首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sponges constitute an abundant and functionally important component of coral reef systems. Given their demonstrated resistance to environmental stress, it might be expected that the role of sponges in reef systems under modern regimes of frequent and severe disturbance may become even more substantial. Disturbances have recently reshaped the community structure of many Caribbean coral reefs shifting them towards a state of persistent low coral cover and often a dominance of macroalgae. Using competition and growth rates recorded from Glover's Atoll in Belize, we parameterise a mathematical model used to simulate the three-way competition between sponges, macroalgae and coral. We use the model to determine the range of parameters in which each of the three species might be expected to dominate. Emergent properties arise from our simple model of this complex system, and these include a special case in which heightened competitive ability of macroalgae versus coral may counter-intuitively prove to be advantageous to the persistence of corals. Importantly, we show that even under scenarios whereby sponges fail to invade the system, inclusion of this third antagonist can qualitatively affect the likelihood of alternative stable states - generally in favour of macroalgal dominance. The interplay between multi-species competition and predation is complex, but our efforts highlight a key process that has, until now, remained unexplored: the extent to which sponges dissipate algal grazing pressure by providing generalist fish with an alternative food source. We highlight the necessity of identifying the extent by which this process takes place in tropical systems in order to improve projections of alternative stable states for Caribbean coral reefs.  相似文献   

2.
Fung T  Seymour RM  Johnson CR 《Ecology》2011,92(4):967-982
Ecosystems with alternative stable states (ASS) may shift discontinuously from one stable state to another as environmental parameters cross a threshold. Reversal can then be difficult due to hysteresis effects. This contrasts with continuous state changes in response to changing environmental parameters, which are less difficult to reverse. Worldwide degradation of coral reefs, involving "phase shifts" from coral to algal dominance, highlights the pressing need to determine the likelihood of discontinuous phase shifts in coral reefs, in contrast to continuous shifts with no ASS. However, there is little evidence either for or against the existence of ASS for coral reefs. We use dynamic models to investigate the likelihood of continuous and discontinuous phase shifts in coral reefs subject to sustained environmental perturbation by fishing, nutrification, and sedimentation. Our modeling results suggest that coral reefs with or without anthropogenic stress can exhibit ASS, such that discontinuous phase shifts can occur. We also find evidence to support the view that high macroalgal growth rates and low grazing rates on macroalgae favor ASS in coral reefs. Further, our results suggest that the three stressors studied, either alone or in combination, can increase the likelihood of both continuous and discontinuous phase shifts by altering the competitive balance between corals and algae. However, in contrast to continuous phase shifts, we find that discontinuous shifts occur only in model coral reefs with parameter values near the extremes of their empirically determined ranges. This suggests that continuous shifts are more likely than discontinuous shifts in coral reefs. Our results also suggest that, for ecosystems in general, tackling multiple human stressors simultaneously maximizes resilience to phase shifts, ASS, and hysteresis, leading to improvements in ecosystem health and functioning.  相似文献   

3.
Caribbean coral reefs are increasingly dominated by macroalgae instead of corals due to several factors, including the decline of herbivores. Yet, virtually unknown is the role of crustacean macrograzers on coral reef macroalgae. We examined the effect of grazing by the Caribbean king crab (Mithrax spinosissimus) on coral patch reef algal communities in the Florida Keys, Florida (USA), by: (1) measuring crab selectivity and consumption of macroalgae, (2) estimating crab density, and (3) comparing the effect of crab herbivory to that of fishes. Mithrax prefers fleshy macroalgae, but it also consumes relatively unpalatable calcareous algae. Per capita grazing rates by Mithrax exceed those of most herbivorous fish, but Mithrax often occurs at low densities on reefs and its foraging activities are reduced in predator-rich environments. Therefore, the effects of grazing by Mithrax tend to be localized and when at low density contribute primarily to spatial heterogeneity in coral reef macroalgal communities.  相似文献   

4.
Abstract: Most of the world's coral reefs line the coasts of developing nations, where impacts from intense and destructive fishing practices form critical conservation issues for managers. Overfishing of herbivorous fishes can cause phase shifts to macroalgal dominance, and fishers’ use of rocks as anchors lowers coral cover, giving further competitive advantage to macroalgae. Overfishing and anchoring have been studied extensively, but the role of their interaction in lowering coral reef resilience has not been quantified formally. We analyzed the combined effects of overfishing and rock anchoring on a range of reef habitat types—varying from high coral and low macroalgae cover to low coral and high macroalgae cover—in a marine park in Indonesia. We parameterized a model of coral and algal dynamics with three intensities of anchoring and fishing pressure. Results of the model indicated that damage caused by rock anchoring was equal to or possibly more devastating to coral reefs in the area than the impact of overfishing. This is an important outcome for local managers, who usually have the funds to distribute less‐damaging anchors, but normally are unable to patrol regularly and effectively enough to reduce the impact of overfishing. We translated model results into an interactive visual tool that allows managers to explore the benefits of reducing anchoring frequency and fishing pressure. The potential consequences of inaction were made clear: the likelihood that any of the reef habitats will be dominated in the future by macroalgae rather than corals depends on reducing anchoring frequency, fishing pressure, or both. The tool provides a platform for strengthened relationships between managers and conservationists and can facilitate the uptake of recommendations regarding resource allocation and management actions. Conservation efforts for coral reefs in developing nations are likely to benefit from transforming model projections of habitat condition into tools local managers can understand and interact with.  相似文献   

5.
Macroalgal fields are a feature of the shallow tropical benthos, yet their importance for coral reef fish population dynamics remains poorly understood. The abundance of fish recruits was recorded using underwater visual census at six macroalgal and 11 coral reef sites in the Montebello and Barrow Islands. Surveys identified 6,935 individual recruit fish from 105 species, 54 genera and 20 families. Of these, 1,401 recruits from 48 species, 31 genera and 14 families were observed in macroalgal sites. Sixteen of the 105 recruit species (15.2 %) were observed exclusively at macroalgal sites. Forty-two (87.5 %) of these species have been observed as adults on adjacent coral reefs. Species composition of fish recruits differed significantly between the two habitats. Corallivore, small omnivore and zooplanktivore recruits had significantly higher numbers in the coral sites, while the results clearly demonstrate that juveniles, within the genera Lethrinus and Choerodon, as well as large algal croppers, are predominantly found at macroalgal (74–100 %) rather than coral-dominated sites. High-canopy macroalgae cover was positively correlated with abundance of these taxa, particularly Lethrinids (r 2 = 0.40). This study is the first to highlight the important attributes of tropical macroalgal fields and suggests that they have a similar role to seagrass meadows as essential juvenile habitat, thus warranting greater attention in conservation planning and ecological studies.  相似文献   

6.
Habitat associations are an integral part of coral reef community structure. Commonly, one organism lives in such close association within or near another that a spatial refuge occurs, whereby one of the organisms provides protection to the other. This is often the result of defenses of the host deterring an associate organism’s consumers. In Moorea, French Polynesia, the range and abundance of the brown macroalga, Turbinaria ornata, have increased drastically since 1980 such that dense aggregations of this macroalga are a dominant component of the backreef habitat. Turbinaria ornata is both mechanically and chemically defended from herbivores. Other species of macroalgae grow within aggregations of Turbinaria and may benefit from these defenses. This study investigates whether aggregations of Turbinaria create a refuge from herbivory for associate macroalgae. When Turbinaria aggregations were removed experimentally, there was a significant increase in the number of associate algal species. Moreover, an herbivory assay using the palatable local alga Acanthophora spicifera identified herbivory as the mechanism for lower diversity on bommies lacking Turbinaria aggregations. The local increase in algal richness due to the refuge from herbivory afforded by Turbinaria may be an important contribution to macroalgal and community dynamics on reefs in Moorea, French Polynesia.  相似文献   

7.
Seasonal variation in coral reef macroalgal size and condition is well documented, yet seasonal variability of herbivory on macroalgae by coral reef fishes is unknown. Herbivore feeding intensity was quantified monthly on an inner-shelf reef on the Great Barrier Reef, using Sargassum bioassays. Removal rates of transplants displayed high levels of variation with significantly higher rates of removal during the summer months. Differences in Sargassum plant size and condition suggest that the variability in herbivore feeding intensity is attributed primarily to the variation in the condition of the macroalgae, especially epiphyte loads. The dramatic changes in macroalgal removal reveal a considerable decrease in herbivore activity in the winter. This highlights the clear distinction between ‘summer’ and ‘winter’ months in terms of reef processes, emphasizing the high seasonal variation in macroalgal removal rates at different time of the year.  相似文献   

8.
A discrete spatial simulation model is developed to investigate the type and intensity of biological and physical factors influencing the structure of coral communities. The model represents reproduction, growth, and interspecific competition by coral colonies in terms of “ownership” of space in a plot of reef habitat. Using data for several eastern Pacific coral species, the model reproduces observed changes in species composition and diversity during coral community development. Model results suggest that during early successional stages, or in areas that are frequently disturbed, larval colonization and rapid growth are more important than dominance achieved by extracoelenteric digestion or by growing over another coral in acquiring and maintaining possession of reef substrate. In mature communities that remain undisturbed, dominance is the best competitive strategy. Although the model was developed to study natural and man-induced changes in the community dynamics of coral reefs, it could be adapted to study other sessile organisms where spatial pattern is an important influence on the frequency and outcome of biological interactions.  相似文献   

9.
We studied the interacting roles of nutrient availability and herbivory in determining the macroalgal community in a rocky littoral environment. We conducted a factorial field experiment where we manipulated nutrient levels and herbivory at two sublittoral depths and measured macroalgal colonization and the following young assemblage during the growing season. At the community level, grazing reduced algal colonization, though the effect varied with depth and its interaction with nutrient availability varied in time. In shallow water, the total density of macroalgae increased in response to nutrient enrichment, but the ability of grazers to reduce macroalgal density also increased with the nutrient enrichment, and thus, the community could not escape from the top-down control. In deep water, the algal density was lower, except in July when nutrient enrichment caused a very dense algal growth. Grazing at the greater depth, though effective, was generally of smaller magnitude, and in July it could not limit algal recruitment and growth. Species richness peaked at the intermediate nutrient level in deep but not in shallow water during most of the growing season. Grazing had no effect on diversity of the algal community at either depth and only a minor effect on species richness at the greater depth. Opportunistic and ephemeral algae benefited from the nutrient enrichment but were also grazed to very low densities. Slowly growing and/or perennial species colonized poorly in the nutrient enriched treatments, and depending on the species, either suffered or indirectly benefited from herbivory. For all species, effects of nutrients on colonization depended on depth; usually both nutrient and herbivory effects were more pronounced at the shallow depth. We conclude that grazers are able to reduce macroalgae over a large range of nutrient availabilities, up to 12-fold nutrient enrichment in the current experiment, and that the sublittoral depth gradient generates variation in the algal community control exerted by both herbivory and nutrient availability. Thus temporal and spatial variability in both top-down and bottom-up control and in their interaction, especially along the depth gradient, may be crucially important for producer diversity and for the successional dynamic in a rocky sublittoral environment.  相似文献   

10.
Characterizing the Florida Keys National Marine Sanctuary (FKNMS), USA, has gained much attention over the past several decades because of apparent changes in the benthic community structure over space and time representative of patterns occurring in the Caribbean region. We used a 5-year dataset (1996–2000) of macroalgal and sponge cover and water quality measurements as predictor variables of hard coral community structure in the FKNMS. The 16 water quality variables were summarized into 4 groups by principal component analysis (PCA). Hierarchical agglomerative cluster analysis of the mean and standard deviation (SD) of the principal component scores of water quality variables separated the reef sites into two main groups (and five sub-groups), referred to as reefs of similar influence (RSI). The main groups corresponded with their geographical locations within the Florida Keys: the reefs in the Upper and Middle Keys being homogeneous and collectively, having lower water quality scores relative to reefs in the Lower Keys. Canonical correspondence analysis (CCA) between hard coral cover and key predictor variables (i.e., water quality, macroalgal cover and sponge cover) also separated the reefs in the Lower Keys from reefs in the Upper–Middle Keys, consistent with results of the cluster analysis, which categorized reefs based on RSI. These results suggest that the prevailing gradient of predictor variables may have influenced the structuring of coral reef communities at a spatial scale larger than the individual reef. Furthermore, it is conceivable that these predictor variables exerted influence for a long time rather than being a recent event. Results also revealed a pattern showing reduction in hard coral cover and species richness, and subsequent proliferation of macroalgae and sponges during the study period. Our analyses of the Florida Keys present a pattern that is consistent with the characteristics of a reef that has undergone a “phase-shift,” a phenomenon that is widely reported in the Caribbean region.  相似文献   

11.
Macroalgae are a major benthic component of coral reefs and their dynamics influence the resilience of coral reefs to disturbance. However, the relative importance of physical and ecological processes in driving macroalgal dynamics is poorly understood. Here we develop a Bayesian belief network (BBN) model to integrate many of these processes and predict the growth of coral reef macroalgae. Bayesian belief networks use probabilistic relationships rather than deterministic rules to quantify the cause and effect assumptions. The model was developed using both new empirical data and quantified relationships elicited from previous studies. We demonstrate the efficacy of the BBN to predict the dynamics of a common Caribbean macroalgal genus Dictyota. Predictions of the model have an average accuracy of 55% (implying that 55% of the predicted categories of Dictyota cover were assigned to the correct class). Sensitivity analysis suggested that macroalgal dynamics were primarily driven by top–down processes of grazing rather than bottom–up nutrification. BBNs provide a useful framework for modelling complex systems, identifying gaps in our scientific understanding and communicating the complexities of the associated uncertainties in an explicit manner to stakeholders. We anticipate that accuracies will improve as new data are added to the model.  相似文献   

12.
Biodiversity may provide insurance against ecosystem collapse by stabilizing assemblages that perform particular ecological functions (the "portfolio effect"). However, the extent to which this occurs in nature and the importance of different mechanisms that generate portfolio effects remain controversial. On coral reefs, herbivory helps maintain coral dominated states, so volatility in levels of herbivory has important implications for reef ecosystems. Here, we used an extensive time series of abundances on 35 reefs of the Great Barrier Reef of Australia to quantify the strength of the portfolio effect for herbivorous fishes. Then, we disentangled the contributions of two mechanisms that underlie it (compensatory interactions and differential responses to environmental fluctuations ["response diversity"]) by fitting a community-dynamic model that explicitly includes terms for both mechanisms. We found that portfolio effects operate strongly in herbivorous fishes, as shown by nearly independent fluctuations in abundances over time. Moreover, we found strong evidence for high response diversity, with nearly independent responses to environmental fluctuations. In contrast, we found little evidence that the portfolio effect in this system was enhanced by compensatory ecological interactions. Our results show that portfolio effects are driven principally by response diversity for herbivorous fishes on coral reefs. We conclude that portfolio effects can be very strong in nature and that, for coral reefs in particular, response diversity may help maintain herbivory above the threshold levels that trigger regime shifts.  相似文献   

13.
Seagrass beds are often considered to be important nurseries for coral reef fish, yet the effectiveness of these nursery functions (refuge and food availability) at different juvenile stages is poorly understood. To understand how the demands of juvenile fish on seagrass nursery functions determines the timing of ontogenetic habitat shifts from seagrass beds to coral reefs, we conducted visual transect survey and field tethering and caging experiments on three different sizes of the coral reef fish Pacific yellowtail emperor (Lethrinus atkinsoni) during its juvenile tenure in seagrass beds at Ishigaki Island, southern Japan. The study showed that although the number of individual L. atkinsoni juveniles decreased by >90 % during their stay in the seagrass nursery, the shelter and/or food availability functions of the nursery, at least for a juvenile size of approximately 5 cm total length (TL), provided the best survival and growth option. The timing of ontogenetic migration to coral reefs of larger fish (>8 cm TL) was attributed to foraging efficiency for larger food items in different habitats. Overall, the function of the seagrass bed nursery changed with juvenile body size, with marginally higher survival and significantly greater growth rates during early juvenile stages in seagrass beds compared to coral reefs. This would contribute to the enhancement in the number of individuals eventually recruited to adult populations.  相似文献   

14.
White JS  O'Donnell JL 《Ecology》2010,91(12):3538-3548
Stegastes nigricans, a "farmerfish" that cultivates algal turf and defends territories from grazers and other intruders, can affect coral indirectly due to increased competition with farmed algal turf and/or reduced predation resulting from territorial aggression directed at corallivores. To investigate the indirect effects of this key ecosystem engineer on coral mortality and growth, we transplanted caged and exposed fragments of four coral species to patch reefs in French Polynesia on which we manipulated the presence of S. nigricans and turf, and to reefs naturally devoid of S. nigricans. Reef access was two to four times higher for herbivorous fishes, and two times higher for corallivorous fishes, when S. nigricans was removed, indicating that reef access is reduced for two important guilds of fishes when S. nigricans is present. Stegastes' territoriality indirectly benefited delicate acroporids (Montipora floweri and Acropora striata), yielding a twofold to fivefold reduction in skeletal loss due to lower predation frequencies in the presence of S. nigricans. Three corals, A. striata, M. floweri, and especially Porites australiensis, suffered mortality due to overgrowth significantly more frequently in the presence of farmed turf, but Pocillopora verrucosa did not. Algal abundance predicted the frequency of overgrowth for only A. striata and P. australiensis. M. floweri were more likely to be overgrown when exposed (uncaged) in the presence of S. nigricans, suggesting an interaction modification, in this case that initial predation increased susceptibility to competition with turf. In this community, the presence of S. nigricans may increase algal overgrowth of massive Porites by facilitating its turf competitors and simultaneously reduce predation of branching corals through territorial exclusion of corallivores. These indirect interactions may underlie previously documented community transitions from disturbance-resistant massive coral to recovering branching corals within S. nigricans territories.  相似文献   

15.
Algal turfs are the major primary producing component on many coral reefs and this production supports higher levels in the complex reef trophic web. Rates of metabolism of algal turfs are related positively to water motion, consistent with limitation by the diffusion of a substance through a boundary layer. Based on engineering mass transfer theory, we hypothesized that photosynthesis of algal turfs is controlled by rates of mass transfer and responses of photosynthesis to increasing flow speed should be predicted by engineering correlations. This hypothesis was tested in ten experiments where photosynthesis was estimated in a flume/respirometer from changes in dissolved oxygen at eight flow speeds between 0.08 and 0.52 m/s. Flow in the flume and over the reef at Kaneohe Bay, Oahu, Hawaii was estimated using hot-film thermistor and electromagnetic current meters. Rates of photosynthesis were related positively to flow in all experiments and plots of the log of the average Sherwood number (Sh meas) versus log Reynolds number (Re D) for each experiment are lower than predicted for mass transfer through a turbulent boundary layer. Algal turf-covered plates are characterized as hydrodynamically transitional to fully rough surfaces and the lower than predicted slopes suggest that roughness reduces rates of mass transfer. A negative correlation between algal turf biomass and slopes of the log Sh meas−log Re D plots suggests that mass transfer to algal turfs is affected significantly by the physical structure of the algal community. Patterns of photosynthesis based on changes in dissolved oxygen and dissolved inorganic carbon concentrations (DIC) indicate that the flow speed effect is not the result of increased flux of oxygen from the algal turfs, and combined with the short response time to flow speed, suggest that DIC may limit rates of photosynthesis. Although there are differences between flow in the flume and flow over algal turfs on the reef, these results suggest that photosynthesis is controlled, at least in part, by mass transfer. The chemical engineering approach provides a framework to pose further testable hypotheses about how algal canopy height, flow oscillation, turbulence, and substratum roughness may modulate rates of metabolism of coral reef algal turfs.  相似文献   

16.
The architectural complexity of ecosystems can greatly influence their capacity to support biodiversity and deliver ecosystem services. Understanding the components underlying this complexity can aid the development of effective strategies for ecosystem conservation. Caribbean coral reefs support and protect millions of livelihoods, but recent anthropogenic change is shifting communities toward reefs dominated by stress-resistant coral species, which are often less architecturally complex. With the regionwide decline in reef fish abundance, it is becoming increasingly important to understand changes in coral reef community structure and function. We quantify the influence of coral composition, diversity, and morpho-functional traits on the architectural complexity of reefs across 91 sites at Cozumel, Mexico. Although reef architectural complexity increases with coral cover and species richness, it is highest on sites that are low in taxonomic evenness and dominated by morpho-functionally important, reef-building coral genera, particularly Montastraea. Sites with similar coral community composition also tend to occur on reefs with very similar architectural complexity, suggesting that reef structure tends to be determined by the same key species across sites. Our findings provide support for prioritizing and protecting particular reef types, especially those dominated by key reef-building corals, in order to enhance reef complexity.  相似文献   

17.
Effects of sheltering fish on growth of their host corals   总被引:1,自引:0,他引:1  
Stony corals are the foundation species of tropical reefs, and their structures can harbor a diverse range of mutualist taxa that can confer important benefits, including provision of nutrients. Prominent among the associates of branching coral in the genus Pocillopora are groups of zooplanktivorous damselfishes that take refuge in the coral to avoid their predators. In field and laboratory experiments, we explored the effects of colonies of resident damselfishes on growth of their host corals. Laboratory studies revealed a positive relationship between biomass of fish and output of ammonium. In the field, levels of ammonium were significantly elevated in the water surrounding the branches of Pocillopora occupied by colonies of damselfish, particularly in time periods following active feeding by the fish. Experimental manipulation of the presence of fish on host corals during a month-long field experiment revealed that corals hosting fish grew significantly more than those that lacked fish, and coral growth was positively correlated with the biomass of resident fish. The Pocillopora colonies in the field experiment varied in the degree of openness of their branching structure, and dye studies indicated that this affected their ability to retain waterborne nutrients. Together with biomass of resident fish, colony openness explained 76% of the variation in coral growth rate during the experiment. Corals can exhibit considerable morphological variability, and mutualistic fish respond to colony architecture during habitat selection, with some species preferring more open-branched forms. This makes it likely that corals may face tradeoffs in attracting resident fish and in retaining the nutrients they provide.  相似文献   

18.
Corals are the primary reef-building organisms, therefore it is key to understand their recruitment patterns for effective reef management. Coral recruitment rates and juvenile coral abundance were recorded in the Wakatobi National Marine Park, Indonesia, on two reefs (Sampela and Hoga) with different levels of environmental degradation (12.5 vs. 44 % coral cover with high and low sedimentation rates, respectively) to examine consistencies in recruitment patterns between years and seasons. Recruitment was measured on multiple panels at two sites on each reef (6–7 m depth) and cleared areas of natural reef. Although coral recruitment was twofold higher in 2008–2009 than in 2007–2008, and seasonal differences were identified, consistent significant differences in recruitment rates were found between the two reefs even though they are separated by only ~1.5 km. Recruitment rates and juvenile abundance were lower on the more degraded reef. These patterns are likely a consequence of differential pre- and post-settlement mortality as a result of the high sedimentation rates and degraded conditions and possibly reduced larval supply.  相似文献   

19.
Abstract: In 1998, tropical sea surface temperatures were the highest on record, topping off a 50-year trend for some tropical oceans. In the same year, coral reefs around the world suffered the most extensive and severe bleaching ( loss of symbiotic algae) and subsequent mortality on record. These events may not be attributable to local stressors or natural variability alone but were likely induced by an underlying global phenomenon. It is probable that anthropogenic global warming has contributed to the extensive coral bleaching that has occurred simultaneously throughout the reef regions of the world. The geographic extent, increasing frequency, and regional severity of mass bleaching events are an apparent result of a steadily rising baseline of marine temperatures, combined with regionally specific El Niño and La Niña events. The repercussions of the 1998 mass bleaching and mortality events will be far-reaching. Human populations dependent on reef services face losses of marine biodiversity, fisheries, and shoreline protection. Coral bleaching events may become more frequent and severe as the climate continues to warm, exposing coral reefs to an increasingly hostile environment. This global threat to corals compounds the effects of more localized anthropogenic factors that already place reefs at risk. Significant attention needs to be given to the monitoring of coral reef ecosystems, research on the projected and realized effects of global climate change, and measures to curtail greenhouse gas emissions. Even those reefs with well-enforced legal protection as marine sanctuaries, or those managed for sustainable use, are threatened by global climate change.  相似文献   

20.
For over 20 years the El Niño-Southern Oscillation (ENSO) has caused damage to the coral reefs of the eastern Pacific and other regions. In the mid-1980s scientists estimated that coral cover was reduced by 50–100% in several countries across the region. Almost 20 years (2002) after the 1982–1983 event, we assessed the recovery of the virtually destroyed reefs at Cocos Island (Costa Rica), previously evaluated in 1987 and reported to have less than 4% live coral cover. We observed up to fivefold increase in live coral cover which varied among reefs surveyed in 1987 and 2002. Most new recruits and adults belonged to the main reef building species from pre-1982 ENSO, Porites lobata, suggesting that a disturbance as outstanding as El Niño was not sufficient to change the role or composition of the dominant species, contrary to phase shifts reported for the Caribbean. During the 1990s, new species were observed growing on the reefs. Notably, Leptoseris scabra, considered to be rare in the entire Pacific, was commonly found in the area. Recovery may have begun with the sexual and asexual recruits of the few surviving colonies of P. lobata and Pavona spp. and with long distance transport of larvae from remote reefs. We found an overall 23% live coral cover by 2002 and with one reef above 58% indicating that Cocos Island coral reefs are recovering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号