首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Goal, Scope and Background Chlorite (ClO2ˉ) is a primary decomposition product when chlorine dioxide (ClO2) is added during water treatment; therefore the toxic effects of both compounds on aquatic organisms are possible. Limited data are available concerning their toxicity to fish. The aim of this study was to investigate sensitivity of rainbow trout to acute and chronic toxicity of chlorine dioxide and chlorite, and to estimate the Maximum-Acceptable-Toxicant-Concentration (MATC) of those compounds in fish. Methods The acute and chronic toxicity of chlorine dioxide and chlorite to larval and adult rainbow trout was investigated in 96-hour to 20-day laboratory exposures evaluating the wide range spectrum of biological indices under semi-static conditions. Results and Discussion Median lethal concentration (96-hour LC50) values derived from the tests were: 2.2 mg/l for larvae; 8.3 mg/l for adult fish and 20-day LC50 for larvae was 1.6 mg/l of chlorine dioxide, respectively. Chlorite was found to be from 48 to 18 times less acutely toxic to larvae and adult fish, correspondingly. Both chemical compounds induced similar toxic effects in rainbow trout larvae during chronic tests (they affected cardio-respiratory and growth parameters), but chlorine dioxide had a higher toxic potency than chlorite. A significant decrease in the heart rate and respiration frequency of larvae was established. However, within an increase in exposure duration recovery of cardio-respiratory responses was seen to have occurred in larvae exposed to chlorite. Meanwhile, in larvae exposed to chlorine dioxide, a significant decrease in cardio-respiratory responses remained during all 20-day chronic bioassays. Chlorine dioxide also more strongly affected growth parameters of rainbow trout larvae at much lower test concentrations. Decreased rate of yolk-sack resorption occurred only in the tests with chlorine dioxide. Conclusions Maximum-Acceptable-Toxicant-Concentration (MATC) of 0.21 mg/l for chlorine dioxide and of 3.3 mg/l for chlorite to fish was derived from chronic tests based on the most sensitive parameter of rainbow trout larvae (growth rate). According to substance toxicity classification accepted for Lithuanian inland waters, chlorine dioxide and chlorite can be referred to substances of \moderate\ toxicity to fish. Recommendations and Outlook Due to its very reactive nature, chlorine dioxide is rapidly (in a few hours) reduced to chlorite, which is persistent also as a biocide but 16 times less toxic to fish, according to MATC. Therefore, it is much more likely that fish will be exposed to chlorite than to chlorine dioxide in natural waters. Presently accepted, the Maximum-Permitted-Concentration of total residual chlorine (TRC) in waste-water discharging into receiving waters is 0.6 mg/l. If this requirement will not be exceeded, it is unlikely that fish would be exposed to lethal or even to sublethal concentrations of chlorine dioxide or chlorite. Furthermore, chlorine dioxide does not generate toxic nitrogenous (chloramines) or carcinogenic organic residuals (trihalomethanes). All these properties make chlorine dioxide a more promising biocide than chlorine.  相似文献   

2.
Capkin E  Altinok I  Karahan S 《Chemosphere》2006,64(10):1793-1800
The acute toxicity of endosulfan in juvenile rainbow trout (Oncorhynchus mykiss, 10.61+/-1.69 g) was evaluated in glass aquaria under static conditions. Nominal concentrations of endosulfan in the toxicity test ranged from 1.3 microg l(-1) to 29 microg l(-1). The concentrations of endosulfan that killed 50% of the rainbow trout within 24-h (24-h LC50), 48-h LC50, 72-h LC50, and 96-h LC50 were 19.78, 8.89, 5.28, and 1.75 microg l(-1), respectively. None of the unexposed control fish died, and the first fish died 4 h after exposure to 26.3 microg l(-1) of endosulfan. Survival of fish was significantly increased with increasing fish size and decreased with decreased fish size at the same temperature (p<0.001). Temperature also had a significant effect on survival of fish. Alkalinity at levels above 20 mg l(-1) as CaCO3 significantly increased survival of fish at 19.78 microg l(-1) of endosulfan. Increasing alkalinity from 20 mg l(-1) as CaCO3 to 42 or higher concentrations tested in this study (121 mg l(-1) as CaCO3) significantly increased survival of fish (p<0.01). Total hardness ranging from 55 mg l(-1) as CaCO3 to 126 mg l(-1) as CaCO3 did not affect survival of fish exposed to endosulfan. Endosulfan toxicity was found to be irreversible when fish were exposed to minimum concentrations of endosulfan tested. Histologically, fish gills had lamellar edema, separation of epithelium from lamellae, lamellar fusion, and swelling of the epithelial cells. Melanomacrophage centers were scattered throughout the trunk kidney, head kidney, and spleen. The liver of endosulfan-exposed fish had severe focal necrosis. None of these lesions were seen in unexposed control fish. Results indicate that alkalinity, temperature, and fish size affect endosulfan toxicity of rainbow trout.  相似文献   

3.
Aquatic toxicity due to the creation and mobilization of chemical constituents by fire has been little studied, despite reports of post-fire fish kills attributed to unspecified pyrogenic toxicants. We examined releases of cyanides from biomass burning and their effect on surface runoff water. In laboratory test burns, available cyanide concentrations in leachate from residual ash were much higher than in leachate from partially burned and unburned fuel and were similar to or higher than the 96-h median lethal concentration (LC50) for rainbow trout (45 microg/l). Free cyanide concentrations in stormwater runoff collected after a wildfire in North Carolina averaged 49 microg/l, again similar to the rainbow trout LC50 and an order of magnitude higher than in samples from an adjacent unburned area. Pyrogenic cyanide inputs, together with other fire-related stressors, may contribute to post-fire fish mortalities, particularly those affecting salmonids.  相似文献   

4.
A simple, rapid toxicity test was developed using the suspension-cultured fish cell line CHSE-sp derived from chinook salmon Oncorhynchus tshawytscha embryos in order to assess the toxicity of new marine antifouling compounds. The compounds tested were copper pyrithione, Diuron, Irgarol 1051, KH101, Sea-Nine 211, and zinc pyrithione, all of which have been nominated in Japan as possible replacements for organotin compounds. The in vitro acute toxicity (24-h EC50) of the six compounds to these fish cells was evaluated using the dye Alamar Blue to determine cell viability, and then correlated with the results of in vivo chronic toxicities (28-day LC50) to juvenile rainbow trout Oncorhynchus mykiss. The suspension-cultured fish cells were found to be suitable for the screening of such chemicals before performing an in vivo test. The toxicities of the test compounds obtained from both tests, shown in decreasing order, were as follows: copper pyrithione > zinc pyrithione > KH101 > or = Sea-Nine 211 > Diuron > Irgarol 1051. The herbicides Diuron and Irgarol 1051 showed the least toxicity, while the pyrithiones had the greatest toxicity.  相似文献   

5.
Abstract

The effects of a nuclear polyhedrosis virus (NPV) of the red‐headed pine sawfly, Neodiprion lecontei, on rainbow trout, Salmo gairdnevi, were investigated. The fish were exposed to this virus by intubation and topical application and no ill‐effects were observed. Similarly, no ill‐effects were detected in Daphnia pulex when the same NPV was added to their culture medium. The materials were lyophilized, NPV‐infected sawfly larvae (normally used for insect control), lyophilized, unin‐fected larvae and purified, polyhedral inclusion bodies. On the basis of these laboratory tests, this virus, when disseminated as a biocontrol agent, should present no hazard to rainbow trout or to the aquatic invertebrate Daphnia pulex, two species frequently used in toxicity tests of chemical pesticides.  相似文献   

6.
Gül A 《Chemosphere》2005,59(2):163-166
Chlorpyrifos-methyl, a wide-spectrum organophosphorus insecticide and potential toxic pollutant contaminating aquatic ecosystems, was investigated for acute toxicity. Larvae of the freshwater fish Nile tilapia (Oreochromis niloticus L.) were selected for the bioassay experiments. The experiments were repeated three times and the 96 h LC50 was determined for the larvae. The static test method for assessing acute toxicity was used. Water temperature was maintained at 25+/-1 degrees C. In addition, behavioral changes at each chlorpyrifos-methyl concentration were observed for the individual fish. Data obtained from the chlorpyrifos-methyl acute toxicity tests were evaluated using Finney's probit analysis statistical method. The 96 h LC50 value for Nile tilapia larvae was calculated to be 1.57 mg/l.  相似文献   

7.
Acute toxicity to fish hepatoma cell line PLHC-1 and to juvenile rainbow trout was examined for 18 plant protection products. The main objective was to explore whether hepatoma cells could be used to predict acute toxicity in fish taking into account the mode of toxic action and compound properties. Acute fish toxicity was determined using the OECD guideline test 203 and compared to predicted baseline LC50 of acute fish toxicity calculated with a quantitative structure-activity relationship (QSAR) derived for guppy fish. Cytotoxicity was determined through the inhibition of neutral red uptake (NR(50)) into lysosomes and compared to predicted baseline cytotoxicity derived for goldfish GFS cells. In general, NR50 values were higher by a factor ranging from 3 to 3000 than the corresponding acute LC50. A weak correlation between NR50 and LC50 values was found (log/log: r2=0.62). Also the lipophilicity (log K(ow)) was not a good predictor for cytotoxicity (r2=0.43) and lethality (r2=0.57) of these pesticides. The neutral red assay is detecting general baseline toxicity only. Comparing LC50 data to QSAR results, the compounds can be classified to act as narcotics or reactive compounds with a specific mode of toxic action in fish. The results indicate that limitation of the neutral red assay in predicting acute fish toxicity. A promising alternative might be the assessment of toxicity in a set of in vitro systems addressing also cell-specific functions which are related to the mode of toxic action of the compound.  相似文献   

8.
Background, Goal and Scope Cleaner CRYSTAL Simple Green (SG) was used for the cleanup of the oil spill in the Baltic Sea near Lithuania in 2001. No scientific data are available on the effects and consequences of its application for local aquatic life. The aim of this study was to determine and compare sublethal effects of a) solution SG; b) crude oil alone; c) SG in combination with oil on rainbow trout Oncorhynchus mykiss at different stages of its development in laboratory conditions.Methods Laboratory studies were performed on adult rainbow trout (4-day duration) and on yolk-sac larvae (25-day duration) evaluating their biological parameters. Concentrations of water-soluble and thin-dispersed fractions of petroleum hydrocarbons were measured using gas chromatography.Results and Discussion SG solution (0.5 mg/l) did not affect the survival of larvae and adult fish, and no significant changes were determined in respiratory parameters of the exposed larvae and adult fish. The most expressed alterations were found in morphological parameters (a decrease in the average body mass) of larvae and in haematological indices (a decrease in the leukocyte count) of adult fish at the end of the tests. Crude oil (1610 mg/l) did not affect the survival of adult fish during the 4-day exposure. An increase in larvae mortality rate (~ 36%) was recorded at the end of the tests. A significant decrease in the average body mass and heart rate of larvae as well as in gill ventilation frequency of larvae and adult fish were determined. SG combined with oil induced an increase in larval mortality &#61566; 46% of individuals died at the end of the tests. No mortality was recorded in adult fish. The average body mass and heart rate of larvae were significantly decreased. Marked changes were also found in respiratory parameters (gill ventilation frequency of larvae and adult fish significantly decreased, while “coughing” rate increased). A 1-day, 2-day exposure of fish to SG combined with oil induced a significant decrease in the leukocyte count of adult fish, which was also determined at the end of the tests. The augmentation of adverse impact could be explained by the data obtained from our studies. When SG was added into dilution water with crude oil the concentration of petroleum hydrocarbons in the mixture increased 3 ~ 4.5 times after 24 h and 96 h, respectively. Conclusions The comparative study of the effects of crude oil alone, SG and SG combined with oil showed that their toxic effects on fish differed. Oil combined with SG was found to be more toxic to fish (larvae and adults) than SG alone and oil alone. Fish at early stages of development (yolk-sac larvae) were more sensitive to the effects of the compounds studied than adults.Recommendations and Outlook To diminish the negative impact of oil spill cleanup using chemicals on aquatic ecosystems, it is recommended to carry out more comprehensive studies of their effects and after-effects in laboratory conditions using a wide scale of local aquatic organisms. The selected species of the most sensitive aquatic organisms should include those which are unable to escape the impact of combined action of oil and cleaners. Special attention should be directed to the research of effects of these pollutants on studied organisms at their most sensitive stages of life (reproduction, hatching, early stages of development), as after-effects of exposure to pollutants may be observed in future generations.  相似文献   

9.
Acrylic acid, methyl acrylate, ethyl acrylate, and butyl acrylate are commercially important and widely used materials. This paper reports the results of a series of fate and aquatic toxicity studies. The mobility in soil of acrylic acid and its esters ranged from 'medium' to 'very high'. Calculated bioconcentration factors ranged from 1 to 37, suggesting a low bioconcentration potential. Acrylic acid and methyl acrylate showed limited biodegradability in the five day biochemical oxygen demand (BOD5) test, while ethyl acrylate and butyl acrylate were degraded easily (77% and 56%, respectively). Using the OECD method 301D 28-d closed bottle test, degradability for acrylic acid was 81% at 28 days, while the acrylic esters ranged from 57% to 60%. Acrylic acid degraded rapidly to carbon dioxide in soil (t1/2 < 1 day). Toxicity tests were conducted using freshwater and marine fish, invertebrates, and algae. Acrylic acid effect concentrations for fish and invertebrates ranged from 27 to 236 mg/l. Effect concentrations (LC50 or EC50) for fish and invertebrates using methyl acrylate, ethyl acrylate, and butyl acrylate ranged from 1.1 to 8.2 mg/l. The chronic MATC for acrylic acid with Daphnia magna was 27 mg/l based on length and young produced per adult reproduction day and for ethyl acrylate was 0.29 mg/l based on both the reproductive and growth endpoints. Overall these studies show that acrylic acid and the acrylic esters studied can rapidly biodegrade, have a low potential for persistence or bioaccumulation in the environment, and have low to moderate toxicity.  相似文献   

10.
Mercury in fish from the Pinchi Lake Region, British Columbia, Canada   总被引:2,自引:0,他引:2  
Water, surface sediments, and <40 cm rainbow trout (Oncorhynchus mykiss) and northern pikeminnow (Ptychocheilus oregonensis) were collected from Pinchi Lake, British Columbia, and from several nearby reference lakes. Hg concentrations in sediment samples from Pinchi L. were highly elevated compared to sediments from reference lakes, especially in sites adjacent to and downstream of a former Hg mine. In both fish species examined, Hg concentration was positively related to age and/or fork length. In northern pikeminnow, Hg concentrations were also positively related to trophic level (deltaN). Hg concentrations in both fish species were highest in Pinchi L., and were higher in pikeminnow than in rainbow trout of similar size. Average Hg concentrations in small rainbow trout from all lakes, including Pinchi L., were lower than dietary levels reported to cause reproductive impairment in common loons (Gavia immer); however, Hg levels in small pikeminnow from Pinchi L. were sufficiently high to be of concern. The risk for Hg toxicity in the study area is greatest for animals that consume larger piscivorous fish such as larger northern pikeminnow or lake trout, which are known from previous studies to contain higher Hg concentrations.  相似文献   

11.
The effects of a model mixture (HMMM) of seven heavy metals (Cu, Zn, Ni, Cr, Pb, Cd, Mn) on the rainbow trout Oncorhynchus mykiss at all stages of development (embryos, larvae, adults) were investigated based on the annual average concentrations of these metals in cooling waste waters discharging from Ignalina Nuclear Power Plant (Lithuania) into the Drūk?iai lake. According to mortality parameters, the most sensitive to HMMM were larvae, although no significant differences between the sensitivity of embryos and adult fish to HMMM were found. Maximal toxic effect of HMMM was observed during the hatching period. Long-term exposure to sublethal concentrations of HMMM affected embryo development, growth of larvae, their cardio-respiratory and behavioural responses, induced significant changes in morphological, morpho-physiological, physiological and haematological parameters of adult fish. Respiratory responses and growth parameters of fish were found to be the most sensitive to low concentrations of HMMM. Adult fish were capable of detecting and avoiding low, sublethal concentrations of HMMM. Heavy metals in a mixture at low concentrations were more toxic than single ones. According to the background of the damages induced by HMMM, after-effects in a fish organism, as well as in a whole population, can be predicted.  相似文献   

12.
Başer S  Erkoç F  Selvi M  Koçak O 《Chemosphere》2003,51(6):469-474
Permethrin, a synthetic pyrethroid pesticide and potential toxic pollutant contaminating aquatic ecosystems, was investigated in the present study for acute toxicity. Guppy fish (Poecilia reticulata) were selected for the bioassay experiments. The experiments were repeated 3 times and the 48-h LC(50) was determined for the guppies. The static test method of acute toxicity test was used. Water temperature was regulated at 20+/-1 degrees C. In addition, behavioral changes at each permethrin concentration were observed for the individual fish. Data obtained from the permethrin acute toxicity tests were evaluated using the probit analysis statistical method. The 48-h LC(50) value for guppy was estimated as 245.7 microg/l. Values in the range of 0.05-97.0 microg/l have been reported for various other fish species.  相似文献   

13.
This study elucidated the acute toxicity of chlorpyrifos on the early life stages of banded gourami (Trichogaster fasciata). To determine the acute effects of chlorpyrifos on their survival and development, we exposedthe embryos and two-day-old larvae to six concentrations (0, 0.01, 0.10, 1.0, 10 and 100 µg L?1) of chlorpyrifos in plastic bowls. Log-logistic regression was used to calculate LC10 and LC50 values. Results showed that embryo mortality significantly increased with increasing chlorpyrifos concentrations. The 24-h LC10 and LC50 values (with 95% confidence limits) of chlorpyrifos for embryos were 0.89 (0.50–1.58) and 11.8 (9.12–15.4) µg L?1, respectively. Hatching success decreased and mortality of larvae significantly increased with increasing concentrations of chlorpyrifos. The 24-h LC10 and LC50 values (with 95% confidence limits) of chlorpyrifos for larvae were 0.53 (0.27–1.06) and 21.7 (15.9–29.4) µg L?1, respectively; the 48-h LC10 and LC50 for larvae were 0.04 (0.02–0.09) and 5.47 (3.77–7.94) µg L?1, respectively. The results of this study suggest that 1 µg L?1 of chlorpyrifos in the aquatic environment may adversely affect the development and the reproduction of banded gourami. Our study also suggests that banded gourami fish can serve as an ideal model species for evaluating developmental toxicity of environmental contaminants.  相似文献   

14.
Young RF  Orr EA  Goss GG  Fedorak PM 《Chemosphere》2007,68(3):518-527
Naphthenic acids are a complex mixture of carboxylic acids that occur naturally in petroleum. During the extraction of bitumen from the oil sands in northeastern Alberta, Canada, naphthenic acids are released into the aqueous phase and these acids become the most toxic components in the process-affected water. Although previous studies have exposed fish to naphthenic acids or oil sands process-affected waters, there has been no analytical method to specifically detect naphthenic acids in fish. Here, we describe a qualitative method to specifically detect these acids. In 96-h static renewal tests, rainbow trout (Oncorhynchus mykiss) fingerlings were exposed to three different treatments: (1) fed pellets that contained commercial naphthenic acids (1.5mg g(-1) of food), (2) kept in tap water that contained commercial naphthenic acids (3mg l(-1)) and (3) kept in an oil sands process-affected water that contained 15mg naphthenic acids l(-1). Five-gram samples of fish were homogenized and extracted, then the mixture of free fatty acids and naphthenic acids was isolated from the extract using strong anion exchange chromatography. The mixture was derivatized and analyzed by gas chromatography-mass spectrometry. Reconstructed ion chromatograms (m/z=267) selectively detected naphthenic acids. These acids were present in each fish that was exposed to naphthenic acids, but absent in fish that were not exposed to naphthenic acids. The minimum detectable concentration was about 1microg naphthenic acids g(-1) of fish.  相似文献   

15.
Acute and chronic toxicity tests with propanil were conducted on Daphnia magna. The 24 and 48 h LC50 were 43.74 and 5.01 mg/l respectively. Chronic toxicity tests were carried out using sublethal propanil concentrations (0.07, 0.10, 0.21 and 0.55 mg/l) during 21 days. The effect of propanil on survival, reproduction and growth of D. magna organisms was monitored. The parameters used to evaluate herbicide effect on reproduction were: mean total young ones per female, mean brood size, time to first reproduction, mean number broods per female and intrinsic rate of natural increase (r). Survival and growth (body length) were also determined after 21 days of exposure to the herbicide. Reproduction was significantly reduced when propanil concentration increased in the medium. The intrinsic rate of natural increase (r) decreased with increasing concentrations of propanil especially in those animals exposed to 0.55 mg/l. However, growth as well as survival of the exposed organisms only decreased in daphnids exposed to the highest propanil concentration tested. The maximum acceptable toxicant concentration (MATC) was calculated for D. magna exposed to the herbicide using as parameter of evaluation the intrinsic rate of natural increase (r). The interpolation of these results gave MATC values of 0.08 mg/l herbicide. We have derived the EC50 values for some selected parameters on D. magna exposed to propanil. EC50 values indicated that reproductive parameters were very sensitive of the effect of propanil on daphnids. Finally, the daphnids were exposed to the same sublethal herbicide concentrations as in the chronic study and the effect of the toxicant on filtration and ingestion rates was determined. Feeding rates of D. magna declined with increasing propanil concentrations. The effective propanil concentrations at which feeding rates were reduced to 50% of that in controls (EC50) were also calculated.  相似文献   

16.
Fish is an important source of dietary intake of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs). To assess bioaccumulation of PCDD/Fs and PCBs in farm-raised fish, rainbow trout were fed with either Baltic herring or dry fish feed. Baltic herring feed had a PCDD/F sum concentration of 125 ng kg(-1) dry weight (d.w.), and dry fish feed contained 18.2 ng kg(-1) d.w. of PCDD/Fs. The PCB concentrations of Baltic herring and dry fish feed were 188 and 48.7 microg kg(-1) d.w., respectively. After feeding with Baltic herring for 4 months, the PCDD/F concentration of the rainbow trout fillet was 27.3 ng kg(-1) fresh weight (f.w.), which was 7.0-fold higher than the initial concentration. The PCDD/F concentration and congener profile in rainbow trout had become almost the same as in Baltic herring. PCDD/Fs were accumulated in the fillet with an efficiency of 21%. Feeding of rainbow trout with dry fish feed resulted in a PCDD/F concentration of 8.08 ng kg(-1) f.w., denoting a 2.1-fold increase from the initial level. The accumulation efficiency was 29%. Time trends in PCB concentrations followed those of PCDD/Fs. After 4 months, the PCB sum concentration in herring-fed rainbow trout was 94.4 pg kg(-1) f.w., whereas in dry fish feed-fed rainbow trout it was 38.6 microg kg(-1) f.w. Accumulation efficiencies of PCBs were higher than those of PCDD/Fs. Based on the accumulated PCDD/F and PCB concentrations, it was estimated that frequent consumption of rainbow trout fed with Baltic herring could lead to a human daily intake that exceeds the recommendation of WHO.  相似文献   

17.
18.
Beta-cypermethrin, a synthetic pyrethroid pesticide and potential toxic pollutant, contaminating aquatic ecosystems was investigated in the present study for acute toxicity. Guppy fish (Poecilia reticulata) was selected for the bioassay experiments. The experiments were repeated three times and the 48-h LC50 was determined for the guppies. The static test method of acute toxicity test was used. Water temperature was regulated at 22 +/- 1 degrees C. In addition, behavioral changes at each beta-cypermethrin concentration were observed for the individual fish. Data obtained from the beta-cypermethrin acute toxicity tests were evaluated using the probit analysis statistical method. The 48-h LC50 value for guppy was estimated as 21.4 microg/l.  相似文献   

19.
Abstract

Acute bioassay tests on the toxic effects of the insect larvicide Abate® (temephos) on the mouth brooder cichlid fish Tilapia melanopleum and the dragonfly larvae (Odonata) Neurocordulia virginiensis were conducted in static non renewal toxicity test set ups. The 96h‐LC50 (95% confidence intervals) was 30.2 (20.5‐ 44.20) mg/L for the fish and 2.0 (1.16–2.0) mg/L for the dragonfly larvae. The dragonfly larvae were 15 times more susceptible to the larvicide than the tilapia. The calculated NOEC (No Observable Effect Concentration) was 14.1 mg/L for the fishand less than 1.0 mg/L for the insect larvae. The estimated ‘safe’ concentration of the pesticide to the fish was 3.0 mg/L and 0.2 mg/L for insect larvae. These figures are far above the concentrations approved for use in the control of mosquito larvae(0.0004–0.01 mg/L). It appears that the application of toxic levels of the insecticide for the elimination of some aquatic invertebrates may be ‘safe’ for normal survival, growth and reproduction offish and some aquatic insect larvae.  相似文献   

20.
The key to any QSAR model is the underlying dataset. In order to construct a reliable dataset to develop a QSAR model for pesticide toxicity, we have derived a protocol to critically evaluate the quality of the underlying data. In developing an appropriate protocol that would enable data to be selected in constructing a QSAR, we concentrated on one toxicity end point, the 96 h LC50 from the acute rainbow trout study. This end point is key in pesticide regulation carried out under 91/414/EEC. The dataset used for this exercise was from the US EPA-OPP database.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号