigated. At all three locations, particle deposition decreased substantially with time. The major particle groups encountered include silicates, iron-rich silicates, metal oxides/hydroxides, iron oxides/hydroxides, carbonates, carbon-rich particles, silicate fly ashes, iron-rich silicate fly ashes, and iron oxide fly ashes. Between 1977 and 2005, the relative number abundance of the three fly ash groups decreased substantially from approximately 30-60% to 10-18% for the small particles (equivalent projected area diameter <1 microm), and from 10-35% to 2-9% for large particles with diameters ≥1 microm. This decrease of fly ash particles with time was overlooked in previous papers on atmospheric input of pollutants into ecosystems in Southern Norway. In general, the presence of fly ash particles is ignored in most source apportionment studies based on bulk chemical analysis. Consequently, the geogenic component (crustal component) derived from principal component analysis is overestimated systematically, as it has a similar chemical composition as the fly ash particles. The high abundance of fly ashes demonstrates the need to complement source apportionment based on bulk chemistry by scanning electron microscopy in order to avoid misclassification of this important anthropogenic aerosol component.  相似文献   

9.
Methodology for identifying particle sources in indoor environments   总被引:1,自引:0,他引:1  
Growing concern about airborne particles in indoor environments requires fast source identification in order to apply remedial actions. A methodology for identifying sources emitting particles larger than 0.5 microm was designed and applied. It includes: (1) visual inspection of interior surfaces in order to identify deposited particles and inspection of potential sources (equipment, materials, activities etc.) of airborne particles. (2) Technical measurements of airborne particles at different positions in a building with simultaneous logging of activities. (3) Isolating potential activities/particle sources in a test chamber, initially free from particles, for controlled characterizations of the particles generated. The methodology was applied in a study of three houses in southern Sweden. The results show that source identification is facilitated by knowledge of concentration variations between different rooms, real-time measurements together with activity reports and information on particle characteristics that are comparable with results from laboratory simulations. In the houses to which the methodology was applied, major particle emissions from textile handling were identified, which were likely due to detergent zeolite residues.  相似文献   

10.
The aim of this study was to compare the personal exposure to particles and bioaerosols with that measured by stationary samplers in the main microenvironments, i.e., the home and the workplace. A random sample of 81 elementary school teachers was selected from the 823 teachers working for two councils in eastern Finland for the winter time measurement period. Bioaerosol and other particles were collected on filters by button samplers using personal sampling and microenvironmental measurements in homes and workplaces. The 24-hour sampling period was repeated twice for each teacher. Particle mass, absorption coefficient of the filter and the concentration of viable and total microorganisms were analyzed from each filter. In this paper, the study design, quality assurance principles and results of particle and bioaerosol exposure are described. The results show that particle mass concentrations, absorption coefficient and fungi were higher in personal exposure samples than in home and workplace samples. Furthermore, these concentrations were usually lower in the home than in the workplace. Bacterial concentrations were highest in heavily populated workplaces, while the viable fungi concentrations were lowest in workplaces. The fungi and bacteria results showed high variation, which emphasises the importance of quality assurance (duplicates and field blanks) in the microbial field measurements. Our results indicate that personal exposure measurements of bioaerosols in indoor environments are feasible and supplement the information obtained by stationary samplers.  相似文献   

11.
This research evaluated the UNC passive aerosol sampler as a tool to measure particle mass concentrations and size distributions. The exposure scenario represented high concentrations and exposure periods of a few hours. Mass concentrations measured with the passive sampler were compared to concentrations measured using both a dichotomous sampler and an aerodynamic particle sizer (APS). In addition, the size distributions measured with the passive sampler were compared to those measured using the APS. Mass concentrations measured using the dichotomous sampler and the APS agreed well. The passive sampler tracked, but tended to overestimate, mass concentrations measured by the other two instruments. Size distributions measured with the passive sampler followed the general pattern of those measured using the APS. Overall, the passive sampler demonstrated both its utility and its limitations in these tests. The concentration measurements and size distributions found using passive samplers were more variable than those of the other instruments, but generally followed the data taken using the other methods. The advantages of low cost and ease of use offset the limitations in data quality with the passive sampler; these advantages are particularly welcome for sampling situations where aerosol properties vary over space or time.  相似文献   

12.
Mass size distributions of total suspended particulate matter (TSPM) was measured from Sep 2002 to April 2003 in indoor kitchen environments of five locations in Jawaharlal Nehru University (JNU), New Delhi, with the help of a high volume cascade impactor. Particulate matters were separated in five different size ranges, i.e. >10.9 microm, 10.9-5.4 microm, 5.4-1.6 microm, 1.6-0.7 microm and <0.7 microm. The particle size distribution at various sites appears to follow uni-modal trend corresponding to fine particles i.e. size range <0.7 microm. The contributions of fine particles are estimated to be approximately 50% of TSPM and PM10.9, while PM10.9 comprises 80% of TSPM. Good correlations were observed between various size fractions. Regression results reveal that TSPM can adequately act as a surrogate for PM10.9 and fine particles, while PM10.9 can also act as surrogate for fine particles. The concentrations of heavy metals are found to be dominantly associated with fine particles. However, the concentration of some metals and their size distribution, to some extent is also site specific (fuel type used).  相似文献   

13.
Springtime urban road dust forms one of the most serious problems regarding air pollution in Finland. The composition and origin of springtime dust was studied in southern Finland with two different methods. Suspended particles (PM10 and TSP) were collected with high volume particle samplers and particle deposition was collected with moss bags. The composition of the PM(1.5-10) fraction was studied using individual particle analysis with SEM/EDX. The deposition in the moss bags was analysed with ICP-MS. The results showed that during the study period, approximately 10% of both PM(1.5-10) particles and the deposition originated from sanding. Other sources in the springtime PM(1.5-10) were e.g. asphalt aggregate or soil and combustion processes. It can be concluded that sanding produced a relatively small amount of particulate matter under the investigated circumstances.  相似文献   

14.
In the absence of methods for determining particle size distributions in the inhalable size range with good discrimination, the samples collected by personal air sampling devices can only be characterized by their total mass. This parameter gives no information regarding the size distribution of the aerosol or the size-selection characteristics of different samplers in field use conditions. A method is described where the particles collected by a sampler are removed, suspended, and re-deposited on a mixed cellulose-ester filter, and examined by optical microscopy to determine particle aerodynamic diameters. This method is particularly appropriate to wood dust particles which are generally large and close to rectangular prisms in shape. Over 200 wood dust samples have been collected in three different wood-products industries, using the traditional closed-face polystyrene/acrylonitrile cassette, the Institute of Occupational Medicine inhalable sampler, and the Button sampler developed by the University of Cincinnati. A portion of these samples has been analyzed to determine the limitations of this method. Extensive quality control measures are being developed to improve the robustness of the procedure, and preliminary results suggest the method has an accuracy similar to that required of National Institute for Occupational Safety and Health (NIOSH) methods. The results should provide valuable insights into the collection characteristics of the samplers and the impact of these characteristics on comparison of sampler results to present and potential future limit values. The NIOSH Deep South Education and Research Center has a focus on research into hazards of the forestry and associated wood-products industry, and it is hoped to expand this activity in the future.  相似文献   

15.
The amount of light scattered by airborne particles inside an aerosol photometer will vary not only with the mass concentration, but also with particle properties such as size, shape, and composition. This study conducted controlled experiments to compare the measurements of a real-time photometer, the SidePak AM510 monitor (SidePak), with gravimetric mass. PM sources tested were outdoor aerosols, and four indoor combustion sources: cigarettes, incense, wood chips, and toasting bread. The calibration factor for rescaling the SidePak measurements to agree with gravimetric mass was similar for the cigarette and incense sources, but different for burning wood chips and toasting bread. The calibration factors for ambient urban aerosols differed substantially from day to day, due to variations in the sources and composition of outdoor PM. A field evaluation inside a casino with active smokers yielded calibration factors consistent with those obtained in the controlled experiments with cigarette smoke.  相似文献   

16.
Suspended solids either as total suspended solids (TSS) or suspended sediment concentration (SSC) is an integral particulate water quality parameter that is important in assessing particle-bound contaminants. At present, nearly all stormwater runoff quality monitoring is performed with automatic samplers in which the sampling intake is typically installed at the bottom of a storm sewer or channel. This method of sampling often results in a less accurate measurement of suspended sediment and associated pollutants due to the vertical variation in particle concentration caused by particle settling. In this study, the inaccuracies associated with sampling by conventional intakes for automatic samplers have been verified by testing with known suspended sediment concentrations and known particle sizes ranging from approximately 20 μm to 355 μm under various flow rates. Experimental results show that, for samples collected at a typical automatic sampler intake position, the ratio of sampled to feed suspended sediment concentration is up to 6600% without an intake strainer and up to 300% with a strainer. When the sampling intake is modified with multiple sampling tubes and fitted with a wing to provide lift (winged arm sampler intake), the accuracy of sampling improves substantially. With this modification, the differences between sampled and feed suspended sediment concentration were more consistent and the sampled to feed concentration ratio was accurate to within 10% for particle sizes up to 250 μm.  相似文献   

17.
Long-term observations of atmospheric constituents such as aerosol particles are increasingly needed to assess their impact on climate and human health. In contrast to particle mass concentration (MC), there are currently no standardized quality control (QC) and quality assurance (QA) procedures for the measurement of particle size distribution (PSD). This study describes some fundamental QC and QA procedures associated with the collection and evaluation of a 2 year dataset between 2005 and 2006 at an urban background monitoring site in Augsburg, Germany. The considered parametres include ambient PSD between 3 nm and 10 microm (merged from a twin differential mobility and an aerodynamic particle sizer, TDMPS and APS, respectively) as well as total particle number (TNC), length (LC) and MC determined by independent instruments. The hourly 1st and 0th moment of PSD showed good correlations with the independently measured LC (R(2) = 0.86) and TNC (R(2) = 0.79), respectively, the deviation for LC with 4% and for TNC with 22% being rather small. The volume concentration (3rd moment) of hourly measured PSD and the resultant MC (when assuming a realistic apparent density of 1.5 g cm(-3)) correlated well with the independently measured MC of PM(2.5) or PM(10) (R(2) > 0.86) and showed only small deviation from PM(2.5) (1%) or PM(10) (5%), respectively. The study demonstrates that the described QC and QA measures define both a high accuracy of the PSD measurements and their long-term comparability against data obtained in similar measurement programmes.  相似文献   

18.
The need to determine occupational exposure to bioaerosols has notably increased in the past decade, especially for microbiology-related workplaces and laboratories. Recently, two new cyclone-based personal bioaerosol samplers were developed by the National Institute for Occupational Safety and Health (NIOSH) in the USA and the Research Center for Toxicology and Hygienic Regulation of Biopreparations (RCT & HRB) in Russia to monitor bioaerosol exposure in the workplace. Here, a series of wind tunnel experiments were carried out to evaluate the physical sampling performance of these two samplers in moving air conditions, which could provide information for personal biological monitoring in a moving air environment. The experiments were conducted in a small wind tunnel facility using three wind speeds (0.5, 1.0 and 2.0 m s(-1)) and three sampling orientations (0°, 90°, and 180°) with respect to the wind direction. Monodispersed particles ranging from 0.5 to 10 μm were employed as the test aerosols. The evaluation of the physical sampling performance was focused on the aspiration efficiency and capture efficiency of the two samplers. The test results showed that the orientation-averaged aspiration efficiencies of the two samplers closely agreed with the American Conference of Governmental Industrial Hygienists (ACGIH) inhalable convention within the particle sizes used in the evaluation tests, and the effect of the wind speed on the aspiration efficiency was found negligible. The capture efficiencies of these two samplers ranged from 70% to 80%. These data offer important information on the insight into the physical sampling characteristics of the two test samplers.  相似文献   

19.
Inhalable sampler efficiency depends on the aerodynamic size of the airborne particles to be sampled and the wind speed. The aim of this study was to compare the behaviour of three personal inhalable samplers for welding fumes generated by Manual Metal Arc (MMA) and Metal Active Gas (MAG) processes. The selected samplers were the ones available in Spain when the study began: IOM, PGP-GSP 3.5 (GSP) and Button. Sampling was carried out in a welding training center that provided a homogeneous workplace environment. The static sampling assembly used allowed the placement of 12 samplers and 2 cascade impactors simultaneously. 183 samples were collected throughout 2009 and 2010. The range of welding fumes' mass concentrations was from 2 mg m(-3) to 5 mg m(-3). The pooled variation coefficients for the three inhalable samplers were less than or equal to 3.0%. Welding particle size distribution was characterized by a bimodal log-normal distribution, with MMADs of 0.7 μm and 8.2 μm. For these welding aerosols, the Button and the GSP samplers showed a similar performance (P = 0.598). The mean mass concentration ratio was 1.00 ± 0.01. The IOM sampler showed a different performance (P < 0.001). The mean mass concentration ratios were 0.90 ± 0.01 for Button/IOM and 0.92 ± 0.02 for GSP/IOM. This information is useful to consider the measurements accomplished by the IOM, GSP or Button samplers together, in order to assess the exposure at workplaces over time or to study exposure levels in a specific industrial activity, as welding operations.  相似文献   

20.
Water-soluble inorganic ions in aerosol samples have been studied. The sample collection took place during summer in 2003 at a European background site which is operating within the framework of the European Monitoring and Evaluation Program. Gent type PM10 stacked filter unit (SFU) samplers were operated in parallel on a day and night basis to collect particles in separate coarse (2.0-10 microm) and fine (<2.0 microm) size fractions. Particulate masses were measured gravimetrically; the filters from one of the SFU samplers were analyzed by particle-induced X-ray emission spectrometry (PIXE) and instrumental neutron activation analysis (INAA). Filters from the other SFU sampler were analyzed by ion chromatography (IC) for major inorganic anions (MSA-, NO2(-), NO3(-), Cl-, Br-, SO4(2-), oxalate) and cations (Na+, K+, NH4(+), Mg2+, Ca2+). The water-soluble inorganic ions measured were responsible for 44% and 16% of the total fine and coarse particulate mass, respectively. In the fine size fraction, the main ionic components were SO4(2-) and NH4(+) accounting for about 90% of fine ionic mass. In the coarse fraction the main ionic components were Ca2+ and NO3(-), followed by SO4(2-). Significant day and night difference in the mass concentrations was observed only for fine NO3(-). The molar ratios of fine NH4(+) to SO4(2-) indicated their complete neutralization to (NH4)2SO4. According to the cation-to-anion ratios the coarse particles were alkaline, while the fine particles were slightly acidic or neutral. By comparing the corresponding concentrations obtained from PIXE/INAA and IC, we determined the water-extractable part of the individual species. We also investigated the effect of long-range transported air masses on the local air concentrations, and we found that the air quality of this background monitoring station was affected by regional pollution sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号